## **FINAL**

BASELINE HUMAN HEALTH RISK ASSESSMENT
FOR THE
GULFCO MARINE MAINTENANCE
SUPERFUND SITE
FREEPORT, TEXAS

## PREPARED BY:

Pastor, Behling & Wheeler, LLC 2201 Double Creek Drive Suite 4004 Round Rock, Texas 78664 (512) 671-3434

## TABLE OF CONTENTS

|      |            |                |                                                      | <u>Page</u> |
|------|------------|----------------|------------------------------------------------------|-------------|
| LIST | OF T       | ABLES .        |                                                      | iii         |
| LIST | OF T       | ABLES .        |                                                      | iv          |
| LIST | OF F       | IGURES         |                                                      | iv          |
| LIST | OF P       | LATES .        |                                                      | iv          |
| LIST | OF A       | APPENDI        | ICES                                                 | v           |
| LIST | OF A       | CRONY          | MS                                                   | vi          |
| EXE  | CUTI       | VE SUM         | MARY                                                 | viii        |
| 1.0  | INT        |                | ΓΙΟΝ                                                 |             |
|      | 1.1<br>1.2 |                | OCATION AND HISTORYONMENTAL SETTING                  |             |
| 2.0  |            |                | LUATION AND IDENTIFICATION OF POTENTIAL CHEMICALS OF |             |
|      |            |                | EVALUATION                                           |             |
|      | 2.1        |                | IFICATION OF POTENTIAL CHEMICALS OF CONCERN          |             |
|      | 2.2        | 2.2.1          | Concentration-Toxicity Screen                        |             |
|      |            | 2.2.1          | Comparison to the Background Areas                   |             |
|      |            | 2.2.3          | Summary of Potential Chemicals of Concern            |             |
| 3.0  | EXF        | OSURE          | ASSESSMENT                                           | 16          |
|      | 3.1        | POTEN          | TIAL EXPOSURE PATHWAY EVALUATION                     | 16          |
|      |            | 3.1.1          | Land Use Evaluation                                  | 17          |
|      |            | 3.1.2          | Groundwater Use Evaluation                           | 17          |
|      |            | 3.1.3          | Surface Water Use Evaluation                         |             |
|      |            | 3.1.4          | Fish and Shellfish Resources Evaluation              |             |
|      | 3.2        |                | TIALLY EXPOSED POPULATIONS                           | 19          |
|      | 3.3        |                | EPTUAL SITE MODELS AND POTENTIALLY COMPLETE EXPOSURE |             |
|      |            |                | VAYS                                                 |             |
|      | 3.4        | _              | TIFICATION OF EXPOSURE                               |             |
|      |            | 3.4.1          | Estimating the Exposure Point Concentration          |             |
|      |            | 3.4.2          | Quantifying Intake                                   |             |
|      |            | 3.4.3<br>3.4.4 | Exposure Assumptions and Intake Calculations         |             |
| 4.0  | ТОХ        | KICITY A       | ASSESSMENT                                           | 29          |
|      | 4.1        |                | URE ROUTE-SPECIFIC TOXICITY CRITERIA                 |             |
|      | 4.2        |                | NOGENIC EFFECTS                                      |             |
|      | 4.3        | NONCA          | ARCINOGENIC EFFECTS                                  | 30          |
|      | 44         | SOURC          | CES OF TOXICITY CRITERIA                             | 31          |

| 5.0 | RISK CHARACTERIZATION                                        | 32 |
|-----|--------------------------------------------------------------|----|
|     | 5.1 POTENTIAL CARCINOGENIC RISKS                             | 32 |
|     | 5.2 POTENTIAL NONCARCINOGENIC HAZARD QUOTIENTS               | 33 |
|     | 5.3 PATHWAYS QUALITATIVELY EVALUATED (I.E., ELIMINATED DURI) |    |
|     | SCREENING STEP)                                              | 35 |
|     | 5.4 FISH INGESTION PATHWAY                                   |    |
| 6.0 |                                                              |    |
|     | 6.1 DATA ANALYSIS UNCERTAINTIES                              | 36 |
|     | 6.2 EXPOSURE ANALYSIS UNCERTAINTIES                          | 37 |
|     | 6.3 TOXICITY ASSESSMENT UNCERTAINTIES                        |    |
|     | 6.4 RISK CHARACTERIZATION UNCERTAINTIES                      |    |
|     | 6.5 IMPACT OF UNCERTAINTIES                                  | 40 |
| 7.0 | CONCLUSIONS                                                  | 41 |
| 8.0 | REFERENCES                                                   | 42 |

## LIST OF TABLES

| <u>Table</u> | <u>Title</u>                                                                                      |
|--------------|---------------------------------------------------------------------------------------------------|
| 1            | Exposure Point Concentrations (mg/kg) – South Area Surface Soil                                   |
| 2            | Exposure Point Concentrations (mg/kg) – South Area Soil                                           |
| 3            | Exposure Point Concentrations (mg/L) – South Area Zone A Groundwater                              |
| 4            | Exposure Point Concentrations (mg/L) – Intracoastal Waterway Surface Water (Total)                |
| 5            | Exposure Point Concentrations ( $mg/L$ ) – Intracoastal Waterway Background Surface Water (Total) |
| 6            | Exposure Point Concentrations (mg/kg) – Intracoastal Waterway Sediment                            |
| 7            | Exposure Point Concentrations (mg/kg) – Intracoastal Waterway Background Sediment                 |
| 8            | Exposure Point Concentrations (mg/kg) – North Area Surface Soil                                   |
| 9            | Exposure Point Concentrations (mg/kg) – North Area Soil                                           |
| 10           | Exposure Point Concentrations (mg/L) – North Area Zone A Groundwater                              |
| 11           | Exposure Point Concentrations (mg/L) – Wetland Surface Water (Total)                              |
| 12           | Exposure Point Concentrations (mg/L) – Pond Surface Water (Total)                                 |
| 13           | Exposure Point Concentrations (mg/kg) – Wetland Sediment                                          |
| 14           | Exposure Point Concentrations (mg/kg) – Pond Sediment                                             |
| 15           | Exposure Point Concentrations (mg/kg) – Background Soil                                           |
| 16           | Qualitative Current Off-Site Residential Receptor Evaluation – South Area Soil                    |
| 17           | Qualitative Current Off-Site Residential Receptor Evaluation – North Area Soil                    |
| 18           | Background Comparisons                                                                            |
| 19           | PCOCs Identified and Quantitatively Evaluated in the BHHRA                                        |
| 20           | Evaluation of Exposure Pathways                                                                   |
| 21           | Exposure Scenarios by Media                                                                       |

## LIST OF TABLES

| <u>Table</u> | <u>Title</u>                                                                       |
|--------------|------------------------------------------------------------------------------------|
| 22           | Exposure Assumptions for the Industrial Worker Scenario                            |
| 23           | Exposure Assumptions for the Construction Worker Scenario                          |
| 24           | Exposure Assumptions for the Youth Trespasser Scenario                             |
| 25           | Exposure Assumptions for the Contact Recreation Scenario                           |
| 26           | Johnson and Ettinger Vapor Intrusion Model Output for South Area<br>Groundwater    |
| 27           | Johnson and Ettinger Vapor Intrusion Model Output for North Area<br>Groundwater    |
| 28           | Summary of Hazard Indices and Cancer Risk Estimates for Soil and Sediment Exposure |

### LIST OF FIGURES

| <u>Figure</u> | <u>Title</u>                                                                          |
|---------------|---------------------------------------------------------------------------------------|
| 1             | Site Location Map                                                                     |
| 2             | Wetland Map                                                                           |
| 3             | Soil and Intracoastal Waterway Sediment and Surface Water Background Sample Locations |
| 4             | Human Health Conceptual Site Model South Area                                         |
| 5             | Human Health Conceptual Site Model North Area                                         |

## LIST OF PLATES

| <u>Plate</u> | <u>Title</u>                   |  |
|--------------|--------------------------------|--|
| 1            | Investigation Sample Locations |  |

## LIST OF APPENDICES

| <u>Appendix</u> | <u>Title</u>                  |
|-----------------|-------------------------------|
| A               | Pro UCL Output                |
| В               | <b>Background Comparisons</b> |
| C               | Intake Calculations           |
| D               | Risk Calculations             |
| Е               | Restrictive Covenants         |

#### LIST OF ACRONYMS

AAF – absorption adjustment factor

ADD – average daily dose

AF – soil/sediment to skin adherence factor

AirSoil<sub>Inh-VP</sub> – soil concentration that is protective of the air inhalation pathway

AST – aboveground storage tank

AT – averaging time

ATSDR - Agency for Toxic Substances and Disease Registry

BHHRA - Baseline Human Health Risk Assessment

BW – body weight (kg)

COC - chemical of concern

COI – chemicals of interest

CSF – cancer slope factor

CSM – conceptual site model

4,4'-DDD – dichlorodiphenyldichloroethylene

4,4'-DDT – dichlorodiphenyltrichloroethane

DQO - data quality objective

EA – exposure assessment

ED – exposure duration

EF – exposure frequency

EPA – United States Environmental Protection Agency

EPC – exposure point concentration

FI – fraction ingested

FSP - Field Sampling Plan

Ft. - feet

GRG – Gulfco Remediation Group

HI - hazard index

HQ - hazard quotient

IR – ingestion rate

IRIS - Integrated Risk Information System

IUR - inhalation unit risk

J&E VIM – Johnson & Ettinger Vapor Intrusion Model

KM - Kaplan-Meier

#### LIST OF ACRONYMS

LADD – lifetime average daily dose

MDL - method detection limit

NEDR – Nature and Extent Data Report

NOAEL - no observable adverse effects level

NPL – National Priorities List

OSWER - Office of Solid Waste and Emergency Response

PBW - Pastor, Behling & Wheeler, LLC

PCB – polychlorinated biphenyl

PCL – Protective Concentration Limit

PCOC – potential chemical of concern

PPRTV - Provisional Peer Reviewed Toxicity Values

PSA – potential source area

PSV – preliminary screening value

QA – quality assurance

QAPP - Quality Assurance Project Plan

QC – quality control

RfC – reference concentration

RfD - reference dose

RI – Remedial Investigation

RI/FS - Remedial Investigation/Feasibility Study

RME – reasonable maximum exposure

RSL – Regional Screening Level

SA – skin surface area

SOW - Statement of Work

SWRBEL – risk-based exposure limit for surface water

TCEQ - Texas Commission on Environmental Quality

TDS – total dissolved solids

TDSHS – Texas Department of State Health Services

TRRP – Texas Risk Reduction Program

TSWQS - Texas Surface Water Quality Standard

UAO - Unilateral Administrative Order

UCL – upper confidence limit

VOC - volatile organic compound

#### **EXECUTIVE SUMMARY**

The purpose and scope of this document is to summarize the analytical data for environmental media sampled during the Remedial Investigation (RI) and to conduct a baseline human health risk assessment (BHHRA) based on those data for the Gulfco Marine Maintenance Superfund Site located at 906 Marlin Avenue in Freeport, Texas in Brazoria County (the Site). A BHHRA is the systematic, scientific characterization of potential adverse effects resulting from exposures to hazardous agents or situations. The results of the BHHRA are used to support risk management decisions and determine if remediation or further action is warranted at a site.

The Site consists of approximately 40 acres within the 100-year coastal floodplain along the north bank of the Intracoastal Waterway between Oyster Creek to the east and the Old Brazos River Channel to the west. Beginning in approximately 1971, barges were brought to the facility and cleaned of waste oils, caustics and organic chemicals, with these products reportedly stored in on-site tanks and later sold. Sandblasting and other barge repair/refurbishing activities also reportedly occurred on the Site. During the operation, wash waters were reportedly stored either on a floating barge, in on-site storage tanks, and/or in surface impoundments present on Lot 56 of the Site. The surface impoundments were closed under the Texas Water Commission's direction in 1982.

The area of the Site south of Marlin Avenue (South Area) includes approximately 20 acres of upland that were created from dredged material from the Intracoastal Waterway. Prior to construction of the Intracoastal Waterway, this area was most likely coastal wetlands. The area of the Site north of Marlin Avenue (North Area), excluding the capped surface impoundments and access roads, is considered estuarine wetland. The North Area consists of approximately five acres of upland, which supports a variety of herbaceous vegetation that is tolerant of drier soil conditions, while the North Area wetlands are approximately 15 acres in size.

Data related to the nature and extent of potential contamination in environmental media (e.g., soil, sediment, groundwater and surface water) at the Site were obtained as part of the RI. Unless otherwise noted, the samples were analyzed for the full suite of analytes as specified in the approved Remedial Investigation/Feasibility Study (RI/FS) Work Plan for the Site. Samples included:

- Eighty-three surface soil samples (0 to 0.5 ft below ground surface) and 83 subsurface soil samples (0.5 ft to 4 ft below ground surface) were collected in the South Area.
- Eighteen surface soil and subsurface soil samples were collected in the North Area.

- Two additional surface soil samples were collected near the former transformer shed at the South Area for polychlorinated biphenyls (PCBs) analyses only.
- Ten background soil samples were collected within the approved background area approximately 2,000 feet east of the Site near the east end of Marlin Avenue.
- Thirteen groundwater samples were collected from the shallow Zone A groundwater from the South Area and sixteen groundwater samples were collected from the shallow Zone A groundwater from the North Area.
- Sixteen sediment samples were collected from the Intracoastal Waterway in front of the Site. One additional sediment sample was collected near the Site and analyzed for 4,4'-DDT.
- Nine background sediment samples were collected from the Intracoastal Waterway east of the Site and across the main waterway canal.
- Forty-eight sediment samples were collected in the North Area wetlands. Additional sediment samples were collected from the North Area wetlands and analyzed for 4,4'-DDT; five of these samples were also analyzed for zinc.
- Eight sediment samples were collected from the two ponds located in the North Area.
- Four surface water samples were collected in the Intracoastal Waterway adjacent to the Site.
- Four surface water samples were collected from the background surface water area.
- Four surface water samples were collected in the North Area wetlands.
- Six surface water samples were collected from the two ponds located in the North Area.

All data were compared to appropriate human health screening levels (multiplied by a factor of 0.1 to ensure adequate protection) to identify the potential chemicals of concern (PCOCs) that were quantitatively evaluated further in the BHHRA. The exposure assessment was developed using information about current land, surface water, and groundwater uses to identify reasonably anticipated current and future receptors. For each receptor, potential exposure pathways were identified and considered fate and transport of the chemicals in the environment, point of contact with the exposure media, and possible routes of intake.

Based on the exposure assessment, it was assumed that potentially exposed populations for the South Area included: 1) future commercial/industrial workers; 2) future construction workers; and 3) a youth trespasser. Potentially exposed populations for the North Area were assumed to be the same. A contact recreation scenario was assessed for the sediment and surface water at both areas to represent the hypothetical person who occasionally contacts these media while swimming wading, or participating in other recreational activities. Potential impacts from fugitive dust generation and volatile compound

emissions from South and North Area soils, and subsequent exposure to nearby residents was also evaluated. A previous report submitted to and approved by EPA evaluated the potential risks to recreational anglers via the consumption of fish from the Intracoastal Waterway. The findings of that evaluation are also included in the BHHRA.

Chemical exposure was quantified by estimating a daily dose or intake for each pathway given standard exposure assumptions using average and a reasonable maximum exposure concentration, which was generally represented by a 95<sup>th</sup> percent upper confidence limit on the mean. Toxicity values for the chemicals of concern were obtained from standard resources such as EPA's on-line database -- Integrated Risk Information System (IRIS).

Risk characterization is the integration of the exposure estimate (or dose) and the toxicity information to make quantitative estimates and/or qualitative statements regarding potential risk to human health. The risk assessment concluded that, for the five different exposure scenarios that were quantitatively evaluated, the cancer risk estimates and noncancer hazard indices for all of the current or future exposure scenarios were within EPA's acceptable risk range or below the target hazard index of 1 with the exception of potential risks associated with future exposure to an indoor industrial worker if a building is constructed over the area of impacted groundwater in the North Area. It is recommended that the potential future exposure to workers in an enclosed space (if a building were constructed above the groundwater plume in the North Area) from vapors possibly emanating from groundwater and migrating to the indoor air be prevented. No further action or investigation is necessary for the other media at the Site since adverse risks are not expected to result from potential current or future exposure at the Site.

#### 1.0 INTRODUCTION

The United States Environmental Protection Agency (EPA) named the former site of Gulfco Marine Maintenance, Inc. (the Site) in Freeport, Brazoria County, Texas to the National Priorities List (NPL) in May 2003. The EPA issued a modified Unilateral Administrative Order (UAO), effective July 29, 2005, which was subsequently amended effective January 31, 2008. The UAO required the Respondents to conduct a RI/FS for the Site. The Statement of Work (SOW) for the RI/FS at the Site, provided as an Attachment to the UAO from the EPA, requires the performance of a BHHRA to "evaluate and assess the risk to human health posed by the contaminants present at the Site." As specified in Paragraph 37a of the SOW, BHHRA activities include the submittal of Draft and Final Potential Chemicals of Concern Memoranda and Draft and Final Exposure Assessment (EA) Memoranda, ending with a Draft and Final BHHRA. In order to expedite completion of the RI/FS through submittal of a single BHHRA deliverable, the interim BHHRA deliverables (i.e., the PCOC and EA Memoranda) have been incorporated in this BHHRA.

Pursuant to Paragraphs 17 through 28 of the SOW, an RI/FS Work Plan and a Sampling and Analysis Plan were prepared for the Site. These documents were approved with modifications by EPA on May 4, 2006 and were finalized on May 16, 2006. This BHHRA has been prepared in accordance with Section 5.7.1 of the approved RI/FS Work Plan (the Work Plan) (PBW, 2006a). The BHHRA was prepared by Pastor, Behling & Wheeler, LLC (PBW), on behalf of LDL Coastal Limited LP (LDL), Chromalloy American Corporation (Chromalloy), and The Dow Chemical Company (Dow), collectively, the Gulfco Restoration Group (GRG).

A BHHRA is the systematic, scientific characterization of potential adverse effects resulting from exposures to hazardous agents or situations (NRC, 1983). The results of the BHHRA are used to support risk management decisions and determine if remediation or further action is warranted at a site.

The RI/FS is the methodology that the Superfund program has established for characterizing the nature and extent of risks posed by uncontrolled hazardous wastes sites and for developing and evaluating remedial options. The risk assessment methodology is based on approaches described by the EPA in *Risk Assessment Guidance for Superfund (RAGS)*, *Volume 1, Human Health Evaluation Manual, Part A* (EPA, 1989) and various supplemental and associated guidance (e.g., EPA, 1986; 1991a and b; 1992a and b; 1997a; 1999; 2001; 2002a, and b; 2004a and b; 2008; and 2009). The BHHRA generally consists of the following components:

- Review of analytical data and identification of potential chemicals of concern or PCOCs;
- Exposure assessment, including identification of potentially exposed populations, exposure pathways, and chemical intakes;
- Human health toxicity assessment;
- Risk characterization; and
- Uncertainty analysis.

The Nature and Extent Data Report (NEDR) (PBW, 2009) describes the history and background of the Site, and the environmental investigations conducted during the various phases of the RI. It also includes all of the analytical data generated during the RI and a discussion of the environmental conditions at the Site.

Section 2.0 of the BHHRA describes the process for evaluating the data and selecting PCOCs. Section 3.0 provides the exposure assessment. The toxicity assessment is contained in Section 4.0. Risks are characterized in Section 5.0. Section 6.0 describes uncertainties associated with the risk assessment process. Section 7.0 presents the conclusions of the risk assessment. Appendix A provides statistical calculations for the analytical data, by media; Appendix B provides the statistical comparisons between Site data and background data; Appendix C provides the intake calculations for the receptors evaluated herein; Appendix D provides the risk calculations; and Appendix E provides a copy of the restrictive covenants for the Site.

#### 1.1 SITE LOCATION AND HISTORY

The Site is located northeast of Freeport, Texas in Brazoria County at 906 Marlin Avenue (also referred to as County Road 756). The Site consists of approximately 40 acres within the 100-year coastal floodplain along the north bank of the Intracoastal Waterway between Oyster Creek to the east and the Old Brazos River Channel to the west. Figure 1 provides a map of the Site vicinity; Plate 1 provides a detailed Site map and shows site features and sampling locations.

During the 1960s, the Site was used for occasional welding but there were no on-site structures (Losack, 2005). According to the Hazard Ranking Score Documentation (TNRCC, 2002), from 1971 through 1999, at least three different owners used the Site as a barge cleaning facility. Beginning in approximately 1971, barges were brought to the facility and cleaned of waste oils, caustics and organic chemicals, with these products reportedly stored in on-site tanks and later sold (TNRCC, 2002). Sandblasting and other barge repair/refurbishing activities also occurred on the Site. At times during the operation, wash waters were reportedly stored either on a floating barge, in on-site storage tanks, and/or in surface impoundments on Lot 56 of the Site. The surface impoundments were closed under the Texas Water Commission's (Texas Commission on Environmental Quality (TCEQ) predecessor agency) direction in 1982 (Carden, 1982).

Marlin Avenue divides the Site into two areas. For the purposes of this report, it is assumed that Marlin Avenue runs due west to east. The property to the north of Marlin Avenue (the North Area) consists of undeveloped land and the closed impoundments, while the property south of Marlin Avenue (the South Area) was developed for industrial uses with multiple structures, a dry dock, sand blasting areas, an aboveground storage tank (AST) tank farm that is situated on a concrete pad with a berm, and two barge slips connected to the Intracoastal Waterway.

The South Area is zoned as "W-3, Waterfront Heavy" by the City of Freeport. This designation provides for commercial and industrial land use, primarily port, harbor, or marine-related activities. The North Area is zoned as "M-2, Heavy Manufacturing." Restrictive covenants prohibiting any land use other than commercial/industrial and prohibiting groundwater use have been filed for all parcels within both the North and South Areas. Additional restrictions requiring any building design to preclude vapor intrusion have been filed for Lots 55, 56, and 57. A further restriction requiring EPA and TCEQ notification prior to any building construction has also been filed for Lot 55, 56, and 57. Copies of these covenants, including parcel maps with the specific Lot identified, are provided in Appendix E.

Adjacent property to the north, west and east of North Area is unused and undeveloped, and/or is designated as wetlands as shown in Figure 2. Adjacent property to the east of the South Area is currently used for industrial purposes while the property directly to the west of the Site is currently vacant and previously served as a commercial marina. The Intracoastal Waterway bounds the Site to the south. Residential areas are located south of Marlin Avenue, approximately 300 feet west of the Site, and 1,000 feet east of the Site.

#### 1.2 ENVIRONMENTAL SETTING

The Site is located between Galveston and Matagorda Bays and is situated along approximately 1200 feet (ft.) of shoreline on the Intracoastal Waterway. The Intracoastal Waterway is a coastal shipping canal that extends from Port Isabel to West Orange on the Texas Gulf Coast and is a vital corridor for the shipment of bulk materials and chemicals. It is the third busiest shipping canal in the United States, and along the Texas coast carries an average of 60 to 90 million tons of cargo each year (TxDOT, 2001). Of the cargo carried between Galveston and Corpus Christi, TX, 49 percent is comprised of petroleum and petroleum products and 38 percent is comprised of chemicals and related products. Approximately 50,000 trips were made by vessels making the passage through the Intracoastal Waterway between Galveston and Corpus Christi, TX in 2006 (USACE, 2006).

The South Area includes approximately 20 acres of upland that were created from dredged material from the Intracoastal Waterway. Prior to construction of the Intracoastal Waterway, this area was most likely coastal wetlands. The North Area, excluding the capped impoundments, the uplands area, and access roads, is considered estuarine wetland (USFWS, 2008), as shown in Figure 2. The North Area consists of approximately five acres of upland, which supports a variety of herbaceous vegetation that is tolerant of drier soil conditions, while the North Area wetlands are approximately 15 acres in size. The wetlands at the Site are typical of irregularly flooded tidal marshes of the Texas Gulf Coast and supports wildlife that would be common in the Texas coastal marsh.

There are two ponds on the North Area, located east of the former surface impoundments (Plate 1). The larger of the two ponds is called the Fresh Water Pond while the other pond is referred to as the Small Pond. It should be noted, however, that based on field measurements of salinity, the water in the Fresh Water Pond is brackish while water in the Small Pond is less brackish (but is not fresh water). The Fresh Water Pond is believed to be a borrow pit and the water depth is generally 4 to 4.5 feet. The Small Pond is a shallow depression that tends to dry out during summer months and periods of drought. The water depth in the Small Pond was approximately 0.2 feet when sampled in July 2006 and nearly dry when sampled in June 2008.

The Intracoastal Waterway supports barge traffic and other boating activities. Fishermen have occasionally been observed on and near the Site in the Intracoastal Waterway. Red drum (*Sciaenops ocellatus*), black drum (*Pogonias cromis*), spotted seatrout (*Cynoscion nebulosus*), southern flounder (*Paralichthys lethostigma*) and other species are reportedly caught in the Freeport Area (TPWD, 2009). It should be noted that, during the fish sampling conducted for the human health fish ingestion pathway risk

assessment, red drum were not caught (using nets) as frequently as other species (see discussion in NEDR (PBW, 2009)), presumably because of a lack of habitat and prey items near the Site. Recreational and commercial fishermen reportedly collect blue crabs (*Callinectes sapidus*) from waterways in the region. The Texas Department of State Health Services (TDSHS) has banned the collection of oysters from this area due to biological hazards and has issued a consumption advisory for king mackerel for the entire Gulf Coast due to mercury levels in the fish (TDSHS, 2005).

## 2.0 DATA EVALUATION AND IDENTIFICATION OF POTENTIAL CHEMICALS OF CONCERN

This section describes the general data evaluation procedures that were used to ensure that data included in the risk assessment are of sufficient quality for quantitative risk assessment, as per EPA (1992a) guidance. This section also presents the methods that were followed to identify PCOCs for applicable exposure media in the BHHRA. Data collected as part of the RI were collected to support three objectives: nature and extent evaluation, risk assessment, and evaluation of potential remedial alternatives. The NEDR (PBW, 2009) discusses data collected to define the nature and extent of contamination at the Site and may contain data that are not of concern from a human health exposure perspective (e.g., Zone B and Zone C groundwater due to high total dissolved solids concentration and restrictive covenants precluding Site groundwater use (Appendix E)).

For the purposes of this risk assessment, a chemical of interest (COI) is defined as any compound detected in at least one environmental sample. A PCOC is any compound that does not get eliminated from further consideration based on frequency of detection, evaluation with blank contamination or background concentrations, and a concentration-toxicity screen, described in this section. PCOCs are quantitatively evaluated in the risk assessment. A chemical of concern (COC) is a compound that is determined as part of the risk assessment to present a potential adverse human health risk and will be evaluated further in the Feasibility Study, if necessary.

Data related to the nature and extent of potential contamination at the Site were obtained as part of the RI and, as noted previously, are discussed in the NEDR (PBW, 2009). Unless otherwise noted, the samples were analyzed for the full suite of analytes as specified in the approved Work Plan (PBW, 2006a). Plate 1 provides sample locations for site-related samples, and Figure 3 provides sample locations for the background soil, surface water, and sediment samples. Tables 1 through 15 summarize the key parameters for the COIs measured in these samples and provide maximum and minimum measured concentrations, as well as summary statistics for each COI for each media. Average and 95% upper confidence limits (95% UCLs) on the mean were estimated using EPA guidance (EPA, 2002b) and are presented in the tables as well. The method for estimating the average and 95% UCLs is described in greater detail in the Section 3.4.

Eighty-three surface soil samples (0 to 0.5 ft below ground surface (bgs)) and 83 subsurface soil samples (0.5 ft to 4 ft bgs) were collected in the South Area (summarized in Tables 1 and 2). Eighteen surface soil samples and 18 subsurface soil samples were collected in the North Area (summarized in Tables 8 and 9).

Two additional surface soil samples were collected near the former transformer shed at the South Area for PCBs analyses only. Ten background soil samples were collected within the approved background area approximately 2,000 feet east of the Site near the east end of Marlin Avenue (summarized in Table 15; sample locations shown on Figure 3).

Thirteen groundwater samples were collected from Zone A in the South Area (summarized in Table 3) and sixteen groundwater samples were collected from Zone A in the North Area (summarized in Table 10). The groundwater investigation evaluated contamination in deeper zones, Zones B and C. This information is discussed in the NEDR (PBW, 2009) but was not included in the BHHRA since it is unlikely that contaminants in deeper groundwater affect the media evaluated in the risk assessment based on high total dissolved solids (TDS) and the restrictive covenants on the property (Appendix E). While groundwater data from Zone A were used to evaluated the vapor intrusion pathway, data from Zones B and C were not used in this evaluation since they underlie Zone A and are COIs measured in deeper groundwater would not be as likely to impact indoor air as COIs measured in the more shallow groundwater unit, Zone A.

Sixteen sediment samples were collected from the Intracoastal Waterway in front of the Site (summarized in Table 6). One additional sediment sample was collected from the Intracoastal Waterway near the Site and analyzed for 4,4'-DDT to further characterize the extent of contamination as described in the NEDR (PBW, 2009). Nine background sediment samples were collected from the Intracoastal Waterway east of the Site and across the canal (summarized in Table 7). Forty-eight sediment samples were collected in the North Area wetlands (summarized in Table 13). Seven additional sediment samples were collected from the North Area wetlands and analyzed for 4,4'-DDT; five of these samples were also analyzed for zinc. A total of eight sediment samples were collected from the two ponds located in the North Area (summarized in Table 14).

Four surface water samples were collected in the Intracoastal Waterway adjacent to the Site (summarized in Table 4). Four surface water samples were collected from the background surface water area, located in the Intracoastal Waterway east of the Site, and across the canal (summarized in Table 5; sampling locations shown on Figure 3). Four surface water samples were collected in the wetlands drainage areas north of Marlin Avenue (summarized in Table 11) and a total of six surface water samples were collected from the two ponds located in the North Area (summarized in Table 12). Chemical analyses of these surface water samples included both total and dissolved concentrations of metals. For the purposes of the BHHRA, total concentrations were used since it is unlikely that samples would be filtered prior to incidental exposure as defined by the scenarios evaluated in this risk assessment.

#### 2.1 DATA EVALUATION

The Quality Assurance Project Plan (QAPP) (PBW, 2006c) and Field Sampling Plan (FSP) (PBW, 2006b), which were developed concurrently with the RI/FS Work Plan (PBW, 2006a), were designed to ensure that the data collected during the RI are appropriate for quantitative risk assessment. After RI data collection, the existing data and RI data were subject to a data evaluation following procedures recommended by EPA (1992a) to ensure that these data are of adequate quality for quantitative risk assessment and to support risk management decisions. These include consideration of the following factors: data sources, completeness of documentation, adequacy of detection limits, and "data quality indicators" as defined by the EPA (1992a) guidance. The data quality indicators include: 1) sampling completeness; 2) representativeness of sampling locations for relevant exposure areas; 3) usability indicated by data validation results (including considerations of laboratory precision and accuracy); and 4) comparability of data analyzed by different methods. Data representativeness is one of the most important criteria when selecting data for use in the quantitative risk assessment. Representativeness is the extent to which data characterize potential exposure and hence risks to human health and the environment. Data selected for use in the quantitative risk assessment should be of overall high quality, and data validation should confirm that the data collected during the RI are of adequate quality for risk assessment.

Data validation was performed following the procedures set forth in the RI/FS Work Plan (PBW, 2006a) and the QAPP (PBW, 2006c). Results of the data evaluation and validation for the BHHRA data set are summarized as follows:

- Data Sources All BHHRA data were generated using rigorous analytical methods (i.e., EPA-approved methods) by a single analytical laboratory with a documented quality system (i.e., accredited under the National Environmental Laboratory Accreditation Program). Historical data was not used for the BHHRA.
- Completeness of Documentation Field sampling activities were documented on field data sheets. Sample custody was documented to maintain security and show control during transfer of samples. Analytical results were reported in laboratory data packages containing all information necessary for the data validation.
- Adequacy of Detection Limits The QAPP specifies target Method Detection Limits (MDL),
   which were established based on the laboratory's capabilities and are less than the human health

Preliminary Screening Value (PSV), where possible, based on the standard available method with the lowest possible MDL. The MDL, as reported by the laboratory, for all constituents is at or below the target MDL or the human health PSV for the BHHRA data set except for 3,3'-dichlorobenzidine in the four Phase 2 surface water samples and benzidine in the seventeen Phase 2 sediment samples, one Phase 3 sediment sample, and four Pahse 4 sediment samples. (For Phase 1, the sample detection limits, or SDLs, are below the target MDLs for both of these constituents. Benzidine was not detected in any sample from the Site and 3,3'-dichlorobenzidine was only detected in a one sediment sample from the Site.)

#### Data Quality Indicators

- o Sampling Completeness The percentage of environmental samples collected versus that planned is 100% for samples critical to the BHHRA and is greater than the QAPP goal of 90% for every media and test except chromium VI. Chromium VI analyses were not performed for most of the Phase 1 sediments and all of the Phase 1 soils. However, there is no effect on usability for the BHHRA data set since total chromium, which includes any chromium VI, is reported for all samples.
- o Representativeness of Sampling Locations Phase 1 samples were collected in accordance with the sampling plan presented in the FSP (PBW, 2006b), which was designed to meet the Data Quality Objectives (DQOs) detailed in the QAPP (PBW, 2006c), and additional samples were collected as needed based on the results of the initial sampling event. All samples were properly located and collected using approved standard operating procedures. As described in the RI/FS Work Plan (PBW, 2006a), it was decided that the majority of the soil and sediment sampling would be conducted on a random grid basis with some focused sampling in areas of known historical use. This type of sampling program is appropriate for estimating risks since human health exposure generally occurs randomly over a site, or a portion of a site. Plate 1 shows locations of soil, surface water, sediment and groundwater samples.
- o Data Validation Results All data were validated using an approved standard operating procedure (Appendix F in the QAPP) based on the EPA *National Functional Guidelines* for organics and inorganics, respectively (EPA, 1999 and 2002c). A Level III validation including all quality control (QC) checks such as spike recovery, duplicate precision, blanks, holding time, calibration, surrogates, and internal standards was completed for 100% of the samples. Additionally, a Level IV validation that included examination of the raw data was completed for 10% of the soil, sediment, and surface water samples as stipulated in the QAPP. If a QC deficiency was found, sample results were flagged as

Comparability of Data – Data were generated using the same analytical method for each constituent except naphthalene. Naphthalene was analyzed using SW-846 Method 8260B for all samples but four groundwater samples, which were analyzed using SW-846 Method 8270C. Both methods are rigorous analytical methods performed by a fixed analytical laboratory with a documented quality system meeting stringent QC requirements (unless qualified as rejected) and thus are comparable. All sample results are in standardized units of measure with dry-weight correction for soils and sediments.

As per EPA (1989 and 1992a), validated data qualified as J (estimated) and U (blank-affected) are included in the risk assessment. For quantitative purposes, when a compound was not detected or was blank-affected, one-half of the sample quantitation limit (as defined by the U.S. EPA (1992a)) was used as a proxy to provide a measurement for analysis. Only those data that were rejected (i.e., qualified as "R") were not included in the quantitative risk assessment. As indicated in the RI/FS Work Plan (PBW, 2006a), once the data collection, chemical analysis, and data evaluation/validation were complete, the data were analyzed to identify COIs for the human health risk assessment. The following section describes the process for determining whether a COI became a PCOC and was evaluated further in the BHHRA.

#### 2.2 IDENTIFICATION OF POTENTIAL CHEMICALS OF CONCERN

EPA guidance (EPA, 1989) recommends considering several steps to eliminate compounds from further evaluation and, as such, this section describes the process used to reduce the list of chemicals evaluated in the BHHRA. Compounds were eliminated from further consideration if: 1) they were detected infrequently in a given media (i.e., in less than five percent of the samples); 2) they were measured at similar concentrations in blank samples; 3) they were detected at a low concentration (below one tenth of the screening value discussed below); or 4) they were measured at similar concentrations in background samples.

All analytes detected in at least one sample above the detection limit (including "J-flagged" data) were initially reviewed. If a compound was detected in less than five percent of the samples, the compound was eliminated from further evaluation for that media. This step was only considered in media where

twenty or more samples were collected and if that compound was not present in another media. The lab did not report any blank contamination issues with the data so no compounds were eliminated based on this criterion.

The data for soil, groundwater, surface water, and sediment are summarized in Tables 1 through 15. These tables show the frequency of detection, minimum, maximum, and average concentration for each COI. The 95% UCL on the mean concentration was calculated as described in Section 3. Appendix A provides the statistical calculations for these data.

#### 2.2.1 Concentration-Toxicity Screen

A "concentration-toxicity screen" step, as recommended by EPA (EPA, 1989), was conducted to limit the number of chemicals that were included in a quantitative risk assessment while also ensuring that all chemicals that might contribute significantly to the overall risk were addressed. The screening values used were 1/10<sup>th</sup> of the human health criteria, which were the lower of the EPA or TCEQ human health values as presented in the NEDR (PBW, 2009) for soil, surface water, and sediment. (It should be noted that NEDR tables also included ecological criteria and background values.) These screening criteria were compared to the maximum measured Site concentration and those compounds measured in Site samples in excess of the screening criteria (if any) have been denoted in bold on Tables 1, 2, 4, 6, 8, 9, 11, 12, 13, and 14. Because there are no readily available screening levels appropriate for the complete groundwater pathway at the Site, all chemicals of interest for groundwater media (Tables 3 and 10) were quantitatively evaluated in the risk assessment. It should be noted that if a compound was measured in more than five percent of the samples but a screening level was not available, it was retained for further evaluation in the BHHRA (eg., iron in sediment).

A similar screen was conducted for media collected at the background areas (Tables 5, 7, and 15), but this was done merely for comparative purposes. Risks associated with background concentrations were not calculated in the BHHRA.

In addition, PCOC concentrations in soil samples from the South Area and North Area were compared to TCEQ's Protective Concentration Levels (PCLs) that were developed to evaluate exposure to air emissions from particulate dust and volatile organic compounds (VOCs) emitted from contaminated soil (Air Soil InhV-P) in order to assess potential impacts from air emissions to nearby off-site residents. This approach is conservative since diluting effects of off-site migration and dispersion were not considered.

Aroclor-1254 and naphthalene were detected in South Area soil at a concentration greater than 1/10<sup>th</sup> of the screening criteria, as shown in Tables 16, while no COIs were measured in North Area soil at a concentration greater than 1/10<sup>th</sup> of the screening criteria, as shown in Table 17. While two compounds were measured at a concentration greater than 1/10<sup>th</sup> of the screening criteria, it is unlikely that there is a potentially unacceptable risk since no attenuation was assumed for migration and dispersion, and because neither the average nor 95% UCL for these compounds exceed the screening criteria. Since this pathway was the only exposure pathway for the off-Site resident and because the screening evaluation shows no likelihood of adverse risk, this potential receptor was eliminated from further evaluation in the BHHRA. It should be noted, however, that inhalation of particulate dust and VOCs in soil at the South Area and North Area was evaluated for the industrial worker, construction worker, and youth trespasser scenarios as discussed in Section 3.0.

Exposure and risk calculations were not estimated for the surface water pathway in the Intracoastal Waterway and Wetlands Area because none of the measured maximum COI concentrations exceeded 1/10<sup>th</sup> of their respective TCEQ's contact recreation PCL. These PCLs were developed for a child exposure scenario for noncarcinogenic compounds, and an age-adjusted scenario for carcinogenic compounds. The PCL is based on incidental ingestion and dermal contact of surface water while swimming for three hours, 39 times per year. It is believed that this is a bounding estimate for the Intracoastal Waterway, surface water north of Marlin Ave., and the ponds north of Marlin Ave. since none of these surface water bodies are very favorable for swimming and true exposure is likely to be much less than the scenario described by the Texas Risk Reduction Program's (TRRP) contact recreation PCL. All surface water concentrations were well below 1/10<sup>th</sup> of the PCL for the Intracoastal Waterway and wetlands area surface water. Maximum measured concentrations of arsenic and thallium in the pond samples exceeded 1/10<sup>th</sup> of their respective PCL but did not exceed the PCL and, therefore, neither were retained for further evaluation. Although TCEQ does not provide a PCL for iron, one was calculated using the contact recreation assumptions (TCEQ, 2006). Measured concentrations of iron in surface water were well below the calculated contact recreation PCL of 2,800 mg/L. Therefore, it was concluded that chemical concentrations of COIs in surface water samples from the Intracoastal Waterway near the Site, surface water in the North Area wetlands, and surface water in the North Area ponds do not pose an unacceptable health risk and chemical concentrations in these media were not evaluated further in the BHHRA.

In a response to EPA comments on the Draft BHHRA (EPA, 2010), Texas Surface Water Quality Standards (TSWQS) saltwater fish criteria (specifically the <sup>SW</sup>RBELs) were compared to measured concentrations of COIs in Intracoastal Waterway surface water (Table 4), Intracoastal Waterway

Background surface water (Table 5), wetlands surface water (Table 11), and Pond surface water (Table 12). The saltwater fish criteria represents a screening concentration in water that, above this level, may adversely impact humans eating fish caught in a given water body. The comments (EPA, 2010) requested that the Intracoastal Waterway and wetlands surface water be considered sustainable fisheries and measured concentrations in these media be compared with the TSWQS saltwater fish criteria, while the ponds be considered incidental fisheries, which allowed a factor of ten to be multiplied by the criteria prior to comparison with the site data.

No COIs were measured above the saltwater fish criteria in the surface water samples from the Intracoastal Waterway near the Site (Table 4). 4,4'-DDD, 4,4'-DDT, aldrin, and benzo(k)fluoranthene were detected in at least one surface water sample collected from the background area of the Intracoastal Waterway at concentrations above the saltwater fish criteria (Table 5). Total manganese and mercury concentrations was reported in at least one surface water sample collected from the wetlands area at levels above the saltwater fish criteria (Table 11). Dissolved manganese was measured in at least one surface water sampled collected from the wetlands area at a level above the saltwater fish criteria (Table 11). Total arsenic, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene, and thallium were measured in at least one surface water sample collected from the ponds at a concentration above the saltwater fish criteria for an incidental fishery (Table 12). Dissolved manganese was measured in at least one surface water sample collected from the ponds at a concentration above the saltwater fish criteria (Table 12).

Although the above TSWQS comparisons noted a few exceedences in the wetland and pond surface water samples, it is unlikely that there are consumable or desirable fish in these waters. The Small Pond is a shallow depression (on the order of a few inches deep) that often becomes dry during summer months and periods of drought. The Fresh Water Pond is believed to be a borrow pit with little vegetation and, thus, minimal habitat for fish. During the period over which the RI was performed, there were no indications of fish in this pond nor were any fishing activities observed. The wetlands are hydrologically isolated from Oyster Creek (and the Intracoastal Waterway), except during intermittent, and typically brief, flooding events. This lack of hydraulic connection prevents the wetlands from being a hatchery or nursery for fish that, as they mature, could move to larger water bodies. In addition, it is unlikely that fish of consumable size live in the wetlands given the shallow depth of standing water.

#### 2.2.2 Comparison to the Background Areas

The background evaluation was conducted using the approach outlined on page 5-19 of EPA guidance (EPA, 1989), which indicates "If inorganic chemicals are present at the site at naturally occurring levels, they may be eliminated from the quantitative risk assessment". COIs were retained for further evaluation in the BHHRA if they were measured in Site media at concentrations that were statistically different (higher) than background soils.

To help provide an understanding of what COIs and concentrations are considered to be Site-related, a background evaluation was conducted (as described in the Work Plan (PBW, 2006a)) that included: 1) soil samples from ten off-site locations; 2) sediment samples from nine off-site locations in the Intracoastal Waterway; and 3) surface water samples within four off-site "zones" in the Intracoastal Waterway. This information was used to characterize Site conditions in the NEDR (PBW, 2009).

The soil background data were compared to soil from the South Area and North Areas of the Site, as well as sediments from the North wetland and the North Area ponds. As described in the NEDR (PBW, 2009), based on similarities in composition and condition between background soil and sediments of the North wetlands area, this comparison was appropriate. Sediment and surface water data for the Intracoastal Waterway samples were compared to sediment and surface water data collected in the Intracoastal Waterway background location.

Comparisons between Site sampling data and Site-specific background data were conducted for all inorganic compounds measured regardless if they exceeded the concentration-toxicity screen. The background comparisons were performed in accordance with EPA's *Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites* (EPA, 2002d). Distribution testing was conducted to estimate 95% UCLs and the summary statistics were used to perform comparison of the means analyses. The output of these background statistical comparison tests is provided in Appendix B. Table 18 summarizes the results of the testing and indicates whether the Site data were found to be statistically different than the background data.

In several instances (e.g., lithium in South Area soil; barium in North Area wetlands sediment), statistical differences between the two data sets were due to higher concentrations in the background population, as noted in Table 18. If there was not Site-specific background data for a COI (as noted in Table 18 with an "NA") and it was measured in excess of  $1/10^{th}$  of the screening level, the COI was retained for further

evaluation in the BHHRA (e.g., iron). COIs shown to be statistically different (and higher) when compared to background data were also retained for quantitative evaluation in the BHHRA.

A statistical comparison between Site surface water and background surface water could not be conducted given the small size of both data sets. Visual inspection of the data indicates that there is no consistent observable difference between the data sets for the COIs. It should be noted, however, that all COIs in surface water were screened out during the toxicity-concentration step and are not evaluated further in the BHHRA.

Background groundwater data were not collected as part of the RI. Therefore, all COIs detected in Zone A groundwater, as shown in Tables 3 and 10 for the South Area and North Area, respectively, were evaluated quantitatively in the BHHRA and are discussed in greater detail in the following sections.

#### 2.2.3 Summary of Potential Chemicals of Concern

The PCOCs carried through the BHHRA for soil, surface water, and sediment are listed in Table 19. For a COI to be considered at PCOC, it was:

- Measured in more than five percent of the samples for a given media;
- Measured at a concentration greater than  $1/10^{th}$  of the screening criteria or measured but no screening criteria are available; and
- Measured at a concentration statistically greater than what is considered background.

PCOCs were quantitatively evaluated further in the BHHRA. Based on the comparison with screening criteria, COIs measured in surface water and, thereby, the surface water pathway were eliminated from further evaluation in the BHHRA because none were measured above their respective screening value. Likewise, the pathway for off-site residential exposure to fugitive dust and VOC emissions from soils at the South Area and North Area was eliminated from further evaluation because no COIs were measured above their screening criteria for this pathway. These media, South Area and North Area soil, were retained for further evaluation for other receptors and pathways. Table 20 summarizes the media of interest, potential exposure pathways by media, and the general outcome of the screening process for that media.

#### 3.0 EXPOSURE ASSESSMENT

The exposure assessment estimates the extent of human contact with PCOCs by characterizing potentially exposed populations (i.e., receptors), identifying actual or potential routes of exposure, and quantifying the intake (or dose) of human exposure. The exposure assessment also identifies possible exposure pathways that are appropriate for each potential receptor and exposure scenario and considers the source of contamination and fate and transport properties of the compound and surrounding environment. An exposure pathway typically includes the following elements:

- A source of contaminant and mechanism of contaminant release;
- An environmental retention or transport medium (e.g., air, groundwater, etc.);
- A point of contact with the medium (i.e., receptor or potentially exposed population); and
- A route of human intake (e.g., inhalation, ingestion, etc.).

Each of these elements must generally be present for an exposure pathway to be complete, although it is not necessary that environmental transport occurs when assessing exposure from direct contact. Exposure was evaluated for both current and potential future receptors to allow for evaluation of long-term risk management options.

#### 3.1 POTENTIAL EXPOSURE PATHWAY EVALUATION

The identification of potentially exposed populations (also called receptors) possibly at risk from exposure to PCOCs at the Site is dependent on current and future land uses. The Site is located at 906 Marlin Avenue in Freeport, TX, as shown on Figure 1.

The Site consists of approximately 40 acres within the 100-year coastal floodplain along the north bank of the Intracoastal Waterway between Oyster Creek to the east and the Old Brazos River Channel to the west (Figure 1). Approximately 78 people live within the one square mile area surrounding the Site (EPA, 2005a). Approximately 3,392 people live within 50 square miles of the Site (EPA, 2005a). There are no schools, nursing homes, or other sensitive subpopulations within a mile of the Site. Residential areas are located south of Marlin Avenue, approximately 300 feet west of the Site, and 1,000 feet east of the Site.

#### 3.1.1 <u>Land Use Evaluation</u>

Historically, the South Area of the Site was used as a barge cleaning and maintenance facility. The Site currently is unused but it is anticipated that the South Area will be used for commercial/industrial purposes in the future. The South Area includes approximately 20 acres of upland that was created from dredged material from the Intracoastal Waterway. To the west of and directly adjacent to the Site is an unused lot that was formerly a commercial marina. West of that lot, beyond a second vacant lot, is a residential development with access to the Intracoastal Waterway. An active commercial operation is located east of the South Area.

The North Area of the Site contains closed surface impoundments (closed in 1982) and is, for the most part, unused. Some of the North Area is upland created from dredge spoil, but most of this area is considered wetlands (Figure 2) and the wetlands area has never consistently been used. According to the National Wetlands Inventory map for the Freeport Quadrangle, the wetlands on the north of the Site are estuarine, intertidal, emergent, persistent, and irregularly flooded. The upland area of the North Area has been used as a parking lot. Future land use at the North Area is limited given that much of it is considered wetlands and most of the upland part of the North Area consists of the closed former surface impoundments.

#### 3.1.2 Groundwater Use Evaluation

Because of high total dissolved solids in Zone A, B, and C groundwater at the Site, the groundwater ingestion and use pathway is incomplete for these three units. Also, as noted previously, restrictive covenants prohibiting groundwater use have been filed for the Site. Based on Site potentiometric and analytical data presented in the NEDR (PBW, 2009), impacted groundwater does not affect surface water at the Site. Additional information regarding the geologic and hydrogeologic characteristics of these units will be provided in the RI Report.

#### 3.1.3 Surface Water Use Evaluation

The Intracoastal Waterway supports barge traffic and other activities. It is one of the main arteries for shipping goods from Freeport's deep-water port to destinations along the Texas Coast and beyond. Fishing boats also use the Intracoastal Waterway to gain access to the fishing grounds in the Gulf of

Mexico and the shorelines, tributaries, and marshes of the many Texas Bays. The area near the Site is regularly dredged. The nearby residential areas have canal access to the Intracoastal Waterway.

As noted previously, impacted groundwater does not discharge to surface water at the Site. However, surface water data were collected for the Intracoastal Waterway, as well as surface waters contained in the wetlands and ponds on the North Area to evaluate the potential for contaminants in surface soils to be released to surface water via overland surface runoff.

#### 3.1.4 Fish and Shellfish Resources Evaluation

As mentioned previously, fishing and crabbing are reported to occur in waters of the Intracoastal Waterway in the general vicinity of the Site. Fishing and crabbing have not been observed in the wetlands or ponds of the North Area primarily because neither provide suitable habitat for consumable fish or blue crabs (e.g., larger fish and mature blue crabs prefer deeper water habitat).

Subsistence fishing was not considered in the Intracoastal Waterway Fish Ingestion Pathway Human Health Baseline Risk Assessment (PBW, 2007) because of the small shoreline of the Site and other considerations described below. Subsistence fishing is generally characterized by individuals who catch fish as their primary protein source and, although a formal study has not been conducted, there are no known subsistence populations in the Freeport area. The habitat along the Intracoastal Waterway is generally not conducive to attracting and keeping fish and their prey due to the poor sediment base that results from scouring, dredging and wave action from barge traffic. Moreover, given the significant barge and boat traffic in the area, it is unlikely that a fisherman would routinely fish near the Site due to safety concerns. It was, therefore, assumed that a recreational fishing scenario best represented possible and likely fishing patterns in the Intracoastal Waterway near the Site.

Molluscan shellfish harvesting is currently banned by the TDSHS in all waterbodies from an area about two miles east of the Site, to well beyond the Brazos River inlet, about 7 miles west of the Site (TDSHS, 2009). The ban has been enacted because of poor conditions and water quality. It should be noted, however, that risk from molluscan shellfish consumption harvested from the area if allowed would most likely not pose a human health risk, since exposure would be similar if not the same as for the fish and crab (a crustacean shellfish) ingestion pathway, which as described in Section 5.4 below was found to pose an acceptable risk in the Site vicinity. However, bioaccumulation of fish and shellfish, including molluscan and crustacean shellfish, can be different and may impart uncertainty in the analysis if

molluscan shellfish are consumed. Additional discussion related to this potential uncertainty is presented in Section 6.2.

#### 3.2 POTENTIALLY EXPOSED POPULATIONS

Potentially exposed populations were based on current and reasonable future land use, groundwater use, and surface water use. Table 20 describes the potentially exposed populations that may encounter COPCs at the Site. Table 21 summarizes the various exposure scenarios evaluated in the BHHRA by media. While exposure might occur at the background locations, exposure and potential risks for the background areas were not evaluated in the BHHRA.

Potentially exposed populations for the South Area and North Area include:

- 1. future commercial/industrial workers;
- 2. future construction workers at the Site;
- 3. current/future youth trespasser (although the South Area perimeter is fenced, this area could still be accessed by a trespasser via the Intracoastal Waterway);
- 4. contact recreation receptor; and
- 5. off-site residential receptor.

Soil is the primary media of concern for the commercial/industrial worker, construction worker, and youth trespasser receptor while surface water and sediment are the primary media of concern for the contact recreation receptor. A future indoor air exposure pathway was evaluated for the commercial/industrial worker since VOCs were detected in Zone A groundwater. Additionally, a contact recreation scenario was assessed for surface water and sediment in the Intracoastal Waterway, wetlands, and ponds to represent a hypothetical person that occasionally contacts these media while swimming, wading, or participating in other recreational activities. Potential impacts from fugitive dust generation and VOC emissions, and subsequent exposure to nearby residents were also considered in the BHHRA as shown in Tables 16 and 17 and discussed in Section 2.2.1. It should be noted that the off-site residential receptor and surface water exposure to the contact recreation receptor were eliminated from further quantitative evaluation in the BHHRA, as described in Section 2.2.

A recreational fishing receptor was identified as the potential receptor of concern in the Fish Ingestion Pathway Human Health Baseline Risk Assessment (PBW, 2007), and a quantitative evaluation of risks

for this potentially exposed population was presented in the report. The conclusions of that report are summarized in Section 5.4.

# 3.3 CONCEPTUAL SITE MODELS AND POTENTIALLY COMPLETE EXPOSURE PATHWAYS

A conceptual site model (CSM) identifies exposure pathways for potentially complete pathways at the Site and describes the process or mechanism by which human receptors may reasonably come into contact with Site-related constituents. A CSM was developed as part of the Work Plan (PBW, 2006a) to focus the data collection activities of the RI so that analytical data could support a risk-based analysis. These preliminary CSMs were included as Figures 7 and 8 in the Work Plan (PBW, 2006a) and summarized exposure to the North Area and South Area, respectively.

Figures 4 and 5 of the BHHRA provide revised CSMs for the South and North Areas, respectively, which were refined to reflect current information about the Site. These revised CSMs were used to develop the quantitative exposure assessment of the BHHRA. Complete pathways are indicated with a bold line and check in the potential receptors column. Incomplete pathways are denoted with an "X" and a footnote indicating why the pathway is incomplete.

At the South Area, PCOCs were potentially released from historical Potential Source Areas (PSAs) to the soil and may have migrated to groundwater via leaching through the soil column, and to surface water in the Intracoastal Waterway via overland surface runoff. Once in surface water, some compounds tend to stay dissolved in the water whereas some tend to partition to sediment. Volatilization and fugitive dust generation may have caused PCOCs in soil to migrate within the Site or off-site. Exposure to on-site receptors may also occur directly from contact to the soil. However, based on PCOC data for surface soil samples collected on Lots 19 and 20 directly west of the Site (see Section 2.4.2 of the NEDR for detailed discussion of these data (PBW, 2009)) and the qualitative screening conducted for the off-site residential receptor described in Section 2.2, it does not appear that significant entrainment and subsequent deposition of particulates occurred at the Site or at off-site locations. Once in groundwater, VOCs may migrate with the groundwater and/or volatilize through the soil pore space and be emitted into outdoor or indoor air.

At the North Area, PCOCs were potentially released from historical PSAs to the soil and/or may have migrated to groundwater. PCOCs may have also migrated from soil to surface water and sediments in the

nearby wetlands area via overland surface runoff. Fugitive dust generation was considered a potentially significant transport pathway for PCOC migration on-site and evaluated quantitatively in the BHHRA for the on-site receptors although this pathway was eliminated during the screening process for the off-site residential receptor. Once in groundwater, VOCs may migrate with the groundwater and/or volatilize through the soil pore space and be emitted into outdoor or indoor air.

It was assumed, as part of the risk assessment, that these media were potentially contacted by the various hypothetical receptors possibly at the Site and, as such, these exposure pathways were potentially complete. The remainder of this section describes how exposure was quantified for each of these complete exposure pathways.

#### 3.4 QUANTIFICATION OF EXPOSURE

In keeping with EPA guidance (EPA, 1992c), the goal of the exposure assessment was to provide a reasonable, high-end (i.e., conservative) estimate of exposure that focuses on potential exposures in the actual population. This concept is termed the reasonable maximum exposure (RME) approach. This should not be confused with: (1) a worst-case scenario which refers to a combination of events and conditions such that, taken together, produces the highest conceivable exposure; or (2) a bounding estimate that purposefully overestimates exposure (EPA, 1992c). Thus, in accordance with EPA guidance, site-specific exposure assumptions and parameters were used when available and, when not available, assumptions were deliberately chosen to represent a high-end RME estimate (EPA, 1989). A central tendency or average scenario was also evaluated to provide a range of exposures.

Chemical exposure is quantified by the calculation of an intake, or dose, that is normalized to body weight and exposure time of the receptor. A dose is calculated by combining assumptions regarding contact rate (intake amount and time, frequency and duration of exposure) to a contaminated medium with representative chemical exposure point concentrations for the medium of concern at the point of contact. Receptors are chosen based on their exposure patterns that may put them at risk or at a higher risk than other individuals. Intake assumptions, in general, were based on central tendency or RME assumptions determined by EPA (1989; 1991a), or were based on information obtained from site-specific studies. Reasonable maximum exposure scenarios use a combination of assumptions, such as average values for physical characteristics of the receptors (body weight and corresponding body surface area), UCL values (values at the 90 or 95 percentile of the distribution) for contact rate, and UCL on the mean

(95 percent UCL) for the exposure point concentrations. The combination of these factors is assumed to provide an upper-bound estimate of exposure and risk to that particular receptor.

The intake or dose of a particular compound by a receptor is quantified with the generic equation below (EPA, 1989):

$$I = \frac{C \times CR \times EFD}{BW} \times \frac{1}{AT}$$
 (Equation 1)

where:

I = the compound intake or dose (mg/Kg BW-day);

C = the compound concentration (mg/Kg or mg/L);

CR = contact rate or the amount of contaminated medium contacted per event

(L/day or mg/day);

EFD = the frequency (days/year) and duration (number of years) of exposure days;

BW = the average body weight of the receptor (Kg); and

AT = averaging time of the exposure (days); for noncarcinogens, AT equals

(ED) x (365 day/year); for carcinogens, AT equals (70

years over a lifetime) x (365 day/year).

This equation calculates an intake that is normalized over the body weight of the individual and the time of the exposure. Because the intake or dose is combined with quantitative indices of toxicity (chemical-specific dose-response information such as reference doses (RfDs) for noncarcinogenic compounds or cancer slope factors (CSFs) for carcinogenic compounds, which is discussed further in Section 4.0) to give a measure of potential risk, the intake or dose must be calculated in a manner that is compatible with the quantitative dose-response information for chemical constituents evaluated in the analysis. Two different types of health effects are considered in this analysis: 1) carcinogenic effects and 2) noncarcinogenic effects (either chronic or subchronic, depending on the receptor's exposure).

For carcinogenic effects, the relevant intake is the total cumulative intake averaged over a lifetime because the quantitative dose-response function for carcinogens is based on the assumption that cancer results from chronic, lifetime exposures to carcinogenic agents. This intake or dose is then averaged over a lifetime to provide an estimate of intake or dose to carcinogens as (mg/Kg-day), which is expressed as a lifetime average daily dose (LADD). Thus, for potentially carcinogenic compounds, the averaging time (AT) is equal to 70 years (EPA, 1989).

Noncarcinogenic effects are evaluated for chronic, subchronic, or acute exposures by receptors to systemic or reproductive toxicants. For noncarcinogenic effects, the relevant intake or dose is based on the daily intake averaged over the exposure period of concern. As defined in EPA guidance (EPA, 1989),

an exposure period for toxicity can be either acute (exposure occurring from one event or over one day), subchronic (cumulative exposures occurring from two weeks up to seven years), or chronic (cumulative exposure over seven years to a lifetime in duration). The quantitative dose-response function for noncarcinogenic effects (chronic and subchronic) is based on the assumption that effects occur once a threshold dose is attained from repeated exposure. Therefore, the intake or dose for noncarcinogenic risk assessment is based on an average daily dose (ADD) that is averaged over the duration of exposure. The averaging time for assessing noncarcinogenic effects is equal to the exposure duration for the receptor. In the BHHRA, exposure was assumed to be chronic for all receptors even though some exposures described in this report were intermittent or less than chronic duration.

#### 3.4.1 Estimating the Exposure Point Concentration

The exposure point concentration (EPC) is meant to be "a conservative estimate of the average chemical concentration in an environmental medium" (EPA, 2002b). The EPA (2002b) also states that the 95% UCL should be used as the EPC for a given area and its sample concentrations. The EPA's ProUCL Version 4.00.04 software program (EPA, 2009) was used to calculate distribution-free (i.e., nonparametric) 95% UCL concentrations from data sets including non-detect concentration values (i.e., represented by the sample quantitation limit). ProUCL calculates various types of the 95% UCL, and then makes a recommendation for the most appropriate UCL type. In instances where the generated output did not indicate a recommended UCL type, then rules based on the EPA guidance (EPA, 2009) were used to choose the most appropriate UCL. If the sample size was small or there was a large proportion of non-detect concentrations in a particular data set, EPA guidance (EPA, 2009) noted that a computed 95% UCL would not be reliable or justifiable. Instead, the guidance recommended using the median or mode value of the entire data set (i.e., detected and non-detected concentrations) to represent the EPC.

The following rules were used to select the most appropriate UCL based on EPA guidance (EPA, 2009), based on the nature of the data set:

- 1. Select the recommended UCL, unless the number of detections was less than 8.
- 2. If the number of detections was less than 8, compute median value of entire data set and select it for the EPC.

- 3. If number of detections is 8 or more, **and** no UCL is recommended **and** non-detects are less than five percent **and** data distribution appears normal (often the case for metals) **and** there are not multiple sample quantitation limits, then select the Winsor (t) UCL or the Student's (t) UCL.
- 4. If number of detections is 8 or more **and** no UCL is recommended **and** non-detects are greater than five percent, then select the highest Kaplan-Meier (KM) UCL other than the 99% KM (Chebyshev) UCL (considered to be too conservative) if it is less than the maximum detected value.
- 5. If the number of detections is 8 or more **and** no UCL is recommended **and** non-detects are less than five percent **and** data distribution is not normal, then select the highest KM UCL other than the 99% KM(Chebyshev) (conserved too conservative) UCL if it is less than the maximum detected value.

Appendix A provides the ProUCL output when there were sufficient samples to generate statistics (soil and sediment). It should be noted that when evaluating exposure from fugitive dust generation, the EPC was based on surface soil data because it is unlikely that deeper soils (i.e., soils below a depth of 0.5 ft) are transported as wind-borne dust.

Both averages and 95% UCLs (or means or medians where appropriate as discussed above) were used in the BHHRA to provide a range of EPCs and are summarized in Tables 1 through 15. The dose estimates using the 95% UCL EPC were considered to represent reasonable maximum exposure (RME). The average was used to represent the average or central tendency exposure. It should be noted that with more robust data sets, the average and 95% UCL EPCs are very similar. It should also be noted that often, for data sets with a high percentage of non-detects, the average of detected data are higher than the recommended UCL (or RME) value since, with these types of datasets, the median value is often the recommended UCL and is often lower than the average of the detected data.

#### 3.4.2 Quantifying Intake

To quantify potential exposures associated with the pathways of potential concern, Equation 1 is modified according to the specific exposure routes and intake assumptions.

**Incidental Ingestion of Soil.** The intake or dose for the incidental ingestion pathway from soil is calculated based on the following equation (EPA, 1989):

$$ADD_{ing} = \frac{Conc_{soil} \times IR \times FI \times AAF \times EF \times ED \times CF}{BW \times AT}$$
 (Equation 2)

where:

ADD<sub>ing</sub> = average daily intake of compound via ingestion of soil (mg/Kg BW-day);

 $Conc_{soil}$  = exposure concentration in soil (mg/Kg);

IR = ingestion rate (mg soil/day); FI = fraction ingested (unitless);

AAF = absorption adjustment factor (fraction absorbed);

EF = exposure frequency (days/year);

ED = exposure duration (years);

 $CF = conversion factor (10^{-6} \text{ Kg/mg});$ 

BW = body weight (Kg); and AT = averaging time (days).

The exposure concentration in the soil  $(Conc_{soil})$  is the concentration of a PCOC at the point of contact. Exposure point concentrations represent random exposure over the exposure unit and were discussed in greater detail in the Section 3.4.1. The ingestion rate (IR) is the amount of soil incidentally ingested per day or event. For soil, the incidental intake values vary according to the receptor and the specific activities or exposure patterns that the receptor is engaged in at the Site.

The fraction ingested (FI) relates to the fraction of soil that is contacted daily from the contaminated area. This is highly dependent on the different activities that an individual is engaged in and the number of hours (fraction of time) spent in the contaminated portions of the site (EPA, 1989). The fraction ingested was conservatively assumed to be 100 percent. The absorption adjustment factor (AAF) is used in the ingestion pathway to account for differences in relative absorption for the chemical from the test vehicle versus the exposure medium (i.e., soil) and was assumed to be 1.0 unless compound-specific data were available to suggest otherwise. (The test vehicle is the material (e.g., soil, food, or solvent) in which the chemical was administered in the toxicity study.) Body weight (BW) varies according to the age range of the receptor. Adult receptors are assumed to weigh 70 kilograms (Kg), which corresponds to the 50<sup>th</sup> percentile value for all adults, as recommended by EPA (1989). For receptors other than adults, body weight is dependent on the age of the receptor and is calculated as the time-weighted average body weight using values reported by the *Exposure Factors Handbook* (EPA, 1997a). The exposure frequency (EF) and duration (ED) of the event is based on the particular exposure pattern and activity related to the

receptor (EPA, 1997a). The averaging time is 70 years for carcinogenic effects, and for noncarcinogenic effects depends on the frequency and duration of exposure for the particular receptor (EPA, 1989; 1991a).

**Dermal Contact with Soil.** When calculating intake via dermal contact with soil or sediment, Equation 1 is modified slightly to account for skin surface area, soil-to-skin adherence factors, and chemical-specific absorption factors. An intake or dose is quantified from dermal contact with the equation (EPA, 1989):

$$ADD_{der} = \frac{Conc_{soil} \times SA \times AF \times AAF \times EF \times ED \times CF}{BW \times AT}$$
 (Equation 3)

where:

ADD<sub>der</sub> = average daily dose from dermal contact with chemical in soil (mg/Kg-day);

 $Conc_{soil}$  = exposure concentration in soil (mg/Kg);

SA = skin surface area available for direct dermal contact (cm<sup>2</sup>/event);

AF = soil/sediment to skin adherence factor (mg/cm<sup>2</sup>);

AAF = absorption adjustment factor (unitless)

EF = exposure frequency (days or events/year);

ED = exposure duration (years)

CF = conversion factor  $(10^{-6} \text{ Kg/mg})$ ;

BW = body weight (Kg); and AT = averaging time (days).

The exposed skin surface area (SA) is the area or portion of the body exposed for dermal contact. As with many exposure variables, surface area depends on the age and exposure pattern that the receptor is engaged in that relate to repeated or average exposure. Surface area can be predicted based on factors such as activity and types of clothing. Typical exposures via dermal contact for most receptors are generally limited to certain parts of the body (e.g., hands, forearms, head, and neck) since clothing tends to significantly reduce the potential for direct contact with soil (Kissel, 1995). The soil adherence factor (AF) is the density of soil adhering to the exposed fraction of the body. The adherence factor is highly dependent on the specific activity of the receptor as well as physical properties of the soil (e.g., moisture content, textural class, and organic carbon content) (Kissel et al., 1996). The AAF accounts for the relative absorbance of a chemical between dermal exposure from the environmental medium and oral exposure in the critical toxicity study, which was used to derive the dose-response information for that chemical. Therefore, the AAF is highly chemical-specific and, unless otherwise noted, was assumed to be 1.0. Factors such as body weight, exposure frequency, exposure duration, and averaging time are similar to that discussed above for incidental ingestion.

**Inhalation of Volatiles and Fugitive Dusts.** An intake or dose from inhalation of vapors or particles emitted from the Site is calculated by modifying Equation 1 to account for the volatilization and/or

particulate emission factor and the difference in methodology when evaluating air impacts (i.e., dose was not calculated, but rather an effective air concentration that the receptor may be exposed to was calculated). An effective air concentration was generally calculated using the following equation:

$$EAC = \frac{Conc_{soil} \times VF \times EF \times ED}{AT}$$
 (Equation 4)

where:

EAC = effective air concentration  $(mg/m^3)$ ;

 $Conc_{soil}$  = exposure point concentration in soil (mg/Kg);

VF = volatilization factor (mg/m³-air/Kg-soil) and/or particulate emission factor:
EF = exposure frequency; describes how often exposure occurs (days/year);
ED = exposure duration; describes how long exposure occurs (years); and
AT = averaging time; period over which exposure is averaged (days).

A risk assessment from inhalation of volatiles and dusts is different from the quantification of potential risks from dermal contact or incidental ingestion. Risks from inhalation exposure are based on a comparison of a measured or calculated air concentration (effective air concentration) to a risk-based acceptable air concentration, either a reference concentration (RfC) or an inhalation unit risk (IUR) value. Where monitoring data do not exist, an exposure point concentration in air can be calculated based on a volatilization model and/or particulate emissions factor and the exposure point concentration in soil. Surface soil data were used when estimating the air concentration for particulate dust generation.

### 3.4.3 Exposure Assumptions and Intake Calculations

The exposure assumptions are provided in Tables 22, 23, 24, and 25 for the industrial worker, construction worker, youth trespasser, and contact recreation receptors, respectively. References for the various assumptions are provided in the tables and citations are listed in Section 8.0. Appendix C provides the detailed spreadsheets for the intake calculations for the different receptors for the South and North Areas of the Site. Tables 16 and 17 and Section 2.2.1 describe the evaluation of potential impacts from volatile emissions and fugitive dust generation from Site soils to off-site residential receptors.

### 3.4.4 Vapor Intrusion Pathway for Future On-Site Worker Scenarios

Except for an AST farm, a dry dock, and a former transformer shed, there are currently no structures present on the South or North Areas at the Site. However, future development of the area may result in

construction of buildings at the Site. In the event that permanent and enclosed structures are built on-Site in the future, the Johnson and Ettinger Vapor Intrusion Model (J&E VIM) (EPA, 2002a) was used to assess the potential migration of volatile chemicals from groundwater into the breathing space of an overlying building. Exposure estimates are calculated in the model using default exposure parameters for an industrial worker similar to those provided in Table 22 and site-specific soil and hydrogeologic properties. While a construction worker could also be exposed to VOCs migrating from groundwater to outdoor air, that exposure and risk scenario was not calculated separately since it is likely to be less than the industrial worker's exposure under the indoor air scenario since there would be greater dispersion and mixing in the ambient outdoor air that a construction worker would encounter (no dispersion and mixing is assumed with the J&E VIM), and because the construction worker's exposure frequency and duration is less than the industrial worker's.

The input parameters used to run the J&E VIM Version 3.1 followed EPA guidance on the subject and recommended values (EPA, 2002a) that are available on-line at <a href="https://www.epa.gov/oswer/riskassessment/airmodel/johnson\_ettinger.htm">www.epa.gov/oswer/riskassessment/airmodel/johnson\_ettinger.htm</a>. Site-specific input variables used in the model are described below. The model was only run for those compounds that are considered volatile since non-volatile compounds would not migrate from the groundwater to the overlying soil pore space and to ambient air via this pathway. As noted previously, a restrictive covenant is currently in place for Lots 55, 56, and 57 and requires any building design to preclude vapor intrusion. Thus, this evaluation represents a conservative assessment of the vapor intrusion pathway for these lots.

The site-specific variables used in the J&E model were determined from information gathered during previous Site investigation and presented in the NEDR (PBW, 2009). Depth below grade to the bottom of a hypothetical enclosed space floor was assumed to be 15 cm, or the thickness of a typical slab (basement construction was not considered due to the geographic location of the Site). Depth below grade to the water table was conservatively estimated to be 5 feet (152 cm) based on water gauging data from both North and South Area monitoring wells. Clay (USCS code CL) was selected as the soil type directly above the water table, which is the dominant soil type in shallow soils at both the North and South Areas as indicated on the boring logs provided in NEDR (PBW, 2009). The average soil/groundwater temperature used in the model was 25° C based on the geographical location of the site and regional climatic conditions.

Both average and RME EPCs were used in the calculations to provide a range of exposure and potential risks. These values are listed in Tables 26 and 27, respectively for the South Area and North Area groundwater. Estimated risks are provided and discussed in Section 5.0.

## 4.0 TOXICITY ASSESSMENT

The toxicity assessment provides a description of the relationship between a dose of a chemical and the anticipated incidence of an adverse health effect (Preuss and Ehrlich, 1987 and EPA, 1989). The purpose of the toxicity assessment is to provide a quantitative estimate of the inherent toxicity of PCOCs to incorporate into the risk characterization. Toxicity values are derived from the quantitative dose response association and are correlated with the quantitative exposure assessment in the risk characterization.

For risk assessment purposes, toxic constituent effects are separated into two categories of toxicity: carcinogenic effects and noncarcinogenic effects. This division relates to the EPA policy that the mechanisms of action for these endpoints differ. Generally, the EPA has required that potentially carcinogenic chemicals be treated as if minimum threshold doses do not exist (EPA, 1986), whereas noncarcinogenic effects are recognized to have a threshold below which toxicity is unlikely.

### 4.1 EXPOSURE ROUTE-SPECIFIC TOXICITY CRITERIA

In deriving toxicity criteria, EPA methodologies consider the route of administration (or exposure) of the test chemical in toxicity or epidemiological studies. Typically oral reference doses (RfDs) and oral cancer slope factors (CSFs) are derived from toxicity studies with oral administration or exposure route, and reference concentrations (RfCs) or inhalation unit risks are derived from inhalation toxicity studies. While one could attempt to extrapolate an inhalation toxicity criterion to the oral pathway or visa versa, this practice is not recommended because there can be a great deal of uncertainty introduced (EPA, 1989). Therefore, in the BHHRA, oral RfDs were not extrapolated to provide toxicity values for inhalation pathways. Quantitative risk evaluation of the inhalation exposure pathways was conducted only for those chemicals that have reference toxicity values specifically from inhalation administration.

On the other hand, EPA has not derived specific toxicity criteria for the dermal exposure pathway. This presents a complication because oral and inhalation toxicity criteria are based on administered dose and not absorbed dose while dermal exposure pathways consider the absorbed dose (i.e., how much of the chemical in soil or water crosses the skin barrier and is absorbed by the body). Per EPA (1989), the oral RfD or oral CSF can be applied in evaluation of the dermal exposure pathway following adjustment of the oral toxicity criteria for gastrointestinal absorbance. In later guidance (EPA, 2004b), EPA recommends adjusting oral toxicity criteria by gastrointestinal absorbance factors if gastrointestinal absorbance of the chemical in the vehicle of administration in the critical study is less than 50 percent. Generally, organic

chemicals are assumed to be relatively bioavailable in oral and gavage toxicity studies and, thus, the administered dose is likely to be similar to absorbed dose. Therefore, no adjustment of oral toxicity criteria is recommended for organic PCOCs (EPA, 2004b). EPA recommends adjusting oral toxicity criteria for a number of inorganic constituents based on the possibility of low gastrointestinal absorbance in the critical study as shown in Exhibit 4-1 of the associated guidance (EPA, 2004b). It should be noted that none of the PCOCs quantitatively evaluated in the BHHRA are recommended for the adjustment described above.

## 4.2 CARCINOGENIC EFFECTS

Potential carcinogenic effects resulting from human exposure to constituents are estimated quantitatively using CSFs, which represent the theoretical increased risk per milligram of constituent intake/kilogram body weight/day (mg/Kg-day)<sup>-1</sup> or unit risks, which are the theoretical increased risks per exposure concentration. CSFs or unit risks are typically derived for "known or probable" human carcinogens. CSFs or unit risks are used to estimate a theoretical upper-bound lifetime probability of an individual developing cancer as a result of exposure to a particular lifetime daily dose of a potential carcinogen. Constituents that are believed to be carcinogenic may also have non-cancer effects. Potential health risks for these constituents are evaluated for both cancer and other types of effects as described below.

## 4.3 NONCARCINOGENIC EFFECTS

Unlike carcinogenic effects, it is widely accepted that noncarcinogenic biological effects of chemical substances occur only after a threshold dose is achieved (Klaassen et al., 2007). This threshold concept of noncarcinogenic effects assumes that a range of exposures up to some defined threshold can be tolerated without appreciable risk of harm. Adverse effects may be minimized at concentrations below the threshold by pharmacokinetic processes, such as decreased absorption, distribution to non-target organs, metabolism to less toxic chemical forms, and excretion (Klaassen et al., 2007).

RfD values and RfCs are developed by the EPA RfD Work Group on the basis of a wide array of noncarcinogenic health effects. The RfD and RfC are estimates of the daily maximum level of exposure to human populations (including sensitive subpopulations) that are likely to be without an appreciable risk of deleterious effects during a lifetime (EPA, 1989). RfDs are expressed in units of daily dose (mg/Kg-

day) while RfCs are expressed as an air concentration (mg/m<sup>3</sup>). Both incorporate uncertainty factors to account for limitation in the quality or quantity of available data.

### 4.4 SOURCES OF TOXICITY CRITERIA

There are a variety of toxicity databases that regulatory agencies rely on for the purposes of quantifying the toxicity of chemicals in the environment. Per EPA (1989 and 2003), the primary source (i.e., "Tier 1") for toxicity information in the risk assessment should be EPA's IRIS (EPA, 2008). According to a recent EPA Office of Solid Waste and Emergency Response (OSWER) Directive (EPA, 2003), that revises the human health toxicity value hierarchy, if RfDs for noncarcinogenic compounds and CSFs for possible carcinogens are not available in IRIS, the "Tier 2" toxicity resource is the EPA's database of Provisional Peer Reviewed Toxicity Values for Superfund (PPRTV). The "Tier 3" resources that can be consulted if IRIS and PPRTV databases lack relevant toxicity criteria include the Health Effects Assessment Summary Tables (EPA, 1997b) and the Centers for Disease Control's Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs). Toxicity values contained in the Region 6 Human Health Medium-Specific Screening Levels (EPA, 2004a) were also used as a resource for toxicity values. Regional Screening Levels (RSLs) were not available when the project began and, as such, they were not used in the screening step or as a resource for toxicity information in the BHHRA.

The toxicity criteria used in the BHHRA are provided in Appendix D, along with the risk calculations. All toxicity values were obtained from EPA's IRIS on-line database, as accessed during December 2008.

## 5.0 RISK CHARACTERIZATION

Risk characterization is the integration of the exposure and toxicity information to make quantitative estimates and/or qualitative statements regarding potential risk to human health. This section describes the risk characterization process for carcinogenic and noncarcinogenic PCOCs.

## 5.1 POTENTIAL CARCINOGENIC RISKS

Potential carcinogenic effects are characterized in terms of the excess probability of an individual developing cancer over a lifetime as a result of exposure to a potential carcinogen. For chemicals that exhibit carcinogenic effects, EPA has developed a model that is based on the theory that one or more molecular events as a result of exposure to a potential carcinogenic compound can evoke changes in a single cell or a small number of cells that can lead to tumor formation. This non-threshold theory of carcinogenesis suggests that any level of exposure to a carcinogen can result in some finite possibility of generating the disease. It should be noted that this is a very conservative approach and EPA's more recent Guidelines for Cancer Risk Assessment (EPA, 2005b) recognize that there are "threshold" carcinogens as well.

To characterize the potential for carcinogenic effects, a lifetime average daily dose (LADD) is combined with a CSF to calculate a probability that an individual would develop cancer over a lifetime of exposure to a specific PCOC, with the following equation:

$$Risk = LADD \times CSF$$
 (Equation 5)

All risk estimates are summed for the receptor by media to provide a theoretical excess lifetime cancer risk. Theoretical excess lifetime cancer risks are evaluated based on an acceptable cancer risk range of 1 x  $10^{-6}$  to 1 x  $10^{-4}$ . EPA (1991b) indicates that carcinogenic effects at a site should first be evaluated based on the 1 x  $10^{-4}$  cancer risk levels, but depending on site-specific conditions, a range of 1 x  $10^{-6}$  to 1 x  $10^{-4}$  may be used. Typically, cancer risks less than 1 x  $10^{-6}$  are considered *de minimis* and acceptable while cancer risks less than 1 x  $10^{-4}$  are considered acceptable (EPA, 1991b).

The BHHRA evaluated site-specific exposures based on realistic current and possible future land use. All cancer risk estimates fell within the EPA cancer risk range of  $10^{-6}$  to  $1 \times 10^{-4}$  or less, except for the hypothetical industrial worker scenario at the North Area. Exposure from the vapor intrusion pathway for

PCOCs in groundwater for a hypothetical industrial worker employed in a building sited at the North Area resulted in a cancer risk greater than 1 x 10<sup>-4</sup>, as shown in Table 27. Table 28 provides a summary of the cancer risk estimates for each scenario using average and RME assumptions for the soil and sediment pathways. Detailed spreadsheets containing the risk calculations are provided in Appendix D by scenario and media.

Risks were summed for the hypothetical industrial worker scenario that might be exposed to both soil and vapors emanating from groundwater, as shown in Table 28. The total risk for the hypothetical RME industrial worker at the South Area was 7 x 10<sup>-6</sup> while the total risk for the hypothetical RME industrial worker at the North Area was 1.6 x 10<sup>-1</sup>. The "unacceptable" risk driver for the hypothetical industrial worker scenario at the North Area was the inhalation of vapors emanating from groundwater. Risks were not summed for other soil and sediment-based receptors since adding across areas or media would, in fact, "double count" the exposure assumptions nor is it likely or determinable that a receptor will be exposed to multiple media. It would be reasonable to add surface water and sediment exposure for the contact recreation pathway but the surface water pathway was shown to be a *de minimus* risk and screened out as discussed in Section 2.2.

## 5.2 POTENTIAL NONCARCINOGENIC HAZARD QUOTIENTS

For noncarcinogenic compounds, a potential hazard is expressed as a hazard quotient (HQ), which is the ratio of the average daily dose (ADD) for a site-specific receptor to an acceptable dose (or RfD) for that compound. The HQ is calculated as follows

$$HQ = ADD/RfD$$
 (Equation 6)

An RfD is developed with the assumption that the degree of toxicity of noncarcinogenic compounds is based on the ability of organisms to repair and detoxify after exposure to a compound. The repair and detoxification mechanisms must be exceeded by some critical concentration (threshold) before the health effect is manifested. This threshold view holds that a range of exposures from just above zero to some finite value (i.e., the RfD) can be tolerated by an individual without an appreciable risk of adverse effects.

HQs are summed for all chemical intakes to yield a hazard index (HI) for each exposure pathway. An HI equal to or less than 1 indicates that no adverse noncarcinogenic health effects are expected to occur from cumulative exposure to multiple chemicals and exposure pathways. An HI greater than 1 provides an

indication that such effects may occur, especially in sensitive subpopulation, but does not provide a prediction of the severity or probability of the effects. An HI above 1 indicates the need for further evaluation. For example, effects of different chemicals are not necessarily additive (although the HI approach assumes additivity), nor do all chemicals affect the same target organ. Thus, EPA recommends that if an HI exceeds 1, further evaluation should occur to categorize hazards based on chemical-specific and route-specific toxicity (e.g., which chemicals act on the same target organ, by which route of entry, etc.) (EPA, 1989).

The BHHRA evaluated site-specific exposures based on realistic current and possible future land use. Table 28 provides a summary of the HIs for each scenario using average and RME assumptions for the soil and sediment pathways. None of the HIs for the soil and sediment exposure pathways exceeded EPA's target hazard index of 1. Exposure from the vapor intrusion pathway from PCOCs in groundwater for a hypothetical industrial worker employed in a building sited at the North Area resulted in an HI greater than 1, as shown in Table 27. Detailed spreadsheets containing the risk calculations are provided in Appendix D by scenario.

Hazard Indices were summed for the industrial worker scenario that might be exposed to both soil and vapors emanating from groundwater, as shown in Table 28. The total hazard index for the RME industrial worker at the South Area was 0.09 while the total hazard index for the RME industrial worker at the North Area was 156. The "unacceptable" driver for the industrial worker scenario at the North Area was the inhalation of vapors emanating from groundwater. Hazard indices were not summed for other soil and sediment-based receptors since adding across areas or media would, in fact, "double count" the exposure assumptions nor is it likely or determinable that a receptor will be exposed to multiple media. It would be reasonable to add surface water and sediment exposure for the contact recreation pathway but the surface water pathway was shown to be a *de minimus* risk and screened out as discussed in Section 2.2.

It should be noted that due to lead's unique toxicological properties, noncancer risk estimates could not be calculated similarly to the other noncarcinogenic PCOCs. However, none of the measured concentrations of lead in Site soil samples exceeded EPA's screening level for industrial properties of 800 mg/kg (EPA, 2004a). Thus, it is unlikely that lead at the Site poses an unacceptable risk.

# 5.3 PATHWAYS QUALITATIVELY EVALUATED (I.E., ELIMINATED DURING SCREENING STEP)

Exposure to surface water by the contact recreation receptor and potential air impacts to off-site residential receptors were qualitatively evaluated in Section 2.2 using a concentration-toxicity screen to eliminate compounds or pathways that were unlikely to present an unacceptable risk. Based on this evaluation, it was concluded that exposure to PCOCs in these media is unlikely to result in an adverse health risk.

### 5.4 FISH INGESTION PATHWAY

Based on the analytical results for the Intracoastal Waterway sediment samples and in accordance with Section 5.6.8 of the Work Plan, fish tissue samples were collected from four Site zones and one background area within the Intracoastal Waterway. Red drum (*Sciaenops ocellatus*) (6 samples), spotted seatrout (*Cynoscion nebulosus*) (9 samples), southern flounder (*Paralichthys lethostigma*) (9 samples), and blue crab (*Callinectes sapidus*) (9 samples) samples were collected from the Site for laboratory analysis. Samples of these species were also collected from the background area and were archived.

The Site fish tissue samples (fillet samples for finfish, edible tissue for crabs) were analyzed for 12 COIs, based on Intracoastal Waterway sediment data, in accordance with EPA's November 14, 2006 letter. The only COIs with concentrations measured above sample detection limits in any of the 33 samples were silver (detected in four samples), benzo(b)fluoranthene (detected in two samples), and 4,4'-DDE (detected in two samples). The fish tissue data were used to calculate potential risks associated with exposure to Site COIs via the fish ingestion pathway to recreational anglers fishing at the Site, or their families.

This risk assessment (presented in a March 20, 2007 letter to EPA) concluded that the fish ingestion pathway does not pose a human health threat (PBW, 2007). That conclusion was subsequently approved in a June 29, 2007 letter from EPA.

## 6.0 UNCERTAINTY ASSESSMENT

Uncertainties are inherent in every aspect of a quantitative risk assessment. The inclusion of site-specific factors can decrease uncertainty, although significant uncertainty persists in even the most site-specific risk assessments. Worst-case assumptions and default values, which conform to EPA guidance (EPA, 1989), add conservatism to human health risk assessments. This conservatism is intentionally included in order to tilt the assessment toward over-prediction of risk and hence protection of human health. Therefore, it is important to the risk management decision-making process that the sources of uncertainty are provided.

A careful and comprehensive analysis of the critical areas of uncertainty in a risk assessment is an important part of the risk assessment process. EPA guidance (EPA, 1989) stresses the importance of providing a complete analysis of uncertainties so that risk management decisions take these uncertainties into account when evaluating risk assessment conclusions. The uncertainty analysis provides a context for better understanding the assessment conclusions by identifying the uncertainties that have most significantly affected the assessment results. Therefore, sources of uncertainty in the identification of PCOCs, exposure assessment, and toxicity assessment sections of the risk assessment report are identified and qualitatively evaluated in this section.

### 6.1 DATA ANALYSIS UNCERTAINTIES

Data collected at the Site satisfied the goals described in the Work Plan (PBW, 2006a) and, thus, adequately characterized the nature and extent of contamination at this Site. As described in the NEDR (PBW, 2009), hundreds of samples of soil, sediment, groundwater and surface water were collected at the South Area, North Area, Intracoastal Waterway, and background soil, sediment, and surface water locations. Characterization was initially conducted for the entire Site and continued at certain areas if a screening level was exceeded.

Overall, the data were determined to be of high quality. Data were collected and analyzed in accordance with approved procedures specified in the FSP (PBW, 2006b) and were validated in accordance with approved validation procedures specified in the QAPP (PBW, 2006c). Very few of the data for any of the analytes were found to be unusable (i.e., "R-flagged"). In instances where data were unusable, the analysis was conducted again (when possible) and the R-flagged data was not used. Some of the data are qualified (i.e., "J-flagged") as estimated because the measured concentration is above the sample

detection limit but below the sample quantitation limit and/or due to minor quality control deficiencies. According to the *Guidance for Data Useability in Risk Assessment (Part A)* (EPA, 1992b), data that are qualified as estimated can be used for risk assessment purposes. Data quality was discussed in greater detail in the NEDR (PBW, 2009).

Compounds were eliminated from further quantitative evaluation in the BHHRA if they were determined to be statistically no different than background concentrations, as summarized in Table 18. While this may result in an underestimation of overall site risks, this approach is appropriate for this Site given that there is no identifiable source of metals at the Site and, regardless, very few inorganic organic compounds were measured above  $1/10^{th}$  of their respective screening criteria.

#### 6.2 EXPOSURE ANALYSIS UNCERTAINTIES

The EPA risk assessment guidance for exposure assessments generally requires standard hypothetical exposure scenarios rather than realistic site-specific evaluation of exposure (EPA, 1989), and this conservative default approach was used for the future industrial and construction worker scenarios. Under this approach, if a chemical is found to be present at a site, it is assumed that exposure to that chemical will occur regardless of whether that exposure is realistic or likely. Uncertainties associated with the exposure assessment included calculation of EPCs and selection of exposure parameters. For example, the intake equations are based on several 95<sup>th</sup> percentile values. When multiplied together, these data compound the uncertainties in the exposure assessments and result in estimated intakes (and resultant cancer risks) that likely estimate exposure well over the 95<sup>th</sup> percentile.

It is difficult to assess the likelihood of any of the hypothetical future scenarios occurring (i.e., future construction worker or future industrial worker) nor is it possible to know the extent, if any, that trespassers and contact recreation receptors are exposed to PCOCs at the Site. It was assumed that the youth trespasser accesses the Site once a week for twelve years. It was assumed that the contact recreation scenario receptor visits the Site for 39 times per year for 25 years. The exposure assumptions used for all scenarios were chosen to purposefully overestimate exposure in order to err on the side of protection. For the current scenarios (i.e., the youth trespasser and the contact recreation scenario) it appears that these represent a bounding estimate since exposure is likely to be much less.

The screening conducted to evaluate off-site impacts from particulate dust generation and VOC emissions and migration was very conservative because it did not assume any dispersion during transport. Despite that very conservative assumption, no adverse risks to off-site residents were likely.

Soil ingestion rates for adults and older youth are highly uncertain. Because the ingestion rate is a very sensitive parameter in the intake equation, uncertainty and variability in this assumption has a large impact on the dose estimate. This is especially relevant for the construction worker scenario when an enhanced ingestion rate was used. The uncertainty related to this value is tremendous given the study design, small study population, and limited exposure length that are the basis for the soil ingestion rate.

Assumptions regarding bioavailability of metals in soil can significantly influence risk estimates. EPA typically assumes that the bioavailability of compounds from soil is equal to that observed in the toxicity studies used to derive oral toxicity factors but this is most often not the case. Rather, toxicity studies are often, if not always, conducted using a concentration of a compound in either food or water. Bioavailability was assumed to be 100% (i.e., AAF was 1.0) although it is well known that metals and some organic compounds bound to soil are less than 100% bioavailable. This assumption leads to an overestimation of risks, which can be significant.

In the fish tissue risk assessment (PBW, 2007), ingestion rates for finfish were used to represent fish and shellfish ingestion rates, and site-specific fish and crab concentrations were used to estimate exposure. It is unlikely that there is significant uncertainty presented in the fish/shellfish ingestion risk assessment based on the uptake and bioaccumulation differences between crab (a crustacean shellfish) and oysters and clams (molluscan shellfish) since exposure to molluscan shellfish, if harvesting these species were allowed, would be similar if not the same as for the fish and crab (a crustacean shellfish) ingestion pathway

For surface water and groundwater, maximum concentrations were selected as the EPC for purposes of evaluating human health risks. This is likely to be a conservative approach since there were other, lower concentrations, also measured for these media. It is unlikely that surface water concentrations would increase in the future since surface runoff does not appear to be significantly impacting surface water, and impacted groundwater does not discharge to surface water.

## 6.3 TOXICITY ASSESSMENT UNCERTAINTIES

The studies/basis for the toxicity information and the use of this information generate uncertainty. Toxicity assessments for many of the PCOCs in the BHHRA involve the extrapolation of results from studies on animals. The following are standard assumptions applied by the EPA when extrapolating the results of studies of carcinogenicity in animals to humans.

- Any constituent showing carcinogenic activity in any animal species will also be a human carcinogen.
- There is no threshold dose for carcinogens.
- The results of the most sensitive animal study are appropriate to apply to humans.
- Humans are more sensitive than the most sensitive animal species on a body weight basis.

Uncertainties are introduced in animal to human extrapolation and high to low dose extrapolation. Mathematical models are used by EPA to estimate the possible responses due to exposure to chemicals at levels far below those tested in animals. These models contain several limitations, which should be considered when the results (e.g., risk estimates) are evaluated. Primary among these limitations is the uncertainty in extrapolation of results obtained in animal research to humans and the shortcomings in extrapolating responses obtained from high-dose research studies to estimate responses at very low doses. For example, humans are typically exposed to environmental chemicals at levels that are less than a thousandth of the lowest dose tested in animals. Such doses may be easily degraded or eliminated by physiological internal mechanisms that are present in humans (Ames, 1987).

Additionally, approaches typically used for designating RfDs are highly conservative. For example, EPA (1989) applies a factor of 10 to a No-Observable-Adverse-Effect-Level (NOAEL) for a compound in an animal study for animal-to-human extrapolation. An additional factor of 10 is applied for inter-individual variation in the human population, and additional factors of 10 may be applied to account for limitations in data quality or incomplete studies. Frequently, RfDs are derived from animal studies that have little quantitative bearing on potential adverse effects in humans. Some of this uncertainty may be reduced if the absorption, distribution, metabolic fate, and excretion parameters of a compound are known.

Potential long-term, or chronic, exposures are typically evaluated in risk assessments for Superfund sites, and chronic RfDs and RfCs are the appropriate toxicity criteria to apply to chronic exposure scenarios (chronic exposure is defined in EPA, 1989 as greater than or equal to seven years). The BHHRA includes a construction worker scenario, which was assumed to be of a shorter duration than seven years and is,

therefore, considered a subchronic exposure scenario. In some cases, EPA provides recommended subchronic RfDs which are typically 10 times higher than chronic values. Only chronic toxicity values were used in the risk assessment, which imparts conservatism in the construction worker scenario.

#### 6.4 RISK CHARACTERIZATION UNCERTAINTIES

The only instance where uncertainty may have been introduced into the risk assessment that is not considered conservative was when toxicity values or screening criteria were not available. This was only an issue when evaluating impacts to off-site receptors since there are not inhalation toxicity values for many of the compounds (or TCEQ PCLs) and, as such, a comparison could not be made. It is believed that this is insignificant since: 1) there are few VOCs present in soil at the South Area; 2) the VOCs that are present were measured in low concentrations; and 3) surficial soil testing for lead on Lots 19 and 20 did not suggest that off-site migration via fugitive dust generation was a significant concern.

It was estimated that risks associated with VOC emissions from shallow Zone A groundwater to future inhabitants of buildings were above EPA's target risk goals. It should be noted that this is a highly uncertain pathway with the use of many default assumptions to calculate risks since currently the pathway is incomplete (i.e., there is no building or no worker at the Site 250 days per year for exposure to occur). Likewise, conservative assumptions were made about the slab and slab integrity and contaminant transport in the J&E VIM that would greatly affect the resulting risk estimates. Therefore, it is advisable to consider the results of this analysis in light of the substantial amount of uncertainty in the underlying assumptions of this pathway.

### 6.5 IMPACT OF UNCERTAINTIES

As described in this section, efforts were made in the BHHRA to purposefully err on the side of conservatism in the absence of site-specific information. It is believed that the overall impact of the uncertainty and conservative nature of the evaluation results in an overly protective assessment.

Therefore, for scenarios with risks and HIs within or below the Superfund risk range goal and target HI, it can be said with confidence that these environmental media and areas do not present an unacceptable risk.

### 7.0 CONCLUSIONS

The primary objective of this BHHRA was to evaluate the possible risks associated with PCOCs in environmental media on human receptors at the Gulfco Marine Maintenance Site. This information will be used to help guide future risk management decisions at the Site. The risk assessment methodology used to conduct this analysis was based on the approach described by EPA in various supplemental and associated guidance documents as documented throughout the report.

Data were segregated by media and by location (e.g., North Area soil and South Area soil; Intracoastal Waterway sediment and wetlands sediment) and distribution testing was performed. Exposure point concentrations were estimated for all PCOCs for both central tendency (average) and RME (95% UCL) exposures using EPA's ProUCL program.

Five different exposure scenarios were quantitatively evaluated for the thirteen different potentially contaminated media identified at the Site. Exposure scenarios were developed to describe current and potential future land use by various human receptors and included a future industrial worker, future construction worker, current youth trespasser, current contact recreation receptor, and current off-site residential receptor. Exposure and risks were calculated for both central tendency and RME scenarios.

Based on the risk estimates and hazard indices shown in Table 28, there were not unacceptable cancer risk or noncancer hazard indices for any of the current or future exposure scenarios except for future exposure to an indoor industrial worker if a building is constructed over impacted groundwater in the North Area. Potential cancer risks in the North Area using maximum shallow Zone A groundwater concentrations and the J&E VIM were predicted to be greater than 1 x 10<sup>-4</sup> while the HIs were estimated to be greater than 1. It should be noted that this scenario was evaluated despite the current restrictive covenant on Lots 55, 56, and 57 that require future building design to preclude vapor intrusion, which would effectively make this pathway incomplete. Estimated risks from Zone A groundwater at the South Area were below EPA's goals and, therefore, adverse risks associated with the vapor intrusion pathway are unlikely in this area.

### 8.0 REFERENCES

- Ames, B.N., R. Magaw, and L.S. Gold, 1987. Ranking Possible Carcinogenic Hazards. *Science*. 236, 271-280.
- Carden, Clair A., 1982. Fish Marine Services, Freeport, Texas, Pond Closure Certification. August 18.
- Kissel, J.C., 1995. Characterization of soil adherence to skin: Impact of historical misinterpretation of the Que Hee et al. data. *Risk Analysis* 15(6):613-614.
- Kissel, J., K. Richter, and R. Fenske, 1996. Factors affecting soil adherene to skin in hand-press trials. *Bull. Environ. Contam. Toxicol.* 56:722-728.
- Klaassen, C.D., H.O. Amdur, and J.E. Doull, 2007. *Cassarett and Doull's Toxicology The Basic Science of Poisons, Seventh Edition*. MacMillan Publishing Company: New York, NY.
- Losack, Billy, 2005. Personal communication with Pastor, Behling & Wheeler, LLC. July.
- National Research Council (NRC), 1983. *Recommended Dietary Allowances, 10<sup>th</sup> ed. Report of the Food and Nutrition Board*, National Academy of Sciences, Washington, National Academy Press, Washington, DC. 285 p.
- Pastor, Behling & Wheeler, LLC (PBW), 2006a. *Remedial Investigation/Feasibility Study (RI/FS) Work Plan*, Gulfco Marine Maintenance Superfund Site, Freeport, Texas. March 14.
- Pastor, Behling & Wheeler, LLC (PBW), 2006b. Final Sampling and Analysis Plan Volume I Field Sampling Plan, Gulfco Marine Maintenance Superfund Site, Freeport, Texas. March 14.
- Pastor, Behling & Wheeler, LLC (PBW), 2006c. Final Sampling and Analysis Plan Volume II Quality Assurance Project Plan, Gulfco Marine Maintenance Superfund Site, Freeport, Texas. March 14.
- Pastor, Behling & Wheeler, LLC (PBW), 2007. *Intracoastal Waterway Fish Ingestion Pathway Human Health Baseline Risk Assessment*, Gulfco Marine Maintenance Superfund Site, Freeport, Texas. July 18.
- Pastor, Behling & Wheeler, LLC (PBW), 2009. *Final Nature and Extent Data Report*. Gulfco Marine Maintenance Superfund Site, Freeport, Texas. May 20.
- Preuss, P.W. and A.M. Ehrlich, 1987. *The Environmental Protection Agency's Risk Assessment Guidelines*. J. Air Pollution Control Assoc. 37:784-791.
- Texas Commission on Environmental Quality (TCEQ), 2002. *Determining PCLs for Surface Water and Sediment. Remediation Division*. RG-366/TRRP-24 (Revised) December 2002.
- Texas Commission on Environmental Quality (TCEQ), 2006. PCLs for Surface Water and Sediment. Remediation Division. April 2006.
- Texas Department of State Health Services (TDSHS), 2005. Services Seafood and Aquatic Life Group. On-line database and maps showing shellfish harvesting bans and fish consumption advisories and bans. www.tdh.state.tx.us/bfds/ssd/.

- Texas Department of State Health Services (TDSHS), 2009. Classification of Shellfish Harvesting Areas of Freeport Area. Seafood and Aquatic Life Group. Order Number; MR-1280. November 1.
- Texas Department of Transportation (TxDOT), 2001. *Transportation Multimodal Systems Manual*. September.
- Texas Natural Resource Conservation Commission (TNRCC), 1998. *Implementation of the Existing Risk Reduction Rule* (referred to as the Consistency Memo). Remediation Division, Office of Waste Management. July 23.
- Texas Natural Resource Conservation Commission (TNRCC), 2002. HRS Documentation Record, Gulfco Marine Maintenance, Inc. Freeport, Brazoria County, Texas TXD 055 144 539. Prepared in cooperation with the U.S. Environmental Protection Agency. February.
- Texas Parks and Wildlife Department (TPWD), 2009. Online fishing reports by region. www.tpwd.state.tx.us/fishboat/fish/recreational/fishreport.html.
- United States Army Corps of Engineers (USACE), 2006. Waterborne Commerce of the United States, Calendar Year 2006. IWR-WCUS-06-2.
- United States Environmental Protection Agency (EPA), 1986. *Guidelines for Carcinogenic Risk Assessment*. Federal Register. 51:33992.
- United States Environmental Protection Agency (EPA), 1989. *Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Part A.* Office of Solid Waste and Emergency Response. 9285.701A. December.
- United States Environmental Protection Agency (EPA), 1991a. *Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors*. OSWER Directive 9285.6-03. March 25.
- United States Environmental Protection Agency (EPA), 1991b. *The Role of the Baseline Risk Assessment in Remedy Selection*. Office of Emergency and Remedial Response. Washington, DC. OSWER Directive 9355.0-30. April.
- United States Environmental Protection Agency (EPA), 1992a. *Guidance for Data Usability in Risk Assessment (Part A)*. Final. Office of Emergency Planning and Remedial Response. 9285.7-09A. April.
- United States Environmental Protection Agency (EPA), 1992b. *Guidelines for Exposure Assessment*. Fed. Reg. 57(104). May 29.
- United States Environmental Protection Agency (EPA), 1992c. Memorandum from F. Henry Habicht II, Deputy Administrator of U.S. Environmental Protection Agency. Subject: Guidance on Risk Characterization for Risk Managers and Risk Assessors. Washington, D.C.
- United States Environmental Protection Agency (EPA), 1997a. *Exposure Factors Handbook*. Office of Research and Development. EPA/600/P-95/002F. August.
- United States Environmental Protection Agency (EPA), 1997b. *Health Effects Assessment Summary Table (HEAST)*. Office of Solid Waste and Emergency Response. EPA-540R-97-036. July.

- United States Environmental Protection Agency (EPA), 1999. U.S. EPA Contract Laboratory Program Functional Guidelines for Organic Data Review. Office of Emergency and Remedial Response. OSWER 9240.1-05A-P, PB99-963506, EPA 540-R-99-008. October.
- United States Environmental Protection Agency (EPA), 2001. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Research and Development. OSWER 9355.4-24. March.
- United States Environmental Protection Agency (EPA), 2002a. *Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway*. Office of Solid Waste and Emergency Response. Washington, D.C. November.
- United States Environmental Protection Agency (EPA), 2002b. *Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites*. Office of Emergency and Remedial Response. Washington, DC. 20460. OSWER 9285.6-10. December.
- United States Environmental Protection Agency (EPA), 2002c. U.S. EPA Contract Laboratory Program Functional Guidelines for Inorganic Data Review Final. Office of Emergency and Remedial Response. OSWER 9240.1-35 EPA 540-R-01-008. July.
- United States Environmental Protection Agency (EPA), 2002d. *Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites*. Office of Emergency and Remedial Response. EPA 540-R-01-003. OSWER 9285.7-41. September.
- United States Environmental Protection Agency (EPA), 2003. *Human Health Toxicity Values in Superfund Risk Assessments*. Memo from Michael Cook to National Policy Directors Region 1-10. OSWER Directive 9285.7-53. December 5.
- United States Environmental Protection Agency (EPA), 2004a. Region 6 Human Health Medium-Specific Screening Levels. Dallas, TX. November.
- United States Environmental Protection Agency (EPA), 2004b. *Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)*. Office of Solid Waste and Emergency Response. EPA/540/R/99/005. OSWER 9285.7-02EP. PB99-963312. July.
- United States Environmental Protection Agency (EPA), 2005a. Community Involvement Plan, Gulfco Marine Maintenance, Inc. Superfund Site, Freeport, Brazoria County, Texas. August.
- United States Environmental Protection Agency (EPA), 2005b. *Guidelines for Cancer Risk Assessment*. Risk Assessment Forum. Washington, D.C. EPA/630/P-03/001F. March.
- United States Environmental Protection Agency (EPA), 2008. Integrated Risk Information System (IRIS). On-line database. December.
- United States Environmental Protection Agency (EPA), 2009. PRO UCL Version 4.00.04 Statistical software available at <a href="http://www.epa.gov/nerlesd1/">http://www.epa.gov/nerlesd1/</a> and PRO UCL Version 4 User's Guide. EPA 600/R-07/038. Office of Research and Development; National Exposure Research Laboratory; Environmental Sciences Division; EPA Technology Support Center for Characterization and Monitoring Branch. February.

United States Environmental Protection Agency (EPA), 2010. EPA Comments on Draft Baseline Human Health Risk Assessment (BHHRA). January.

United States Fish and Wildlife Service (USFWS), 2008. National Wetlands Inventory, Online Wetlands Mapper. <a href="http://wetlandsfws.er.usgs.gov/wtlnds/launch.html">http://wetlandsfws.er.usgs.gov/wtlnds/launch.html</a>. Accessed July 9, 2008.

## TABLE 1 EXPOSURE POINT CONCENTRATIONS (mg/kg) SOUTH AREA SURFACE SOIL\*

|                                   |          | Max       | Min       |                             | EPA Region 6 Soil      |   |          |                      | # of Detects/# |
|-----------------------------------|----------|-----------|-----------|-----------------------------|------------------------|---|----------|----------------------|----------------|
| Chemical of Interest <sup>*</sup> | Average  | Detection | Detection | TotSoil <sub>Comb</sub> (1) | Screening Criteria (2) |   | 95% UCL  | Statistic Used (3)   | of Samples     |
| 2-Methylnaphthalene               | 2.97E-02 | 5.01E-01  | 1.06E-02  | 2.48E+03                    |                        |   | 7.90E-02 | 97.5% KM (Chebyshev) | 22 of 83       |
| 4,4'-DDD                          | 3.07E-03 | 2.43E-02  | 2.64E-03  | 1.04E+02                    | 1.10E+01               | < | 2.70E-04 | median               | 5 of 83        |
| 4,4'-DDE                          | 1.92E-03 | 6.93E-02  | 4.28E-04  | 7.32E+01                    | 7.80E+00               |   | 7.52E-03 | 97.5% KM (Chebyshev) | 17 of 83       |
| 4,4'-DDT                          | 3.89E-03 | 6.25E-02  | 2.81E-04  | 6.84E+01                    | 7.80E+00               |   | 1.03E-02 | 97.5% KM (Chebyshev) | 37 of 83       |
| Acenaphthene                      | 6.08E-02 | 1.69E+00  | 1.13E-02  | 3.72E+04                    | 3.30E+04               |   | 2.00E-01 | 97.5% KM (Chebyshev) | 26 of 83       |
| Acenaphthylene                    | 4.55E-02 | 9.35E-01  | 1.84E-02  | 3.72E+04                    |                        |   | 1.21E-01 | 97.5% KM (Chebyshev) | 19 of 83       |
| Aluminum                          | 5.34E+03 | 1.52E+04  | 4.14E+02  | 5.70E+05                    | 1.00E+05               |   | 5.95E+03 | 95% Student's-t      | 83 of 83       |
| Anthracene                        | 9.71E-02 | 2.46E+00  | 1.12E-02  | 1.86E+05                    | 1.00E+05               |   | 2.99E-01 | 97.5% KM (Chebyshev) | 37 of 83       |
| Antimony                          | 1.65E+00 | 5.14E+00  | 2.00E-01  | 3.06E+02                    | 4.50E+02               |   | 2.24E+00 | 97.5% KM (Chebyshev) | 72 of 83       |
| Aroclor-1254                      | 1.46E-01 | 7.98E+00  | 3.34E-03  | 7.10E+00                    | 8.30E-01               |   | 7.64E-01 | 97.5% KM (Chebyshev) | 13 of 85       |
| Arsenic                           | 3.74E+00 | 2.43E+01  | 2.60E-01  | 1.96E+02                    | 1.80E+00               |   | 6.49E+00 | 97.5% KM (Chebyshev) | 71 of 83       |
| Barium                            | 3.45E+02 | 2.18E+03  | 1.86E+01  | 8.90E+04                    | 7.90E+04               |   | 5.84E+02 | 97.5% KM (Chebyshev) | 83 of 83       |
| Benzo(a)anthracene                | 3.57E-01 | 5.02E+00  | 2.86E-02  | 2.36E+01                    | 2.30E+00               |   | 9.03E-01 | 97.5% KM (Chebyshev) | 30 of 83       |
| Benzo(a)pyrene                    | 4.53E-01 | 4.57E+00  | 1.03E-02  | 2.37E+00                    | 2.30E-01               |   | 1.09E+00 | 97.5% KM (Chebyshev) | 65 of 83       |
| Benzo(b)fluoranthene              | 5.88E-01 | 5.42E+00  | 4.08E-02  | 2.36E+01                    | 2.30E+00               |   | 1.10E+00 | 95% KM (Chebyshev)   | 61 of 83       |
| Benzo(g,h,i)perylene              | 3.04E-01 | 4.24E+00  | 9.89E-03  | 1.86E+04                    |                        |   | 7.89E-01 | 97.5% KM (Chebyshev) | 51 of 83       |
| Benzo(k)fluoranthene              | 2.44E-01 | 4.25E+00  | 1.95E-02  | 2.37E+02                    | 2.30E+01               |   | 6.58E-01 | 97.5% KM (Chebyshev) | 33 of 83       |
| Beryllium                         | 4.08E-01 | 4.60E+00  | 1.40E-02  | 2.47E+02                    | 2.20E+03               |   | 7.68E-01 | 97.5% KM (Chebyshev) | 82 of 83       |
| Boron                             | 5.56E+00 | 5.44E+01  | 2.43E+00  | 1.90E+05                    | 1.00E+05               |   | 7.07E+00 | 97.5% KM (Bootstrap) | 34 of 83       |
| Butyl Benzyl Phthalate            | 1.90E-02 | 2.97E-01  | 1.29E-02  | 1.00E+04                    | 2.40E+02               | < | 1.25E-02 | median               | 6 of 83        |
| Cadmium                           | 4.69E-01 | 9.71E+00  | 2.30E-02  | 8.52E+02                    | 5.60E+02               | Ì | 1.25E+00 | 97.5% KM (Chebyshev) | 50 of 83       |
| Carbazole                         | 6.20E-02 | 1.54E+00  | 1.04E-02  | 9.54E+02                    | 9.60E+01               |   | 1.95E-01 | 97.5% KM (Chebyshev) | 29 of 83       |
| Chromium                          | 1.61E+01 | 1.36E+02  | 3.37E+00  | 5.71E+04                    | 5.00E+02               |   | 2.68E+01 | 97.5% Chebyshev      | 83 of 83       |
| Chrysene                          | 4.09E-01 | 4.87E+00  | 9.32E-03  | 2.36E+03                    | 2.30E+02               |   | 9.84E-01 | 97.5% KM (Chebyshev) | 56 of 83       |
| Cobalt                            | 3.71E+00 | 1.60E+01  | 4.90E-02  | 2.70E+02                    | 2.10E+03               |   | 5.25E+00 | 97.5% KM (Chebyshev) | 82 of 83       |
| Copper                            | 2.80E+01 | 2.16E+02  | 1.55E+00  | 3.69E+04                    | 4.20E+04               |   | 5.22E+01 | 97.5% KM (Chebyshev) | 83 of 83       |
| Dibenz(a.h)anthracene             | 1.87E-01 | 1.64E+00  | 6.39E-02  | 2.37E+00                    | 2.30E-01               |   | 2.45E-01 | 95% KM (Bootstrap)   | 36 of 83       |
| Dibenzofuran                      | 3.41E-02 | 8.21E-01  | 1.67E-02  | 2.73E+03                    | 1.70E+03               |   | 7.23E-02 | 95% KM (BCA)         | 17 of 83       |
| Dieldrin                          | 1.40E-03 | 2.05E-02  | 2.43E-04  | 1.14E+00                    | 1.20E-01               |   | 3.14E-03 | 97.5% KM (Chebyshev) | 21 of 83       |
| Di-n-butyl Phthalate              | 9.38E-02 | 7.53E-01  | 3.68E-02  | 1.62E+04                    | 6.80E+04               |   | 1.25E-01 | 97.5% KM (Chebyshev) | 9 of 83        |
| Endosulfan Sulfate                | 2.09E-03 | 7.13E-02  | 4.56E-04  | 4.09E+03                    |                        |   | 4.21E-03 | 95% KM (BCA)         | 17 of 83       |
| Endrin Aldehyde                   | 8.82E-03 | 7.38E-02  | 4.97E-04  | 2.04E+02                    |                        |   | 8.72E-03 | 97.5% KM (Chebyshev) | 22 of 83       |
| Endrin Ketone                     | 2.25E-03 | 2.00E-02  | 4.69E-04  | 1.77E+02                    |                        |   | 4.41E-03 | 97.5% KM (Chebyshev) | 18 of 83       |
| Fluoranthene                      | 8.00E-01 | 1.42E+01  | 1.33E-02  | 2.48E+04                    | 2.40E+04               |   | 2.14E+00 | 97.5% KM (Chebyshev) | 59 of 83       |
| Fluorene                          | 5.18E-02 | 1.11E+00  | 9.45E-03  | 2.48E+04                    | 2.60E+04               |   | 1.57E-01 | 97.5% KM (Chebyshev) | 28 of 83       |
| gamma-Chlordane                   | 1.23E-03 | 1.56E-02  | 7.10E-04  | 5.10E+01                    |                        |   | 2.90E-03 | 97.5% KM (Chebyshev) | 8 of 83        |
| Indeno(1,2,3-cd)pyrene            | 4.83E-01 | 6.49E+00  | 6.34E-02  | 2.37E+01                    | 2.30E+00               |   | 9.31E-01 | 95% KM (Chebyshev)   | 63 of 83       |
| Iron                              | 1.63E+04 | 7.71E+04  | 3.45E+03  | -                           | 1.00E+05               |   | 2.40E+04 | 97.5% Chebyshev      | 83 of 83       |
| Lead                              | 6.96E+01 | 6.43E+02  | 2.82E+00  | 1.60E+03                    | 8.00E+02               |   | 1.47E+02 | 97.5% Chebyshev      | 83 of 83       |
| Lithium                           | 7.86E+00 | 2.80E+01  | 6.50E-01  | 1.90E+03                    | 2.30E+04               |   | 1.18E+01 | 97.5% Chebyshev      | 83 of 83       |
| Manganese                         | 2.57E+02 | 8.92E+02  | 5.93E+01  | 2.41E+04                    | 3.50E+04               |   | 2.81E+02 | 95% Student's-t      | 83 of 83       |
| Mercury                           | 2.22E-02 | 6.60E-01  | 3.20E-03  | 3.26E+00                    | 3.40E+02               |   | 7.42E-02 | 97.5% KM (Chebyshev) | 37 of 83       |
| Molybdenum                        | 1.32E+00 | 8.42E+00  | 9.80E-02  | 4.51E+03                    | 5.70E+03               |   | 2.40E+00 | 97.5% KM (Chebyshev) | 71 of 83       |
| Nickel                            | 1.16E+01 | 3.67E+01  | 2.84E+00  | 7.94E+03                    | 2.30E+04               |   | 1.50E+01 | 97.5% KM (Chebyshev) | 83 of 83       |
| Phenanthrene                      | 5.13E-01 | 1.26E+01  | 1.39E-02  | 1.86E+04                    |                        |   | 1.06E+04 | 97.5% KM (Chebyshev) | 57 of 83       |
| Pyrene                            | 5.32E-01 | 8.47E+00  | 1.21E-02  | 1.86E+04                    | 3.20E+04               |   | 1.36E+00 | 97.5% KM (Chebyshev) | 57 of 83       |
| Strontium                         | 7.06E+01 | 5.27E+02  | 1.65E+01  | 4.91E+05                    | 1.00E+05               |   | 1.01E+02 | 95% Chebyshev        | 83 of 83       |
| Tin                               | 8.06E-01 | 4.95E+00  | 5.20E-01  | 3.97E+05                    |                        |   | 1.31E+00 | 97.5% KM (Chebyshev) | 23 of 83       |
| Titanium                          | 2.98E+01 | 6.45E+02  | 1.15E+01  | 1.00E+06                    |                        |   | 6.30E+01 | 95% Chebyshev        | 83 of 83       |
| Vanadium                          | 1.38E+01 | 4.56E+01  | 5.42E+00  | 2.29E+03                    | 1.10E+03               |   | 1.80E+01 | 97.5% Chebyshev      | 83 of 83       |
| Zinc                              | 6.01E+02 | 4.77E+03  | 1.23E+01  | 2.45E+05                    | 1.00E+05               |   | 1.06E+03 | 97.5% Chebyshev      | 81 of 83       |
|                                   | l        |           | l .       |                             |                        |   |          |                      | 1              |

<sup>\*</sup> Surface soil was collected from 0 to 0.5 ft. below ground surface.

\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) \_Tot Soil\_Comb PCL = TCEQ protective concentration Level for 30 acre source area Commercial/Industrial total soil combined pathway (includes inhalation; ingestion; dermal pathways).

<sup>(2) -</sup> From EPA's "Region 6 Human Health Medium-Specific Screening Levels 2004-2005". Industrial Outdoor Worker.

<sup>(3) -</sup> Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

## TABLE 2 EXPOSURE POINT CONCENTRATIONS (mg/kg) SOUTH AREA SOIL\*

| Chemical of Interest   Average   Detection   Detection   Proposition   Committed of the C | T                                       |          | May      | M:       |             | EPA Region 6 Soil |         |          |                      | # of Detects/#         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|----------|----------|-------------|-------------------|---------|----------|----------------------|------------------------|
| 13.5F Trendrybezeree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chemical of Interest*                   | Average  | Max      | Min      | Totesii (1) |                   |         | 95% LICI | Statistic Used (3)   | of Samples             |
| Segment   32,000,03   2,000,00   7,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00   1,000,00  |                                         |          |          |          |             | _                 | +       |          |                      | 9 of 83                |
| Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |          |          |          |             |                   | +       |          |                      | 9 of 83<br>4 of 83     |
| Zaketyngsthatene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |          |          |          |             | 3.40E+04          | +       |          |                      | 8 of 83                |
| 4.4-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |          |          |          |             |                   | +       |          |                      | 32 of 166              |
| 4.4-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |          |          |          |             | 1.10E+01          |         |          |                      | 21 of 166              |
| 44-0DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |          |          |          |             |                   |         |          |                      | 22 of 166              |
| Acente/phyloren  4.04E-02 1.20E-00 1.72E-02 3.72E-04 7.19E-02 89% KM (BCA) Alextorin  5.70E-02 1.50E-01 1.50E-01 3.0E-02 1.00E-05 5.20E-05 7.5% Chebyshev Alextorine  8.30E-02 2.40E-01 1.17E-10 1.00E-05 1.00E-05 5.20E-03 7.5% Chebyshev Alextorine  8.30E-02 2.40E-01 1.17E-01 1.00E-05 1.00E-05 5.20E-03 7.5% Chebyshev Alextorine  8.30E-02 2.40E-01 1.15E-01 3.34E-03 7.70E-00 8.30E-01 7.73E-01 7.73   |                                         |          |          |          |             |                   |         |          |                      | 68 of 166              |
| Authoritism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |          |          |          |             | 3.30E+04          |         |          |                      | 35 of 166              |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |          |          |          |             |                   |         |          |                      | 37 of 166              |
| Ambracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |          |          |          |             |                   | -       |          |                      | 10 of 83               |
| Animony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |          |          |          |             |                   |         |          |                      | 166 of 166             |
| Arcolor/1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |          |          |          |             |                   | 1       |          |                      | 65 of 166              |
| Arsenic 3.38E-00 2.48E-01 1.86E-01 1.86E-00 1.80E-00 97.5% KM (Chebyshev) Benzone 3.89E-03 2.21E-02 3.39E-04 1.11E-02 1.00E-00 6.09E-03 97.5% KM (Chebyshev) Benzolaphracene 2.69E-01 1.80E-01 3.99E-04 1.11E-02 1.00E-00 6.09E-03 97.5% KM (Chebyshev) Benzolaphracene 3.48E-01 4.88E-00 9.99E-03 2.37E-00 2.30E-01 7.53E-01 97.5% KM (Chebyshev) Benzolaphracene 3.48E-01 4.88E-00 9.99E-03 2.37E-00 2.30E-01 7.53E-01 97.5% KM (Chebyshev) Benzolaphracene 4.77E-01 5.97E-00 4.08E-02 2.30E-00 7.59E-01 97.5% KM (Chebyshev) Benzolaphracene 2.17E-01 4.28E-00 9.89E-03 1.88E-04 4.49E-01 97.5% KM (Chebyshev) Benzolaphracene 2.17E-01 4.28E-00 1.85E-02 2.30E-01 7.53E-01 97.5% KM (Chebyshev) Benzolaphracene 2.17E-01 4.28E-00 1.58E-02 2.30E-01 1.88E-04 4.49E-01 97.5% KM (Chebyshev) Benzolaphracene 2.17E-01 4.28E-00 1.58E-02 2.30E-01 4.49E-01 97.5% KM (Chebyshev) Benzolaphracene 2.17E-01 4.28E-00 1.58E-02 2.30E-01 4.49E-01 97.5% KM (Chebyshev) Benzolaphracene 2.17E-01 4.28E-00 1.58E-02 2.30E-01 4.49E-01 97.5% KM (Chebyshev) Benzolaphracene 2.17E-01 4.28E-00 1.40E-02 2.47E-02 2.30E-01 3.52E-01 97.5% KM (Chebyshev) Benzolaphracene 3.88E-01 4.60E-01 4.60E-02 2.47E-02 2.30E-01 3.52E-01 98% KM (BCA) Benzolaphracene 3.88E-01 4.60E-01 4.60E-02 2.47E-02 2.30E-01 3.52E-01 98% KM (BCA) Benzolaphracene 3.88E-01 4.60E-01 4.60E-02 2.47E-02 2.30E-01 3.52E-01 98% KM (BCA) Benzolaphracene 3.88E-01 4.60E-01 4.60E-02 3.60E-01 3.52E-01 98% KM (BCA) Benzolaphracene 3.38E-01 4.60E-02 3.30E-03 3.52E-01 3.52E-01 97.5% KM (Chebyshev) Carbon Doublide 1.57E-03 2.30E-02 9.87E-04 7.19E-03 7.20E-02 3.30E-03 97.5% KM (Chebyshev) Chrystene 3.32E-01 4.87E-00 9.01E-03 7.30E-01 7.19E-03 3.20E-02 3.30E-03 97.5% KM (Chebyshev) Chrystene 3.32E-01 4.87E-00 9.01E-03 2.36E-03 2.30E-02 7.12E-01 97.5% KM (Chebyshev) Debenzolaphracene 3.38E-01 4.87E-01 1.57E-01 1.57E-01 9.59K KM (Chebyshev) Debenzolaphracene 3.38E-01 4.87E-01 1.57E-01 3.30E-01 3.30E-01 3.30E-01 3.50E-01 3                   |                                         |          |          |          |             |                   | +       |          |                      | 144 of 166             |
| Bartum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |          |          |          |             |                   | 1       |          |                      | 25 of 170              |
| Benzzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |          |          |          |             |                   |         |          |                      | 139 of 166             |
| Benzo(a)propries   3,48E-01   4,88E-00   9,99E-03   2,37E-00   2,30E-00   6,43E-01   97.5% KM (Chebyshev)   Benzo(b)fluoranthene   4,77E-01   3,78E-01   4,88E-00   9,99E-03   2,37E-00   2,30E-00   8,22E-01   97.5% KM (Chebyshev)   Benzo(b)fluoranthene   4,77E-01   3,27E-00   4,08E-02   2,37E-00   2,38E-01   2,30E-00   8,22E-01   97.5% KM (Chebyshev)   8   8   8   8   8   8   8   8   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |          |          |          |             |                   | +       |          |                      | 166 of 166             |
| Benzo(a)pyrene   3.48E-01   4.88E-00   9.99E-03   2.37E-00   2.30E-01   7.53E-01   97.5% KM (Chebyshev)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |          |          |          |             |                   | +       |          |                      | 72 of 83<br>44 of 166  |
| Benzo(p) Tuoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • • • • • • • • • • • • • • • • • • • • |          |          |          |             |                   | +       |          | ` ,                  |                        |
| Benzo(A), Derylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |          |          |          |             |                   | -       |          |                      | 113 of 166             |
| Benzu(Kyfluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |          |          |          |             |                   |         |          |                      | 102 of 166             |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |          |          |          |             |                   |         |          |                      | 81 of 166              |
| Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |          |          |          |             |                   |         |          |                      | 45 of 166              |
| Butyl Benzyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |          |          |          |             |                   | -       |          |                      | 165 of 166             |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |          |          |          |             |                   | +       |          |                      | 72 of 166<br>10 of 166 |
| Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |          |          |          |             |                   | +       |          |                      | 93 of 166              |
| Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |          |          |          |             |                   |         |          |                      | 42 of 166              |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |          |          |          |             |                   |         |          |                      | 13 of 83               |
| Chysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |          |          |          |             |                   |         |          |                      | 166 of 166             |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |          |          |          |             |                   |         |          |                      | 93 of 166              |
| Cyclohexane   2.65E-01   2.17E-01   6.26E-04   4.20E-04   6.80E+03   1.91E+00   97.5% KM (Chebyshev)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | obalt                                   |          |          | 4.90E-02 |             |                   |         |          |                      | 165 of 166             |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |          |          |          |             |                   |         |          |                      | 164 of 166             |
| Dieberduran   3.34E-02   8.21E-01   1.67E-02   2.73E-03   1.70E+03   7.31E-02   97.5% KM (Chebyshev)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |          |          |          |             |                   |         |          |                      | 47 of 83               |
| Dieldrin   8.89E-04   2.05E-02   2.43E-04   1.14E+00   1.20E-01   2.11E-03   97.5% KM (Chebyshev)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |          |          |          |             |                   |         |          |                      | 56 of 166              |
| Display   Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |          |          |          |             |                   | -       |          |                      | 23 of 166              |
| Endosulfan Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |          |          |          |             |                   |         |          |                      | 33 of 166              |
| Endrin Aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |          |          |          |             |                   | +       |          |                      | 11 of 166<br>21 of 166 |
| Endrin Ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |          |          |             |                   | +       |          |                      | 31 of 166              |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |          |          |          |             |                   | +       |          |                      | 25 of 166              |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |          |          |          |             | 2.30E+02          |         |          |                      | 47 of 83               |
| Samma-Chlordane   9.98E-04   1.56E-02   7.10E-04   5.10E+01     1.84E-03   97.5% KM (Chebyshev)     Indeno(1,2,3-cd)pyrene   3.85E-01   6.49E+00   5.74E-02   2.37E+01   2.30E+00   6.58E-01   95% KM (Chebyshev)     Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 5.95E-01 |          | 1.33E-02 |             |                   |         |          |                      | 96 of 166              |
| Indeno(1,2,3-cd)pyrene   3.85E-01   6.49E+00   5.74E-02   2.37E+01   2.30E+00   6.58E-01   95% KM (Chebyshev)     Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |          |          |          |             | 2.60E+04          |         |          |                      | 41 of 166              |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |          |          |          |             |                   |         |          |                      | 12 of 166              |
| Isopropylbenzene (cumene)   8.31E-01   6.49E+01   3.18E-04   6.25E+03   5.80E+02   5.85E+00   97.5% KM (Chebyshev)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ideno(1,2,3-cd)pyrene                   | 3.85E-01 | 6.49E+00 | 5.74E-02 | 2.37E+01    | 2.30E+00          |         | 6.58E-01 | 95% KM (Chebyshev)   | 104 of 166             |
| Lead         5.35E+01         7.02E+02         2.48E+00         1.60E+03         8.00E+02         1.04E+02         97.5% Chebyshev           Lithium         1.00E+01         2.86E+01         6.50E+01         1.90E+03         2.30E+04         1.22E+01         95% Chebyshev           m.p-Xylene         3.43E-02         2.56E+00         5.58E-04         6.50E+03         2.10E+02         1.69E-01         95% KM (Chebyshev)           Manganese         2.61E+02         8.92E+02         5.93E+01         2.41E+04         3.50E+04         2.78E+02         95% Student's-t           Metrylcyclohexane         3.66E-02         2.73E+00         2.23E-04         3.29E+00         3.40E+02         4.00E-02         95% KM (Chebyshev)           Molybdenum         9.05E-01         1.04E+01         8.80E-02         4.51E+03         5.70E+03         1.62E+00         97.5% KM (Chebyshev)           Naphthalene         3.26E-01         1.92E+01         4.82E-03         1.90E+02         2.10E+02         2.65E-03         median           Nickel         1.17E+01         3.67E+01         2.70E+00         7.94E+03         2.30E+04         1.24E+01         95% KM (Chebyshev)           N-Propylbenzene         2.37E-02         1.80E+00         7.94E+03         2.30E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on                                      | 1.43E+04 | 7.71E+04 | 2.41E+03 |             | 1.00E+05          |         | 1.75E+04 | 95% Chebyshev        | 166 of 166             |
| Lithium         1.00E+01         2.86E+01         6.50E-01         1.90E+03         2.30E+04         1.22E+01         95% Chebyshev           m,P-Xylene         3.43E-02         2.56E+00         5.58E-04         6.50E+03         2.10E+02         1.69E-01         95% KM (Chebyshev)           Manganese         2.61E+02         8.92E+02         5.93E+01         3.50E+04         3.50E+04         2.78E+02         95% KM (Chebyshev)           Mercury         2.56E-02         8.50E-01         2.60E-03         3.26E+00         3.40E+02         4.00E-02         95% KM (Chebyshev)           Methylcyclohexane         3.66E-02         2.73E+00         2.23E-04         3.29E+04         1.40E+02         1.80E-01         95% KM (Chebyshev)           Molybdenum         9.05E-01         1.04E+01         8.80E-02         4.51E+03         5.70E+03         1.62E+00         97.5% KM (Chebyshev)           Naphthalene         3.26E-01         1.92E+01         4.82E-03         1.90E+02         2.10E+02         < 2.66E-03         median           Nickel         1.17E+01         3.67E+01         2.70E+00         7.94E+03         2.30E+04         1.24E+01         95% Student's-t           n-Propylbenzene         2.37E-02         1.80E+00         2.30E-04         4.10E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sopropylbenzene (cumene)                | 8.31E-01 | 6.49E+01 | 3.18E-04 | 6.25E+03    | 5.80E+02          |         | 5.85E+00 | 97.5% KM (Chebyshev) | 16 of 83               |
| m.p. Xylene         3.43E-02         2.56E+00         5.58E-04         6.50E+03         2.10E+02         1.69E-01         95% KM (Chebyshev)           Manganese         2.61E+02         8.92E+02         5.93E+01         2.41E+04         3.50E+04         2.78E+02         95% KM (Chebyshev)           Mercury         2.56E-02         8.50E-01         2.60E-03         3.26E+00         3.40E+02         4.00E-02         95% KM (BCA)           Methylcyclohexane         3.66E-02         2.73E+00         2.23E-04         3.29E+04         1.40E+02         1.80E-01         95% KM (Chebyshev)           Molybdenum         9.05E-01         1.04E+01         8.80E-02         4.51E+03         5.70E+03         1.62E+00         97.5% KM (Chebyshev)           Naphthalene         3.26E-01         1.92E+01         4.82E-03         1.90E+02         2.10E+02         2.65E-03         median           Nickel         1.17E+01         3.67E+01         2.70E+00         7.94E+03         2.30E+04         1.24E+01         95% KM (Chebyshev)           N-Propylbenzene         2.37E-02         1.80E+00         2.30E-04         4.10E+03         2.40E+02         1.63E-01         97.5% KM (Chebyshev)           Pyrene         4.02E-01         1.26E+01         1.36E-02         1.80E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ead                                     | 5.35E+01 | 7.02E+02 | 2.48E+00 | 1.60E+03    | 8.00E+02          |         | 1.04E+02 | 97.5% Chebyshev      | 166 of 166             |
| Manganese   2.61E+02   8.92E+02   5.93E+01   2.41E+04   3.50E+04   2.78E+02   95% Student's-t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thium                                   | 1.00E+01 | 2.86E+01 | 6.50E-01 | 1.90E+03    | 2.30E+04          |         | 1.22E+01 | 95% Chebyshev        | 166 of 166             |
| Mercury         2.56E-02         8.50E-01         2.60E-03         3.26E+00         3.40E+02         4.00E-02         95%KM (BCA)           Methylcyclohexane         3.66E-02         2.73E+00         2.23E-04         3.29E+04         1.40E+02         1.80E-01         95% KM (Chebyshev)           Molybdenum         9.05E-01         1.04E+01         8.80E-02         4.51E+03         5.70E+03         1.62E+00         97.5% KM (Chebyshev)           Naphthalene         3.26E-01         1.92E+01         4.82E-03         1.90E+02         2.10E+02         < 2.65E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,p-Xylene                               | 3.43E-02 | 2.56E+00 | 5.58E-04 | 6.50E+03    | 2.10E+02          |         | 1.69E-01 | 95% KM (Chebyshev)   | 53 of 83               |
| Methylcyclohexane   3.66E-02   2.73E+00   2.23E-04   3.29E+04   1.40E+02   1.80E-01   95% KM (Chebyshev)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |          |          |          |             |                   |         |          |                      | 166 of 166             |
| Molybdenum   9.05E-01   1.04E+01   8.80E-02   4.51E+03   5.70E+03   1.62E+00   97.5% KM (Chebyshev)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |          |          |          |             |                   |         |          |                      | 73 of 166              |
| Naphthalene         3.26E-01         1.92E+01         4.82E-03         1.90E+02         2.10E+02         < 2.65E-03         median           Nickel         1.17E+01         3.67E+01         2.70E+00         7.94E+03         2.30E+04         1.24E+01         95% Student's-t           n-Propylbenzene         2.37E-02         1.80E+00         2.30E-04         4.10E+03         2.40E+02         1.63E-01         97.5% KM (Chebyshev)           o-Xylene         1.30E-02         8.40E-01         2.23E-04         8.00E+03         2.80E+02         7.75E-02         97.5% KM (Chebyshev)           Phenanthrene         4.02E-01         1.26E+01         1.36E-02         1.86E+04          9.99E-01         97.5% KM (Chebyshev)           Pyrene         4.32E-01         8.47E+00         1.21E-02         1.86E+04          9.99E-01         97.5% KM (Chebyshev)           Strontium         7.56E+01         5.91E+02         1.65E+01         4.91E+05         1.00E+05         1.01E+02         95% Chebyshev           Tin         8.11E-01         6.48E+00         5.20E-01         3.97E+05          1.20E+00         97.5% KM (Chebyshev)           Titanium         2.58E+01         6.45E+02         4.02E+00         1.00E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |          |          |          |             |                   |         |          |                      | 57 of 83               |
| Nickel         1.17E+01         3.67E+01         2.70E+00         7.94E+03         2.30E+04         1.24E+01         95% Student's-t           n-Propylbenzene         2.37E-02         1.80E+00         2.30E-04         4.10E+03         2.40E+02         1.63E-01         97.5% KM (Chebyshev)           o-Xylene         1.30E-02         8.40E-01         2.23E-04         8.00E+03         2.80E+02         7.75E-02         97.5% KM (Chebyshev)           Phenanthrene         4.02E-01         1.26E+01         1.36E-02         1.86E+04          9.99E-01         97.5% KM (Chebyshev)           Pyrene         4.32E-01         8.47E+00         1.21E-02         1.86E+04         3.20E+04         9.71E-01         97.5% KM (Chebyshev)           Strontium         7.56E+01         5.91E+02         1.65E+01         4.91E+05         1.00E+05         1.01E+02         95.6 Chebyshev)           Tin         8.11E-01         6.48E+00         5.20E-01         3.97E+05          1.20E+00         97.5% KM (Chebyshev)           Titalium         2.58E+01         6.45E+02         4.02E+00         1.00E+06          3.22E+01         97.5% KM (Chebyshev)           Vanadium         1.44E+01         4.56E+01         4.73E+00         2.29E+03         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                       |          |          |          |             |                   | -       |          |                      | 118 of 166             |
| n-Propylbenzene 2.37E-02 1.80E+00 2.30E-04 4.10E+03 2.40E+02 1.63E-01 97.5% KM (Chebyshev) o-Xylene 1.30E-02 8.40E-01 2.23E-04 8.00E+03 2.80E+02 7.75E-02 97.5% KM (Chebyshev) Phenanthrene 4.02E-01 1.26E-01 1.36E-02 1.86E+04 9.99E-01 97.5% KM (Chebyshev) Pyrene 4.32E-01 8.47E+00 1.21E-02 1.86E+04 3.20E+04 9.71E-01 97.5% KM (Chebyshev) Strontium 7.56E+01 5.91E+02 1.65E+01 4.91E+05 1.00E+05 1.01E+02 97.5% KM (Chebyshev) Tin 8.11E-01 6.48E+00 5.20E-01 3.97E+05 1.20E+00 97.5% KM (Chebyshev) Titanium 2.58E+01 6.45E+02 4.02E+00 1.00E+06 3.22E+01 97.5% KM (Chebyshev) Toluene 3.99E-03 1.92E-02 7.21E-04 2.90E+04 5.20E+02 6.04E-03 97.5% KM (Chebyshev) Vanadium 1.44E+01 4.56E+01 4.73E+00 2.29E+03 1.10E+03 1.73E+01 97.5% KM (Chebyshev)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |          |          |          |             |                   | <       |          |                      | 8 of 83                |
| o-Xylene         1.30E-02         8.40E-01         2.23E-04         8.00E+03         2.80E+02         7.75E-02         97.5% KM (Chebyshev)           Phenanthrene         4.02E-01         1.26E+01         1.36E-02         1.86E+04          9.99E-01         97.5% KM (Chebyshev)           Pyrene         4.32E-01         8.47E+00         1.21E-02         1.86E+04         3.20E+04         9.71E-01         97.5% KM (Chebyshev)           Strontium         7.56E+01         5.91E+02         1.65E+01         4.91E+05         1.00E+05         1.01E+02         95% Chebyshev           Tin         8.11E-01         6.48E+00         5.20E-01         3.97E+05          1.20E+00         97.5% KM (Chebyshev)           Titanium         2.58E+01         6.45E+02         4.02E+00         1.00E+06          3.22E+01         95% Student's-t           Toluene         3.99E-03         1.92E-02         7.21E-04         2.90E+04         5.20E+02         6.04E-03         97.5% KM (Chebyshev)           Vanadium         1.44E+01         4.56E+01         4.73E+00         2.29E+03         1.10E+03         1.73E+01         97.5% Chebyshev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |          |          |          |             |                   | +       |          |                      | 166 of 166             |
| Phenanthrene         4.02E-01         1.26E+01         1.36E-02         1.86E+04          9.99E-01         97.5% KM (Chebyshev)           Pyrene         4.32E-01         8.47E+00         1.21E-02         1.86E+04         3.20E+04         9.71E-01         97.5% KM (Chebyshev)           Strontium         7.56E+01         5.91E+02         1.65E+01         4.91E+05         1.00E+05         1.01E+02         95% Chebyshev           Tin         8.11E-01         6.48E+00         5.20E-01         3.97E+05          1.20E+00         97.5% KM (Chebyshev)           Titanium         2.58E+01         6.45E+02         4.02E+00         1.00E+06          3.22E+01         95% Student's-t           Toluene         3.99E-03         1.92E-02         7.21E-04         2.90E+04         5.20E+02         6.04E-03         97.5% KM (Chebyshev)           Vanadium         1.44E+01         4.56E+01         4.73E+00         2.29E+03         1.10E+03         1.73E+01         97.5% Chebyshev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |          |          |          |             |                   | +       |          |                      | 14 of 83<br>32 of 83   |
| Pyrene         4.32E-01         8.47E+00         1.21E-02         1.86E+04         3.20E+04         9.71E-01         97.5% KM (Chebyshev)           Strontium         7.56E+01         5.91E+02         1.65E+01         4.91E+05         1.00E+05         1.01E+02         95% Chebyshev           Tin         8.11E-01         6.48E+00         5.20E-01         3.97E+05          1.20E+00         97.5% KM (Chebyshev)           Titanium         2.58E+01         6.45E+02         4.02E+00         1.00E+06          3.22E+01         95.8 Student's-t           Toluene         3.99E-03         1.92E-02         7.21E-04         2.90E+04         5.20E+02         6.04E-03         97.5% KM (Chebyshev)           Vanadium         1.44E+01         4.56E+01         4.73E+00         2.29E+03         1.10E+03         1.73E+01         97.5% Chebyshev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |          |          |          |             | Z.00ETUZ          | +       |          |                      | 95 of 166              |
| Strontium         7.56E+01         5.91E+02         1.65E+01         4.91E+05         1.00E+05         1.01E+02         95% Chebyshev           Tin         8.11E-01         6.48E+00         5.20E-01         3.97E+05          1.20E+00         97.5% KM (Chebyshev)           Titanium         2.58E+01         6.45E+02         4.02E+00         1.00E+06          3.22E+01         95% Student's-t           Toluene         3.99E-03         1.92E-02         7.21E-04         5.20E+02         6.04E-03         97.5% KM (Chebyshev)           Vanadium         1.44E+01         4.56E+01         4.73E+00         2.29E+03         1.10E+03         1.73E+01         97.5% Chebyshev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |          |          |          |             | 3.20E+04          | +       |          |                      | 98 of 166              |
| Tin         8.11E-01         6.48E+00         5.20E-01         3.97E+05          1.20E+00         97.5% KM (Chebyshev)           Titanium         2.58E+01         6.45E+02         4.02E+00         1.00E+06          3.22E+01         95% Student's+t           Toluene         3.99E-03         1.92E-02         7.21E-04         2.90E+04         5.20E+02         6.04E-03         97.5% KM (Chebyshev)           Vanadium         1.44E+01         4.56E+01         4.73E+00         2.29E+03         1.10E+03         1.73E+01         97.5% Chebyshev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |          |          |             |                   | T       |          |                      | 166 of 166             |
| Titanium         2.58E+01         6.45E+02         4.02E+00         1.00E+06          3.22E+01         95% Student's-t           Toluene         3.99E-03         1.92E-02         7.21E-04         2.90E+04         5.20E+02         6.04E-03         97.5% KM (Chebyshev)           Vanadium         1.44E+01         4.56E+01         4.73E+00         2.29E+03         1.10E+03         1.73E+01         97.5% Chebyshev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                                       | 8.11E-01 | 6.48E+00 | 5.20E-01 | 3.97E+05    |                   | I       | 1.20E+00 | 97.5% KM (Chebyshev) | 40 of 166              |
| Vanadium 1.44E+01 4.56E+01 4.73E+00 2.29E+03 1.10E+03 1.73E+01 97.5% Chebyshev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tanium                                  | 2.58E+01 | 6.45E+02 | 4.02E+00 | 1.00E+06    |                   |         | 3.22E+01 | 95% Student's-t      | 166 of 166             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |          |          |          |             |                   |         |          |                      | 69 of 83               |
| pxylene (total)   4.73E-02   3.40E+00   7.77E-04   6.50E+03   2.10E+02     3.04E-01   97.5% KM (Chebvshev)   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          |          |          |             |                   | Ш       |          |                      | 166 of 166             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |          |          |          |             |                   | $\perp$ |          |                      | 53 of 83               |
| Zinc 4.34E+02 7.65E+03 6.17E+00 2.45E+05 1.00E+05 8.15E+02 97.5% Chebyshev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nc                                      | 4.34E+02 | 7.65E+03 | 6.17E+00 | 2.45E+05    | 1.00E+05          | +       | 8.15E+02 | 97.5% Chebyshev      | 166 of 166             |

#### Notes:

- Notes:

  \* Soil was collected from 0 to 4 ft. below ground surface.

  \* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

  (1) \_ Tel Soil\_Comb PCL = TCEQ Protective Concentration Level for 30 acre source area Commercial/Industrial total soil combined pathway (includes inhalation; ingestion; dermal pathways).
- (2) From EPA's "Region 6 Human Health Medium-Specific Screening Levels 2004-2005". Industrial Outdoor Worker.
  (3) Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

# TABLE 3 EXPOSURE POINT CONCENTATIONS (mg/L) SOUTH AREA ZONE A GROUNDWATER

|                            |          |             |                        | # of Detects/# |
|----------------------------|----------|-------------|------------------------|----------------|
| Chemical of Interest⁺      | Average  | RME EPC (1) | Notes:                 | of Samples     |
| 1,1,1-Trichloroethane      | 1.85E-04 | 1.40E-03    | RME EPC is max detect  | 1 of 13        |
| 1,1-Dichloroethane         | 2.10E-03 | 1.50E-02    | RME EPC is max detect  | 3 of 13        |
| 2-Butanone                 | 4.30E-04 | 3.00E-03    | RME EPC is max detect  | 1 of 13        |
| 2-Methylnaphthalene        | 7.76E-04 | 8.80E-03    | RME EPC is max detect  | 1 of 13        |
| 4,4'-DDE                   | 3.34E-06 | 1.00E-05    | RME EPC is max detect  | 1 of 13        |
| Acetophenone               | 3.72E-03 | 4.60E-02    | RME EPC is max detect  | 1 of 13        |
| Acrylonitrile              | 1.00E-03 | 6.50E-03    | RME EPC is max detect  | 1 of 13        |
| Aluminum                   | 7.13E-01 | 7.52E+00    | RME EPC is max detect  | 7 of 13        |
| Antimony                   | 1.02E-02 | 4.30E-02    | RME EPC is max detect  | 8 of 13        |
| Arsenic                    | 1.61E-02 | 5.70E-02    | RME EPC is max detect  | 2 of 13        |
| Barium                     | 9.88E-02 | 2.20E-01    | RME EPC is max detect  | 13 of 13       |
| Benzene                    | 4.25E-04 | 4.20E-03    | RME EPC is max detect  | 1 of 13        |
| Benzo(a)pyrene             | 1.06E-04 | 6.00E-04    | RME EPC is max detect  | 1 of 13        |
| Benzo(b)fluoranthene       | 3.26E-04 | 2.80E-03    | RME EPC is max detect  | 1 of 13        |
| Benzo(g,h,i)perylene       | 2.11E-04 | 1.60E-03    | RME EPC is max detect  | 1 of 13        |
| Benzoic Acid               | 8.40E-04 | 1.20E-03    | RME EPC is max detect  | 8 of 13        |
| Bis(2-ethylhexyl)Phthalate | 1.46E-03 | 6.00E-04    | RME EPC is max detect* | 2 of 13        |
| Boron                      | 2.67E+00 | 4.04E+00    | RME EPC is max detect  | 13 of 13       |
| Carbazole                  | 7.00E-04 | 8.40E-03    | RME EPC is max detect  | 1 of 13        |
| Carbon Disulfide           | 6.50E-05 | 3.00E-04    | RME EPC is max detect  | 1 of 13        |
| Chromium                   | 5.53E-02 | 1.50E-01    | RME EPC is max detect  | 13 of 13       |
| Chrysene                   | 1.93E-04 | 6.00E-04    | RME EPC is max detect  | 1 of 13        |
| cis-1,2-Dichloroethene     | 3.27E-03 | 3.00E-02    | RME EPC is max detect  | 4 of 13        |
| Cobalt                     | 3.06E-03 | 8.90E-03    | RME EPC is max detect  | 7 of 13        |
| Cyclohexane                | 6.09E-04 | 6.80E-03    | RME EPC is max detect  | 1 of 13        |
| Dibenz(a,h)anthracene      | 2.90E-04 | 2.10E-03    | RME EPC is max detect  | 1 of 13        |
| Di-n-octyl Phthalate       | 2.08E-04 | 7.00E-04    | RME EPC is max detect  | 1 of 13        |
| Endosulfan II              | 5.61E-06 | 3.10E-05    | RME EPC is max detect  | 1 of 14        |
| Endosulfan Sulfate         | 8.57E-06 | 1.00E-04    | RME EPC is max detect  | 1 of 14        |
| Endrin Ketone              | 3.74E-06 | 2.30E-05    | RME EPC is max detect  | 1 of 13        |
| Fluorene                   | 1.84E-04 | 1.00E-03    | RME EPC is max detect  | 1 of 13        |
| gamma-BHC (Lindane)        | 7.66E-06 | 4.20E-05    | RME EPC is max detect  | 2 of 14        |
| Heptachlor Epoxide         | 5.07E-06 | 2.01E-05    | RME EPC is max detect  | 1 of 14        |
| Indeno(1,2,3-cd)pyrene     | 2.92E-04 | 2.40E-03    | RME EPC is max detect  | 1 of 13        |
| Iron                       | 6.39E+00 | 2.52E+01    | RME EPC is max detect  | 13 of 13       |
| Isopropylbenzene (Cumene)  | 1.78E-04 | 1.60E-03    | RME EPC is max detect  | 1 of 13        |
| Lithium                    | 3.61E-01 | 6.60E-01    | RME EPC is max detect  | 13 of 13       |
| m,p-Cresol                 | 1.10E-03 | 8.20E-03    | RME EPC is max detect  | 1 of 13        |
| Manganese                  | 4.15E+00 | 1.28E+01    | RME EPC is max detect  | 13 of 13       |
| Molybdenum                 | 2.30E-03 | 2.00E-03    | RME EPC is max detect  | 1 of 13        |
| MTBE                       | 3.90E-03 | 3.20E-02    | RME EPC is max detect  | 3 of 13        |
| Nickel                     | 7.40E-03 | 2.20E-02    | RME EPC is max detect  | 10 of 14       |
| o-Cresol                   | 4.47E-04 | 4.40E-03    | RME EPC is max detect  | 1 of 13        |
| Phenanthrene               | 2.12E-04 | 1.60E-03    | RME EPC is max detect  | 1 of 13        |
| Selenium                   | 9.08E-03 | 3.80E-02    | RME EPC is max detect  | 2 of 13        |
| Silver                     | 7.38E-03 | 9.46E+00    | RME EPC is max detect  | 12 of 13       |
| Strontium                  | 9.03E+00 | 1.71E+01    | RME EPC is max detect  | 13 of 13       |
| Thallium                   | 2.00E-03 | 7.30E-03    | RME EPC is max detect  | 1 of 13        |
| Titanium                   | 5.30E-03 | 3.10E-02    | RME EPC is max detect  | 7 of 13        |
| Vanadium                   | 8.56E-03 | 2.30E-02    | RME EPC is max detect  | 7 of 13        |
| Vinyl Chloride             | 1.85E-04 | 1.90E-03    | RME EPC is max detect  | 1 of 13        |
|                            |          |             |                        |                |

#### Notes

<sup>\*</sup>The maximum detected value is sometimes lower than the average since 1/2 of the reporting limit was

used as a proxy value when it was not detected and because J flagged data (estimated) were used in the risk assessment.

<sup>&</sup>lt;sup>+</sup> Chemicals of interest are any chemical measured in at least one sample.

<sup>(1)</sup> RME EPC is the reasonable maximim exposure exposure point concentration.

## TABLE 4 EXPOSURE POINT CONCENTRATIONS (mg/L) INTRACOASTAL WATERWAY SURFACE WATER (TOTAL)

| Chemical of Interest⁺ | Average  | Max Detection | Min Detection | TotRW <sub>Comb</sub> (1) | SWRBELs Saltwater<br>Fish Only (1) | RME EPC (2) | Statistic Used        | # of Detects/# of Samples |
|-----------------------|----------|---------------|---------------|---------------------------|------------------------------------|-------------|-----------------------|---------------------------|
| Acrylonitrile         | 9.38E-04 | 2.10E-03      | 2.10E-03      | 7.57E-02                  | 7.30E-03                           | 2.10E-03    | RME EPC is max detect | 1 of 4                    |
| Aluminum              | 4.05E-01 | 5.50E-01      | 2.80E-01      | 4.03E+02                  |                                    | 5.50E-01    | RME EPC is max detect | 4 of 4                    |
| Barium                | 2.40E-02 | 2.60E-02      | 2.20E-02      | 6.49E+01                  |                                    | 2.60E-02    | RME EPC is max detect | 4 of 4                    |
| Boron                 | 4.69E+00 | 4.81E+00      | 4.60E+00      | 7.44E+01                  |                                    | 4.81E+00    | RME EPC is max detect | 4 of 4                    |
| Chromium              | 7.98E-02 | 1.20E-01      | 7.00E-02      | 1.26E+02                  | 2.22E+00                           | 1.20E-01    | RME EPC is max detect | 4 of 4                    |
| Copper                | 6.53E-03 | 1.10E-02      | 9.10E-03      | 3.31E+01                  |                                    | 1.10E-02    | RME EPC is max detect | 2 of 4                    |
| Iron                  | 4.63E-01 | 5.90E-01      | 3.20E-01      |                           |                                    | 5.90E-01    | RME EPC is max detect | 4 of 4                    |
| Lithium               | 2.53E-01 | 2.70E-01      | 2.20E-01      | 1.65E+01                  |                                    | 2.70E-01    | RME EPC is max detect | 4 of 4                    |
| Manganese             | 4.03E-02 | 4.80E-02      | 3.30E-02      | 4.09E+01                  | 1.00E-01                           | 4.80E-02    | RME EPC is max detect | 4 of 4                    |
| Silver                | 2.80E-03 | 3.70E-03      | 2.80E-03      | 1.57E+00                  |                                    | 3.70E-03    | RME EPC is max detect | 3 of 4                    |
| Strontium             | 7.22E+00 | 7.35E+00      | 6.95E+00      | 3.38E+02                  |                                    | 7.35E+00    | RME EPC is max detect | 4 of 4                    |
| Titanium              | 3.90E-03 | 5.70E-03      | 2.00E-03      | 8.67E+04                  |                                    | 5.70E-03    | RME EPC is max detect | 4 of 4                    |
| Vanadium              | 4.25E-02 | 6.10E-02      | 3.50E-02      | 1.08E+00                  |                                    | 6.10E-02    | RME EPC is max detect | 4 of 4                    |

### INTRACOASTAL WATERWAY SURFACE WATER (DISSOLVED METALS)

| Chemicals of Interest <sup>+</sup> | Average  | Max Detection | Min Detection | TotRW <sub>Comb</sub> (1) | <sup>SW</sup> RBELs Saltwater<br>Fish Only <sup>(1)</sup> | RME EPC  | Statistic Used        | # of Detects/#<br>of Samples |
|------------------------------------|----------|---------------|---------------|---------------------------|-----------------------------------------------------------|----------|-----------------------|------------------------------|
| Aluminum                           | 6.48E-02 | 4.70E-02      | 4.70E-02      | 4.03E+02                  |                                                           | 4.70E-02 | RME EPC is max detect | 1 of 4                       |
| Barium                             | 2.63E-02 | 2.80E-02      | 2.30E-02      | 6.49E+01                  |                                                           | 2.80E-02 | RME EPC is max detect | 4 of 4                       |
| Boron                              | 4.79E+00 | 4.99E+00      | 4.30E+00      | 7.44E+01                  |                                                           | 4.99E+00 | RME EPC is max detect | 4 of 4                       |
| Lithium                            | 2.10E-01 | 2.20E-01      | 2.00E-01      | 1.65E+01                  |                                                           | 2.20E-01 | RME EPC is max detect | 4 of 4                       |
| Manganese                          | 4.85E-03 | 6.00E-03      | 2.50E-03      | 4.09E+01                  | 1.00E-01                                                  | 6.00E-03 | RME EPC is max detect | 4 of 4                       |
| Nickel                             | 2.63E-03 | 3.30E-03      | 1.30E-03      | 1.13E+00                  | 4.60E+00                                                  | 3.30E-03 | RME EPC is max detect | 4 of 4                       |
| Selenium                           | 4.25E-02 | 6.30E-02      | 2.80E-02      | 4.13E+00                  | 4.20E+00                                                  | 6.30E-02 | RME EPC is max detect | 4 of 4                       |
| Strontium                          | 8.04E+00 | 8.47E+00      | 7.36E+00      | 3.38E+02                  |                                                           | 8.47E+00 | RME EPC is max detect | 4 of 4                       |

Notes:

\* Chemicals of interest are any chemical measured in at least one sample.

(1) - TRRP 24. TCEQ, March 31, 2006.

(2) RME EPC is the reasonable maximim exposure exposure point concentration.

## TABLE 5 EXPOSURE POINT CONCENTRATIONS (mg/L) INTRACOASTAL WATERWAY BACKGROUND SURFACE WATER (TOTAL)

| Chemical of Interest <sup>+</sup> | Average  | Max Detection | Min Detection | TotRW <sub>Comb</sub> (1)             | <sup>SW</sup> RBELs<br>Saltwater Fish<br>Only <sup>(1)</sup> | RME EPC (2)                           | Statistic Used        | # of Detects/#<br>of Samples |
|-----------------------------------|----------|---------------|---------------|---------------------------------------|--------------------------------------------------------------|---------------------------------------|-----------------------|------------------------------|
| 4,4'-DDD                          | 3.30E-06 | 7.62E-06      | 3.60E-06      |                                       | 7.00E-06                                                     | 7.62E-06                              | RME EPC is max detect | 2 of 4                       |
| 4,4'-DDT                          | 4.93E-06 | 1.30E-05      | 1.30E-05      |                                       | 5.00E-06                                                     | 1.30E-05                              | RME EPC is max detect | 1 of 4                       |
| Acetone                           | 1.47E-03 | 4.52E-03      | 4.52E-03      | 7.80E+02                              |                                                              | 4.52E-03                              | RME EPC is max detect | 1 of 4                       |
| Aldrin                            | 9.24E-06 | 1.10E-05      | 4.40E-06      |                                       | 2.80E-06                                                     | 1.10E-05                              | RME EPC is max detect | 4 of 4                       |
| Aluminum                          | 2.44E-01 | 4.00E-01      | 2.10E-01      | 4.03E+02                              |                                                              | 4.00E-01                              | RME EPC is max detect | 4 of 4                       |
| Barium                            | 1.96E-02 | 2.00E-02      | 2.00E-02      | 6.49E+01                              |                                                              | 2.00E-02                              | RME EPC is max detect | 4 of 4                       |
| Benzo(g,h,i)perylene              | 1.20E-04 | 2.02E-04      | 2.02E-04      |                                       |                                                              | 2.02E-04                              | RME EPC is max detect | 1 of 4                       |
| Benzo(k)fluoranthene              | 1.73E-04 | 3.11E-04      | 3.11E-04      |                                       | 1.80E-04                                                     | 3.11E-04                              | RME EPC is max detect | 1 of 4                       |
| Bis(ethylhexyl) Phthalate         | 4.17E-03 | 1.97E-02      | 1.94E-02      |                                       | 2.20E-02                                                     | 1.97E-02                              | RME EPC is max detect | 2 of 4                       |
| Boron                             | 4.38E+00 | 4.50E+00      | 4.27E+00      | 7.44E+01                              |                                                              | 4.50E+00                              | RME EPC is max detect | 4 of 4                       |
| Chromium                          | 7.84E-02 | 7.90E-02      | 7.80E-02      | 1.26E+02                              | 2.22E+00                                                     | 7.90E-02                              | RME EPC is max detect | 4 of 4                       |
| Chromium VI                       | 6.20E-03 | 1.10E-02      | 1.10E-02      | 2.43E-01                              |                                                              | 1.10E-02                              | RME EPC is max detect | 1 of 4                       |
| Chrysene                          | 1.61E-04 | 3.68E-04      | 3.68E-04      |                                       | 5.40E-03                                                     | 3.68E-04                              | RME EPC is max detect | 1 of 4                       |
| Di-n-butyl Phthalate              | 6.70E-04 | 1.42E-03      | 8.28E-04      | 4.49E+00                              |                                                              | 1.42E-03                              | RME EPC is max detect | 2 of 4                       |
| Di-n-octyl Phthalate              | 2.65E-04 | 6.50E-04      | 6.50E-04      |                                       |                                                              | 6.50E-04                              | RME EPC is max detect | 1 of 4                       |
| Iron                              | 3.40E-01 | 4.30E-01      | 3.40E-01      |                                       |                                                              | 4.30E-01                              | RME EPC is max detect | 4 of 4                       |
| Lithium                           | 3.00E-01 | 3.40E-01      | 2.70E-01      | 1.65E+01                              |                                                              | 3.40E-01                              | RME EPC is max detect | 4 of 4                       |
| Manganese                         | 3.60E-02 | 4.10E-02      | 3.40E-02      | 4.09E+01                              | 1.00E-01                                                     | 4.10E-02                              | RME EPC is max detect | 4 of 4                       |
| Methoxyclor                       | 3.66E-06 | 1.40E-05      | 1.40E-05      | 7.19E-02                              | 1.48E-03                                                     | 1.40E-05                              | RME EPC is max detect | 1 of 4                       |
| Molybdenum                        | 2.72E-03 | 4.20E-03      | 1.80E-03      | 3.47E+00                              |                                                              | 4.20E-03                              | RME EPC is max detect | 2 of 4                       |
| Silver                            | 5.43E-03 | 5.90E-03      | 4.70E-03      | 1.57E+00                              |                                                              | 5.90E-03                              | RME EPC is max detect | 4 of 4                       |
| Strontium                         | 7.76E+00 | 8.31E+00      | 7.31E+00      | 3.38E+02                              |                                                              | 8.31E+00                              | RME EPC is max detect | 4 of 4                       |
| Titanium                          | 2.98E-03 | 4.20E-03      | 2.40E-03      | 8.67E+04                              |                                                              | 4.20E-03                              | RME EPC is max detect | 4 of 4                       |
| Vanadium                          | 4.14E-02 | 3.70E-02      | 1.10E-02      | 1.08E+00                              |                                                              | 3.70E-02                              | RME EPC is max detect | 4 of 4                       |
|                                   |          |               |               | · · · · · · · · · · · · · · · · · · · |                                                              | · · · · · · · · · · · · · · · · · · · | ·                     |                              |

#### INTRACOASTAL WATERWAY BACKGROUND SURFACE WATER (DISSOLVED METALS)

| Chemicals of Interest <sup>+</sup> | Average  | Max Detection | Min Detection | TotRW <sub>Comb</sub> (1) | <sup>SW</sup> RBELs<br>Saltwater Fish<br>Only <sup>(1)</sup> | RME EPC  | Statistic Used        | # of Detects/# of Samples |
|------------------------------------|----------|---------------|---------------|---------------------------|--------------------------------------------------------------|----------|-----------------------|---------------------------|
| Barium                             | 1.65E-02 | 1.90E-02      | 1.20E-02      | 6.49E+01                  |                                                              | 1.90E-02 | RME EPC is max detect | 4 of 4                    |
| Boron                              | 3.98E+00 | 4.33E+00      | 3.04E+00      | 7.44E+01                  |                                                              | 4.33E+00 | RME EPC is max detect | 4 of 4                    |
| Chromium                           | 7.38E-02 | 7.80E-02      | 6.40E-02      | 1.26E+02                  | 2.22E+00                                                     | 7.80E-02 | RME EPC is max detect | 4 of 4                    |
| Iron                               | 5.40E-02 | 6.00E-02      | 6.00E-02      |                           |                                                              | 6.00E-02 | RME EPC is max detect | 1 of 4                    |
| Lithium                            | 2.90E-01 | 3.90E-01      | 1.90E-01      | 1.65E+01                  |                                                              | 3.90E-01 | RME EPC is max detect | 4 of 4                    |
| Manganese                          | 1.53E-02 | 1.80E-02      | 1.10E-02      | 4.09E+01                  | 1.00E-01                                                     | 1.80E-02 | RME EPC is max detect | 4 of 4                    |
| Molybdenum                         | 3.68E-03 | 3.90E-03      | 3.90E-03      | 3.47E+00                  |                                                              | 3.90E-03 | RME EPC is max detect | 1 of 4                    |
| Silver                             | 5.23E-03 | 5.80E-03      | 4.30E-03      | 1.57E+00                  |                                                              | 5.80E-03 | RME EPC is max detect | 4 of 4                    |
| Strontium                          | 6.84E+00 | 7.46E+00      | 5.20E+00      | 3.38E+02                  |                                                              | 7.46E+00 | RME EPC is max detect | 4 of 4                    |
| Vanadium                           | 1.23E-02 | 1.50E-02      | 9.30E-03      | 1.08E+00                  |                                                              | 1.50E-02 | RME EPC is max detect | 4 of 4                    |

Notes:

\* Chemicals of interest are any chemical measured in at least one sample.

(1) - TRRP 24. TCEQ, March 31, 2006.

(2) RME EPC is the reasonable maximim exposure exposure point concentration.

# TABLE 6 EXPOSURE POINT CONCENTRATIONS (mg/kg) INTRACOASTAL WATERWAY SEDIMENT

| Chemical of Interest <sup>+</sup> | Average  | Max<br>Detection | Min<br>Detection     | TotSed <sub>Comb</sub> (1) |          | 95% UCL              | Statistic Used (2)        | # of Detects/#<br>of Samples |
|-----------------------------------|----------|------------------|----------------------|----------------------------|----------|----------------------|---------------------------|------------------------------|
| 1.2-Dichloroethane                | 3.02E-03 | 3.02E-03         | 3.02E-03             | 6.0E+02                    | <        | 3.58E-04             | median                    | 1 of 16                      |
| 1,2-Diphenylhydrazine/azobenzene  | 3.17E-02 | 3.17E-02         | 3.17E-02             | 1.3E+02                    | <        | 1.10E-02             | median                    | 1 of 16                      |
| 2-Methylnaphthalene               | 1.88E-02 | 1.88E-02         | 1.88E-02             | 4.9E+02                    | <        | 1.46E-02             | median                    | 1 of 16                      |
| 3,3'-Dichlorobenzidine            | 1.51E-01 | 1.51E-01         | 1.51E-01             | 3.2E+01                    | <        | 6.32E-02             | median                    | 1 of 16                      |
| 4.4'-DDT                          | 6.90E-04 | 3.32E-03         | 4.81E-04             | 8.7E+01                    | <        | 2.03E-04             | median                    | 4 of 17                      |
| 4,6-Dinitro-2-methylphenol        | 6.27E-02 | 6.27E-02         | 6.27E-02             | 3.1E+02                    | <        | 2.64E-02             | median                    | 1 of 16                      |
| Acenaphthene                      | 2.64E-02 | 6.31E-02         | 2.39E-02             | 7.4E+03                    | · <      | 1.35E-02             | median                    | 2 of 16                      |
| Aluminum                          | 6.85E+03 | 1.25E+04         | 3.90E+03             | 1.5E+05                    | Ť        | 7.88E+03             | 95% Student's-t           | 16 of 16                     |
| Anthracene                        | 3.00E-02 | 7.53E-02         | 2.36E-02             | 3.7E+04                    | <        | 1.78E-02             | median                    | 6 of 16                      |
| Antimony                          | 2.25E+00 | 8.14E+00         | 7.40E-01             | 8.3E+01                    | <u> </u> | 4.98E+00             | 97.5% Chebyshev           | 16 of 16                     |
| Arsenic                           | 4.03E+00 | 7.62E+00         | 2.41E+00             | 1.1E+02                    |          | 4.64E+00             | 95% Student's-t           | 16 of 16                     |
| Atrazine (Aatrex)                 | 8.14E-02 | 8.14E-02         | 8.14E-02             | 6.4E+01                    | <        | 2.59E-02             | median                    | 1 of 16                      |
| Barium                            | 2.15E+02 | 3.77E+02         | 1.16E+02             | 2.3E+04                    |          | 3.08E+02             | 97.5% Chebyshev           | 16 of 16                     |
| Benzo(a)anthracene                | 9.54E-02 | 3.95E-01         | 6.75E-02             | 1.6E+01                    | <        | 1.38E-02             | 99% Chebyshev             | 3 of 16                      |
|                                   | 9.46E-02 | 4.45E-01         | 5.25E-02             | 1.6E+00                    | _        | 1.58E-02             |                           | 6 of 16                      |
| Benzo(a)pyrene                    |          |                  |                      |                            | <        |                      | median                    |                              |
| Benzo(b)fluoranthene              | 1.12E-01 | 6.11E-01         | 3.24E-02             | 1.6E+01                    |          | 3.52E-01             | 97.5% KM (Chebyshev)      | 9 of 16                      |
| Benzo(g,h,i)perylene              | 7.19E-02 | 4.42E-01         | 1.73E-02             | 3.7E+03                    | <        | 1.72E-02             | median                    | 7 of 16                      |
| Benzo(k)fluoranthene              | 8.18E-02 | 3.18E-01         | 4.74E-02             | 1.6E+02                    | <        | 2.43E-01             | median                    | 6 of 16                      |
| Beryllium                         | 4.63E-01 | 8.20E-01         | 2.90E-01             | 2.7E+01                    |          | 5.28E-01             | 95% Student's-t           | 16 of 16                     |
| Boron                             | 1.65E+01 | 2.72E+01         | 1.25E+01             | 1.1E+05                    |          | 2.47E+01             | 97.5% KM (Chebyshev)      | 10 of 16                     |
| Butyl Benzyl Phthalate            | 2.02E-01 | 2.02E-01         | 2.02E-01             | 3.1E+04                    | <        | 1.65E-02             | median                    | 1 of 16                      |
| Carbazole                         | 2.53E-02 | 8.61E-02         | 1.95E-02             | 7.1E+02                    | <        | 1.38E-02             | median                    | 3 of 16                      |
| Chloroform                        | 5.05E-03 | 5.27E-03         | 5.04E-03             | 7.3E+03                    | <        | 4.42E-04             | median                    | 2 of 16                      |
| Chromium                          | 9.21E+00 | 1.44E+01         | 5.01E+00             | 3.6E+04                    |          | 1.04E+01             | 95% Student's-t           | 16 of 16                     |
| Chrysene                          | 8.03E-02 | 4.75E-01         | 1.37E-02             | 1.6E+03                    |          | 2.73E-01             | 97.5% KM (Chebyshev)      | 10 of 16                     |
| Cobalt                            | 4.39E+00 | 7.16E+00         | 3.05E+00             | 3.2E+04                    |          | 4.88E+00             | 95% Student's-t           | 16 of 16                     |
| Copper                            | 7.11E+00 | 1.26E+01         | 3.28E+00             | 2.1E+04                    |          | 8.43E+00             | 95% Student's-t           | 16 of 16                     |
| Cyclohexane                       | 1.92E-03 | 1.92E-03         | 1.92E-03             | 1.0E+06                    | <        | 3.29E-03             | median                    | 1 of 16                      |
| Dibenz(a,h)anthracene             | 7.12E-02 | 2.35E-01         | 5.11E-02             | 1.6E+00                    | <        | 1.57E-02             | median                    | 6 of 16                      |
| Dibenzofuran                      | 2.70E-02 | 3.05E-02         | 2.68E-02             | 6.1E+02                    | <        | 1.92E-02             | median                    | 2 of 16                      |
| Diethyl Phthalate                 | 3.89E-02 | 3.89E-02         | 3.89E-02             | 1.2E+05                    | <        | 2.24E-02             | median                    | 1 of 16                      |
| Di-n-octyl Phthalate              | 2.58E-02 | 1.92E-01         | 1.47E-02             | 3.1E+03                    | <        | 1.13E-02             | median                    | 2 of 16                      |
| Fluoranthene                      | 1.20E-01 | 8.04E-01         | 2.22E-02             | 4.9E+03                    |          | 4.39E-01             | 97.5% KM (Chebyshev)      | 8 of 16                      |
| Fluorene                          | 1.62E-02 | 4.60E-02         | 1.24E-02             | 4.9E+03                    | <        | 1.38E-02             | median                    | 4 of 16                      |
| gamma-Chlordane                   | 6.54E-04 | 8.26E-04         | 6.38E-04             | 4.1E+01                    | <        | 3.91E-04             | median                    | 4 of 16                      |
| Hexachlorobenzene                 | 3.19E-02 | 3.19E-02         | 3.19E-02             | 8.9E+00                    | <        | 1.62E-02             | median                    | 1 of 16                      |
| Indeno(1,2,3-cd)pyrene            | 9.99E-02 | 4.05E-01         | 5.56E-02             | 1.6E+01                    | <        | 2.53E-02             | median                    | 6 of 16                      |
| Iron                              | 1.34E+04 | 2.82E+04         | 6.75E+03             |                            |          | 2.20E+04             | 97.5% Chebyshev           | 16 of 16                     |
| Isopropylbenzene (cumene)         | 4.79E-03 | 7.04E-03         | 4.64E-03             | 7.3E+04                    | <        | 4.80E-04             | median                    | 2 of 16                      |
| Lead                              | 1.16E+01 | 3.23E+01         | 5.00E+00             | 5.0E+02                    |          | 2.27E+01             | 97.5% Chebyshev           | 16 of 16                     |
| Lithium                           | 1.05E+01 | 2.00E+01         | 6.40E+00             | 1.1E+04                    |          | 1.21E+01             | 95% Student's-t           | 16 of 16                     |
| Manganese                         | 2.83E+02 | 4.74E+02         | 1.92E+02             | 1.4E+04                    |          | 3.22E+02             | 95% Student's-t           | 16 of 16                     |
| Mercury                           | 2.01E-02 | 3.60E-02         | 1.10E-02             | 3.4E+01                    |          | 2.33E-02             | 95% Student's-t           | 16 of 16                     |
| Methylcyclohexane                 | 3.70E-03 | 3.70E-03         | 3.70E-03             | 1.0E+06                    | <        | 1.70E-03             | median                    | 1 of 16                      |
| Molybdenum                        | 6.67E-01 | 5.66E+00         | 1.40E-01             | 1.8E+03                    | <u> </u> | 2.15E+00             | 95% Chebyshev             | 16 of 16                     |
| Nickel                            | 9.59E+00 | 1.67E+01         | 5.80E+00             | 1.4E+03                    |          | 1.08E+01             | 95% Student's-t           | 16 of 16                     |
| n-Nitrosodiphenylamine            | 4.34E-02 | 4.34E-02         | 4.34E-02             | 9.0E+02                    | <        | 1.50E-02             | median                    | 1 of 16                      |
| Phenanthrene                      | 8.58E-02 | 5.08E-01         | 3.11E-02             | 3.7E+03                    | _        | 2.80E-01             | 97.5% KM (Chebyshev)      | 8 of 16                      |
| Pyrene                            | 1.33E-01 | 8.62E-01         | 1.76E-02             | 3.7E+03<br>3.7E+03         | +        | 4.82E-01             | 97.5% KM (Chebyshev)      | 10 of 16                     |
| <u> </u>                          | 3.35E-01 | 5.40E-01         | 3.00E-01             | 3.7E+03<br>3.5E+02         | <        | 4.82E-01<br>8.95E-02 | . , ,                     | 6 of 16                      |
| Silver                            | 4.49E+01 | 8.17E+01         | 3.00E-01<br>3.28E+01 | 3.5E+02<br>1.5E+05         | <        | 5.12E+01             | median<br>95% Student's-t | 16 of 16                     |
| Strontium                         |          |                  |                      |                            | +        |                      |                           |                              |
| Titanium                          | 2.56E+01 | 3.66E+01         | 1.91E+01             | 1.0E+06                    | 1        | 2.78E+01             | 95% Student's-t           | 16 of 16                     |
| Toluene                           | 5.81E-03 | 5.81E-03         | 5.81E-03             | 5.9E+04                    | <        | 1.73E-03             | median                    | 1 of 16                      |
| Vanadium                          | 1.39E+01 | 2.12E+01         | 9.06E+00             | 3.3E+02                    | 4        | 1.54E+01             | 95% Student's-t           | 16 of 16                     |
| Zinc                              | 4.54E+01 | 9.26E+01         | 1.80E+01             | 7.6E+04                    | 4        | 5.41E+01             | 95% Student's-t           | 16 of 16                     |
|                                   |          |                  |                      |                            |          |                      |                           |                              |

### Notes:

<sup>\*</sup> Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) - From Tier 1 Sediment PCLs. TCEQ, March 31, 2006.

(2) - Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

# TABLE 7 EXPOSURE POINT CONCENTATION (mg/kg) INTRACOASTAL WATERWAY BACKGROUND SEDIMENT

|                                   |          | Max       | Min       |                            |   |          |                    | # of<br>Detects/#<br>of |
|-----------------------------------|----------|-----------|-----------|----------------------------|---|----------|--------------------|-------------------------|
| Chemical of Interest <sup>+</sup> | Average  | Detection | Detection | TotSed <sub>Comb</sub> (1) |   | 95% UCL  | Statistic Used (2) | Samples                 |
| 1,2,4-Trimethylbenzene            | 3.91E-03 | 3.91E-03  | 3.91E-03  | 3.7E+04                    | < | 7.24E-04 | median             | 1 of 9                  |
| 1,4-Dichlorobenzene               | 4.11E-03 | 4.11E-03  | 4.11E-03  | 2.3E+03                    | < | 1.54E-03 | median             | 1 of 9                  |
| 2-Butanone                        | 2.08E-03 | 2.16E-03  | 2.00E-03  | 4.4E+05                    | < | 2.00E-03 | median             | 2 of 9                  |
| 4,4'-DDT                          | 5.70E-04 | 5.70E-04  | 5.70E-04  | 8.7E+01                    | < | 2.10E-04 | median             | 1 of 9                  |
| Aluminum                          | 1.22E+04 | 2.18E+04  | 4.73E+03  | 1.5E+05                    |   | 1.65E+04 | 95% Student's-t    | 9 of 9                  |
| Antimony                          | 4.02E+00 | 7.33E+00  | 1.68E+00  | 8.3E+01                    |   | 5.40E+00 | 95% Student's-t    | 9 of 9                  |
| Arsenic                           | 5.81E+00 | 9.62E+00  | 2.36E+00  | 1.1E+02                    |   | 7.74E+00 | 95% Student's-t    | 9 of 9                  |
| Barium                            | 209.7.2  | 2.80E+02  | 1.11E+02  | 2.3E+04                    |   | 2.39E+02 | 95% Student's-t    | 9 of 9                  |
| Benzo(b)fluoranthene              | 3.69E-02 | 3.69E-02  | 3.69E-02  | 1.6E+01                    | < | 1.09E-02 | median             | 1 of 9                  |
| Beryllium                         | 7.66E-01 | 1.32E+00  | 3.20E-01  | 2.7E+01                    |   | 1.02E+00 | 95% Student's-t    | 9 of 9                  |
| Boron                             | 2.76E+01 | 4.79E+01  | 1.33E+01  | 1.1E+05                    |   | 3.56E+01 | 95% Student's-t    | 9 of 9                  |
| Carbon Disulfide                  | 5.91E-03 | 8.41E-03  | 3.41E-03  | 7.3E+04                    | < | 8.40E-04 | median             | 2 of 9                  |
| Chromium                          | 1.28E+01 | 2.25E+01  | 5.81E+00  | 3.6E+04                    |   | 1.69E+01 | 95% Student's-t    | 9 of 9                  |
| cis-1,2-Dichloroethene            | 2.84E-02 | 2.84E-02  | 2.84E-02  | 7.3E+03                    | < | 4.61E-04 | median             | 1 of 9                  |
| Cobalt                            | 6.70E+00 | 1.18E+01  | 3.32E+00  | 3.2E+04                    |   | 8.66E+00 | 95% Student's-t    | 9 of 9                  |
| Copper                            | 8.14E+00 | 1.68E+01  | 2.68E+00  | 2.1E+04                    |   | 1.13E+01 | 95% Student's-t    | 9 of 9                  |
| Iron                              | 1.65E+04 | 2.79E+04  | 7.44E+03  |                            |   | 2.15E+04 | 95% Student's-t    | 9 of 9                  |
| Lead                              | 9.59E+00 | 1.45E+01  | 5.34E+00  | 5.0E+02                    |   | 1.18E+01 | 95% Student's-t    | 9 of 9                  |
| Lithium                           | 2.14E+01 | 4.46E+01  | 7.29E+00  | 1.1E+04                    |   | 3.03E+01 | 95% Student's-t    | 9 of 9                  |
| Manganese                         | 3.31E+02 | 4.42E+02  | 2.12E+02  | 1.4E+04                    |   | 3.86E+02 | 95% Student's-t    | 9 of 9                  |
| Mercury                           | 1.76E-02 | 5.00E-02  | 6.50E-03  | 3.4E+01                    |   | 3.68E-02 | 95% Chebyshev      | 9 of 9                  |
| Molybdenum                        | 2.41E-01 | 3.50E-01  | 1.60E-01  | 1.8E+03                    |   | 2.83E-01 | 95% Student's-t    | 9 of 9                  |
| Nickel                            | 1.49E+01 | 2.73E+01  | 6.31E+00  | 1.4E+03                    |   | 1.99E+01 | 95% Student's-t    | 9 of 9                  |
| Strontium                         | 5.92E+01 | 8.74E+01  | 3.48E+01  | 1.5E+05                    |   | 7.28E+01 | 95% Student's-t    | 9 of 9                  |
| Titanium                          | 3.18E+01 | 5.45E+01  | 2.11E+01  | 1.0E+06                    |   | 3.83E+01 | 95% Student's-t    | 9 of 9                  |
| Trichloroethene                   | 1.59E-02 | 1.59E-02  | 1.59E-02  | 4.4E+03                    | < | 6.47E-04 | median             | 1 of 9                  |
| Vanadium                          | 2.02E+01 | 3.42E+01  | 1.02E+01  | 3.3E+02                    |   | 2.59E+01 | 95% Student's-t    | 9 of 9                  |
| Xylene                            | 3.35E-03 | 3.35E-03  | 3.35E-03  | 1.5E+05                    | < | 2.09E-03 | median             | 1 of 9                  |
| Zinc                              | 3.60E+01 | 5.41E+01  | 1.93E+01  | 7.6E+04                    |   | 4.45E+01 | 95% Student's-t    | 9 of 9                  |

Notes:

† Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

 $<sup>^{\</sup>rm (1)}$  - From Tier 1 Sediment PCLs. TCEQ, March 31, 2006.

<sup>(2) -</sup> Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A). When the compound was not detected in a given sample, one-half of the sample detection limit was used as the proxy concentration for that sample.

## TABLE 8 EXPOSURE POINT CONCENTRATIONS (mg/kg) NORTH AREA SURFACE SOIL\*

|                                   |                      |                      |                      |                             | EPA Region 6<br>Soil Screening |     |                      |                                         | # of Detects/# of    |
|-----------------------------------|----------------------|----------------------|----------------------|-----------------------------|--------------------------------|-----|----------------------|-----------------------------------------|----------------------|
| Chemical of Interest <sup>+</sup> | Average              | <b>Max Detection</b> | Min Detection        | TotSoil <sub>Comb</sub> (1) | Criteria (2)                   |     | 95% UCL              | Statistic Used (3)                      | Samples              |
| 2-Methylnaphthalene               | 1.46E-02             | 5.30E-02             | 1.00E-02             | 2.48E+03                    |                                | <   | 1.18E-02             | median                                  | 3 of 18              |
| 4,4'-DDE                          | 2.87E-03             | 1.49E-02             | 2.16E-03             | 7.32E+01                    | 7.80E+00                       | <   | 4.24E-04             | median                                  | 2 of 18              |
| 4,4'-DDT                          | 1.50E-03             | 1.08E-02             | 5.97E-04             | 6.84E+01                    | 7.80E+00                       | <   | 5.45E-04             | median                                  | 7 of 18              |
| Acenaphthene                      | 2.86E-02             | 1.57E-01             | 2.10E-02             | 3.72E+04                    | 3.30E+04                       | <   | 1.10E-02             | median                                  | 2 of 18              |
| Acenaphthylene                    | 5.55E-02             | 5.55E-02             | 5.55E-02             | 3.72E+04                    |                                | <   | 1.21E-02             | median                                  | 1 of 18              |
| Aluminum                          | 1.07E+04             | 1.68E+04             | 1.81E+03             | 5.70E+05                    | 1.00E+05                       |     | 1.22E+04             | 95% Student's-t                         | 18 of 18             |
| Anthracene                        | 2.69E-02             | 2.64E-01             | 8.87E-03             | 1.86E+05                    | 1.00E+05                       | <   | 1.21E-02             | median                                  | 4 of 18              |
| Antimony                          | 2.52E+00             | 8.09E+00             | 1.66E+00             | 3.06E+02                    | 4.50E+02                       |     | 4.95E+00             | 97.5% KM (Chebyshev)                    | 9 of 18              |
| Aroclor-1254                      | 1.22E-02             | 1.22E-02             | 1.22E-02             | 7.10E+00                    | 8.30E-01                       | <   | 4.29E-03             | median                                  | 1 of 18              |
| Arsenic                           | 2.53E+00             | 5.69E+00             | 5.40E-01             | 1.96E+02                    | 1.80E+00                       |     | 4.22E+00             | 97.5% KM (Chebyshev)                    | 17 of 18             |
| Barium                            | 1.45E+02             | 4.76E+02             | 4.61E+01             | 8.90E+04                    | 7.90E+04                       |     | 2.64E+02             | 95% Chebyshev                           | 18 of 18             |
| Benzo(a)anthracene                | 1.18E+00             | 1.18E+00             | 1.18E+00             | 2.36E+01                    | 2.30E+00                       | ٧   | 1.10E-02             | median                                  | 1 of 18              |
| Benzo(a)pyrene                    | 1.19E-01             | 1.42E+00             | 1.35E-02             | 2.37E+00                    | 2.30E-01                       | · · | 1.16E-02             | median                                  | 7 of 18              |
|                                   |                      |                      |                      |                             |                                | _   |                      |                                         |                      |
| Benzo(b)fluoranthene              | 1.69E-01             | 1.62E+00             | 4.87E-02             | 2.36E+01                    | 2.30E+00                       |     | 3.73E-01             | 95% KM (BCA)                            | 8 of 18              |
| Benzo(g,h,i)perylene              | 1.40E-01             | 1.28E+00             | 2.37E-02             | 1.86E+04                    |                                |     | 5.92E-01             | 97.5% KM (Chebyshev)                    | 10 of 18             |
| Benzo(k)fluoranthene              | 1.13E-01<br>7.11E-01 | 7.99E-01<br>2.88E+00 | 1.10E-02<br>6.60E-02 | 2.37E+02<br>2.47E+02        | 2.30E+01<br>2.20E+03           | <   | 1.75E-02<br>1.60E+00 | median<br>97.5% KM (Chebyshev)          | 4 of 18<br>17 of 18  |
| Beryllium                         | 7.11E-01<br>4.45E-02 | 2.88E+00<br>2.39E-01 | 1.22E-02             |                             |                                |     |                      | 97.5% KW (Chebysnev)<br>median          | 6 of 18              |
| Bis(2-ethylhexyl)phthalate        | 4.45E-02<br>8.74E+00 | 2.39E-01<br>3.92E+01 |                      | 5.63E+02<br>1.92E+05        | 1.40E+02<br>1.00E+05           | <   | 5.46E-02<br>2.21E+01 |                                         | 13 of 18             |
| Boron Butyl Benzyl Phthalate      | 8.74E+00<br>1.51E-01 | 3.92E+01<br>1.51E-01 | 3.15E+00<br>1.51E-01 | 1.92E+05<br>1.00E+04        | 2.40E+02                       | <   | 1.36E-02             | 97.5% KM (Chebyshev)<br>median          | 13 of 18<br>1 of 18  |
| Cadmium                           | 3.58E-01             | 8.00E-01             | 2.80E-01             | 8.52E+02                    | 5.60E+02                       | <   | 5.72E-01             | 97.5% KM (Chebyshev)                    | 8 of 18              |
| Carbazole                         | 2.00E-02             | 1.28E-01             | 1.30E-02             | 9.54E+02                    | 9.60E+01                       | <   | 1.11E-02             | median                                  | 4 of 18              |
| Chromium                          | 2.03E+01             | 1.28E+02             | 7.90E+00             | 5.71E+04                    | 5.00E+02                       |     | 4.86E+01             | 95% Chebyshev                           | 18 of 18             |
|                                   |                      |                      | 1.10E-02             |                             |                                |     |                      |                                         |                      |
| Chrysene<br>Cobalt                | 1.05E-01<br>5.79E+00 | 1.30E+00<br>7.87E+00 | 1.10E-02<br>2.81E+00 | 2.36E+03<br>2.70E+02        | 2.30E+02<br>2.10E+03           | <   | 1.03E-02<br>6.41E+00 | median<br>95% Student's-t               | 7 of 18<br>18 of 18  |
| Copper                            | 2.41E+01             | 2.00E+02             | 5.90E+00             | 3.69E+04                    | 4.20E+04                       |     | 7.00E+01             | 95% Student s-t<br>95% Chebyshev        | 18 of 18             |
|                                   | 7.69E-02             | 4.04E-01             | 4.50E-02             |                             | 2.30E-01                       |     | 1.10E-02             |                                         |                      |
| Dibenz(a,h)anthracene             |                      |                      |                      | 2.37E+00                    |                                | <   |                      | median                                  | 4 of 18              |
| Dibenzofuran<br>Dieldrin          | 8.62E-02<br>5.45E-03 | 8.62E-02<br>5.45E-03 | 8.62E-02<br>5.45E-03 | 2.73E+03                    | 1.70E+03<br>1.20E-01           | <   | 1.52E-02<br>1.83E-04 | median                                  | 1 of 18              |
| Diethyl Phthalate                 | 1.10E-02             | 1.10E-02             | 1.10E-02             | 1.14E+00<br>2.04E+03        | 1.00E+05                       | <   | 1.85E-02             | median<br>median                        | 1 of 18<br>1 of 18   |
| Di-n-butyl Phthalate              | 1.10E-02<br>1.00E-02 | 1.10E-02<br>1.00E-02 | 1.00E-02             | 1.62E+04                    | 6.80E+04                       | <   | 3.10E-02             | median                                  | 1 of 18              |
| Di-n-octvl Phthalate              | 2.14E-02             | 1.23E-01             | 1.54E-02             | 1.30E+04                    | 2.70E+04                       | <   | 9.50E-03             | median                                  | 2 of 18              |
| Endrin                            | 1.49E-03             | 1.49E-03             | 1.49E-03             | 1.27E+02                    | 2.10E+04<br>2.10E+02           | <   | 2.22E-04             | median                                  | 1 of 18              |
| Endrin Ketone                     | 9.66E-03             | 9.66E-03             | 9.66E-03             | 1.77E+02                    | 2.102+02                       | <   | 5.48E-04             | median                                  | 1 of 18              |
| Fluoranthene                      | 1.68E-01             | 2.19E+00             | 2.14E-02             | 2.48E+04                    | 2.40E+04                       | <   | 1.28E-02             | median                                  | 6 of 18              |
| Fluorene                          | 2.50E-02             | 1.41E-01             | 1.70E-02             | 2.48E+04                    | 2.60E+04                       | <   | 1.09E-02             | median                                  | 3 of 18              |
| Indeno(1,2,3-cd)pyrene            | 1.55E-01             | 1.51E+00             | 2.00E-02             | 2.37E+01                    | 2.30E+00                       |     | 6.82E-01             | 97.5% KM (Chebyshev)                    | 9 of 18              |
| Iron                              | 1.95E+04             | 1.02E+05             | 8.45E+03             |                             | 1.00E+05                       |     | 4.11E+04             | 95% Chebyshev                           | 18 of 18             |
|                                   |                      |                      |                      |                             |                                |     |                      |                                         |                      |
| Lead                              | 5.77E+01             | 4.71E+02             | 8.22E+00             | 1.60E+03                    | 8.00E+02                       |     | 3.18E+02             | 99% Chebyshev                           | 18 of 18             |
| Lithium                           | 1.66E+01             | 2.66E+01             | 2.59E+00             | 1.90E+03                    | 2.30E+04                       |     | 1.87E+01             | 95% Student's-t                         | 18 of 18             |
| Manganese                         | 3.70E+02             | 1.21E+03             | 8.23E+01             | 2.41E+04                    | 3.50E+04                       |     | 7.34E+02             | 97.5% KM (Chebyshev)                    | 18 of 18             |
| Mercury                           | 1.38E-02             | 6.40E-02             | 6.00E-03             | 3.26E+00                    | 3.40E+02                       |     | 3.75E-02             | 97.5% KM (Chebyshev)                    | 8 of 18              |
| Molybdenum<br>Nickel              | 9.66E-01             | 1.07E+01             | 8.50E-02             | 4.51E+03                    | 5.70E+03<br>2.30E+04           |     | 4.71E+00<br>2.08E+01 | 97.5% KM (Chebyshev)<br>95% Student's-t | 11 of 18             |
| Phenanthrene                      | 1.70E+01<br>1.15E-01 | 5.17E+01<br>1.34E+00 | 1.17E+01<br>1.80E-02 | 7.94E+03<br>1.86E+04        | 2.30E+04                       | <   | 1.42E-02             | 95% Student's-t<br>median               | 18 of 18<br>7 of 18  |
| Pyrene                            | 3.86E-01             | 1.34E+00<br>1.87E+00 | 1.80E-02<br>1.49E-02 | 1.86E+04<br>1.86E+04        | 3.20E+04                       | <   | 1.42E-02<br>2.03E+00 | 97.5% KM (Chebyshev)                    | 7 of 18<br>8 of 18   |
| Silver                            | 3.86E-01<br>1.10E-01 | 4.10E-01             | 9.20E-02             | 1.86E+04<br>1.71E+03        | 5.70E+03                       | <   | 6.00E-02             | 97.5% KW (Chebysnev)<br>median          | 2 of 18              |
| Strontium                         | 5.73E+01             | 9.36E+01             | 9.20E-02<br>2.66E+01 | 4.91E+05                    | 1.00E+05                       | ,   | 6.54E+01             | 95% Student's-t                         | 18 of 18             |
| Thallium                          | 6.30E-01             | 6.30E-01             | 6.30E-01             | 7.80E+01                    | 1.00E+05                       | <   | 1.00E-01             | 95% Student's-t<br>median               | 1 of 18              |
| Tin                               | 7.06E-01             | 3.67E+00             | 6.80E-01             | 3.97E+05                    |                                | <   | 5.90E-01             | median                                  | 4 of 18              |
|                                   |                      | 5.59E+01             | 3.41E+00             | 1.00E+06                    |                                | _   | 3.78E+01             | 97.5% KM (Chebyshev)                    | 18 of 18             |
| Titanium                          |                      |                      |                      |                             |                                |     |                      |                                         |                      |
| Titanium<br>Vanadium              | 2.07E+01<br>1.97E+01 |                      |                      |                             |                                |     |                      | 95% Student's-t                         |                      |
| Titanium<br>Vanadium<br>Zinc      | 1.97E+01<br>4.18E+02 | 4.58E+01<br>5.64E+03 | 7.85E+00<br>2.95E+01 | 2.29E+03<br>2.45E+05        | 1.10E+03<br>1.00E+05           |     | 2.34E+01<br>3.49E+03 | 95% Student's-t<br>99% Chebyshev        | 18 of 18<br>18 of 18 |

- Notes:

  \* Surface soil was collected from 0 to 0.5 ft. below ground surface.

  \* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

  (1) \_ Tot\_Soil\_Comb\_PCL = TCEQ Protective Concentration Level for 30 acre source area Commercial/Industrial total soil combined pathway (includes inhalation; ingestion; dermal pathways).

  (2) From EPA's "Region 6 Human Health Medium-Specific Screening Levels 2004-2005". Industrial Outdoor Worker.

  (3) Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

## TABLE 9 EXPOSURE POINT CONCENTRATIONS (mg/kg) NORTH AREA SOIL+

|                                                                                            |                                                                                                                 |                                                                                                          |                                                                                              |                                                                                                     | 1                                                                        |   |                                                                                                     |                                                                                                                | 1                                                                                        |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Chemical of Interest**                                                                     | Average                                                                                                         | Max<br>Detection                                                                                         | Min Detection                                                                                | TotSoil <sub>Comb</sub> (1)                                                                         | EPA Region 6 Soil<br>Screening Criteria <sup>(2)</sup>                   |   | 95% UCL                                                                                             | Statistic Used (3)                                                                                             | # of Detects/# of<br>Samples                                                             |
| 1.1-Dichloroethane                                                                         | 2.67E-02                                                                                                        | 5.18E-01                                                                                                 | 1.61E-03                                                                                     | 4.30E+03                                                                                            | 2.30E+03                                                                 | < | 1.75E-04                                                                                            | median                                                                                                         | 3 of 19                                                                                  |
| 1,1-Dichloroethene                                                                         | 1.73E-02                                                                                                        | 3.13E-01                                                                                                 | 1.78E-03                                                                                     | 3.50E+03                                                                                            | 4.70E+02                                                                 | < | 3.95E-04                                                                                            | median                                                                                                         | 2 of 19                                                                                  |
| 1,2-Dichloroethane                                                                         | 1.95E-02                                                                                                        | 1.77E-01                                                                                                 | 2.31E-03                                                                                     | 1.15E+01                                                                                            | 8.40E-01                                                                 | ٧ | 1.27E-04                                                                                            | median                                                                                                         | 4 of 19                                                                                  |
| 2-Butanone                                                                                 | 1.32E-02                                                                                                        | 2.08E-01                                                                                                 | 1.70E-03                                                                                     | 7.26E+04                                                                                            | 3.40E+04                                                                 |   | 7.87E-02                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 11 of 19                                                                                 |
| 2-Methylnaphthalene                                                                        | 4.05E-02                                                                                                        | 5.30E-02                                                                                                 | 1.00E-02                                                                                     | 2.48E+03                                                                                            | 7.005.00                                                                 | < | 1.19E-02                                                                                            | median                                                                                                         | 4 of 38                                                                                  |
| 4,4'-DDE<br>4.4'-DDT                                                                       | 2.50E-03<br>1.16E-02                                                                                            | 1.49E-02<br>1.08E-02                                                                                     | 2.16E-03<br>5.97E-04                                                                         | 7.32E+01<br>6.84E+01                                                                                | 7.80E+00<br>7.80E+00                                                     | < | 4.28E-04<br>7.94E-02                                                                                | median<br>97.5% KM (Chebyshev)                                                                                 | 2 of 38<br>7 of 38                                                                       |
| Acenaphthene                                                                               | 1.99E-02                                                                                                        | 1.57E-01                                                                                                 | 2.10E-02                                                                                     | 3.72E+04                                                                                            | 3.30E+04                                                                 |   | 1.11E-02                                                                                            | median                                                                                                         | 4 of 38                                                                                  |
| Aluminum                                                                                   | 1,23E+04                                                                                                        | 1.83E+04                                                                                                 | 1.81E+03                                                                                     | 5.70E+05                                                                                            | 1.00E+05                                                                 |   | 1.33E+04                                                                                            | 95% Student's-t                                                                                                | 38 of 38                                                                                 |
| Anthracene                                                                                 | 2.90E-02                                                                                                        | 2.64E-01                                                                                                 | 8.87E-03                                                                                     | 1.86E+05                                                                                            | 1.00E+05                                                                 |   | 8.96E-02                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 6 of 38                                                                                  |
| Antimony                                                                                   | 1.45E+00                                                                                                        | 8.09E+00                                                                                                 | 1.66E+00                                                                                     | 3.06E+02                                                                                            | 4.50E+02                                                                 |   | 2.45E+00                                                                                            | 95% KM (Bootstrap)                                                                                             | 16 of 38                                                                                 |
| Aroclor-1254                                                                               | 1.81E-01                                                                                                        | 9.38E-02                                                                                                 | 1.22E-02                                                                                     | 7.10E+00                                                                                            | 8.30E-01                                                                 | < | 4.30E-03                                                                                            | median                                                                                                         | 2 of 38                                                                                  |
| Arsenic                                                                                    | 2.44E+00                                                                                                        | 5.69E+00                                                                                                 | 5.40E-01                                                                                     | 1.96E+02                                                                                            | 1.80E+00                                                                 |   | 3.82E+00                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 32 of 38                                                                                 |
| Barium                                                                                     | 1.41E+02                                                                                                        | 3.62E+02                                                                                                 | 4.61E+01                                                                                     | 8.90E+04                                                                                            | 7.90E+04                                                                 |   | 2.34E+02                                                                                            | 97.5% Chebyshev                                                                                                | 38 of 38                                                                                 |
| Benzene                                                                                    | 2.92E-03                                                                                                        | 6.32E-03                                                                                                 | 1.38E-03                                                                                     | 1.11E+02                                                                                            | 1.60E+00                                                                 |   | 5.39E-03                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 12 of 18                                                                                 |
| Benzo(a)anthracene                                                                         | 1.09E-01                                                                                                        | 1.18E+00                                                                                                 | 3.83E-02                                                                                     | 2.36E+01                                                                                            | 2.30E+00                                                                 | < | 1.11E-02                                                                                            | median                                                                                                         | 4 of 38                                                                                  |
| Benzo(a)pyrene                                                                             | 9.37E-02                                                                                                        | 1.42E+00                                                                                                 | 1.35E-02                                                                                     | 2.37E+00                                                                                            | 2.30E-01                                                                 |   | 3.78E-01                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 10 of 38                                                                                 |
| Benzo(b)fluoranthene                                                                       | 1.44E-01                                                                                                        | 1.62E+00                                                                                                 | 4.87E-02                                                                                     | 2.36E+01                                                                                            | 2.30E+00                                                                 |   | 2.52E-01                                                                                            | 95% KM (Bootstrap)                                                                                             | 11 of 38                                                                                 |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene                                               | 1.03E-01<br>1.07E-01                                                                                            | 1.28E+00<br>7.99E-01                                                                                     | 2.37E-02<br>6.80E-02                                                                         | 1.86E+04<br>2.37E+02                                                                                | 2.30E+01                                                                 |   | 3.42E-01<br>1.72E-02                                                                                | 97.5% KM (Chebyshev)                                                                                           | 14 of 38<br>6 of 38                                                                      |
| Beryllium                                                                                  | 7.15E-01                                                                                                        | 2.88E+00                                                                                                 | 6.60E-02                                                                                     | 2.37E+02<br>2.47E+02                                                                                | 2.30E+01<br>2.20E+03                                                     | < | 1.72E-02<br>1.18E+00                                                                                | median<br>97.5% KM (Chebyshev)                                                                                 | 35 of 38                                                                                 |
| Bis(2-ethylhexyl)phthalate                                                                 | 4.12E-02                                                                                                        | 2.39E-01                                                                                                 | 1.22E-02                                                                                     | 5.63E+02                                                                                            | 1.40E+02                                                                 |   | 9.96E-02                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 11 of 38                                                                                 |
| Boron                                                                                      | 7.64E+00                                                                                                        | 3.92E+01                                                                                                 | 3.14E+00                                                                                     | 1.92E+05                                                                                            | 1.00E+05                                                                 |   | 1.71E+01                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 26 of 38                                                                                 |
| Bromoform                                                                                  | 1.14E-02                                                                                                        | 1.80E-02                                                                                                 | 1.10E-02                                                                                     | 6.04E+02                                                                                            | 2.40E+02                                                                 | < | 1.86E-04                                                                                            | median                                                                                                         | 2 of 19                                                                                  |
| Butyl Benzyl Phthalate                                                                     | 5.66E-02                                                                                                        | 1.51E-01                                                                                                 | 5.40E-02                                                                                     | 1.00E+04                                                                                            | 2.40E+02                                                                 | < | 1.36E-02                                                                                            | median                                                                                                         | 2 of 38                                                                                  |
| Cadmium<br>Carbazole                                                                       | 3.63E-01<br>1.74E-02                                                                                            | 8.00E-01<br>1.28E-01                                                                                     | 2.80E-01<br>1.08E-02                                                                         | 8.52E+02<br>9.54E+02                                                                                | 5.60E+02<br>9.60E+01                                                     | < | 5.19E-01<br>1.10E-02                                                                                | 97.5% KM (Chebyshev)<br>median                                                                                 | 15 of 38<br>7 of 38                                                                      |
| Carbon Disulfide                                                                           | 8.64E-03                                                                                                        | 2.84E-02                                                                                                 | 7.57E-03                                                                                     | 7.19E+03                                                                                            | 7.20E+02                                                                 | < | 1.10E-02<br>1.19E-04                                                                                | median                                                                                                         | 3 of 19                                                                                  |
| Chromium                                                                                   | 1.83E+01                                                                                                        | 1.28E+02                                                                                                 | 7.76E+00                                                                                     | 5.70E+04                                                                                            | 5.00E+02                                                                 |   | 3.21E+01                                                                                            | 95% Chebyshev                                                                                                  | 38 of 38                                                                                 |
| Chrysene                                                                                   | 1.03E-01                                                                                                        | 1.30E+00                                                                                                 | 1.04E-02                                                                                     | 2.40E+03                                                                                            | 2.30E+02                                                                 |   | 3.84E-01                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 11 of 38                                                                                 |
| cis-1,2-Dichloroethene                                                                     | 6.61E-02                                                                                                        | 9.99E-01                                                                                                 | 1.95E-02                                                                                     | 4.70E+03                                                                                            | 1.60E+02                                                                 | < | 1.38E-04                                                                                            | median                                                                                                         | 2 of 19                                                                                  |
| Cobalt                                                                                     | 6.52E+00                                                                                                        | 1.03E+01                                                                                                 | 2.81E+00                                                                                     | 2.70E+02                                                                                            | 2.10E+03                                                                 |   | 7.04E+00                                                                                            | 95% Student's-t                                                                                                | 38 of 38                                                                                 |
| Copper                                                                                     | 6.56E+01                                                                                                        | 2.00E+02                                                                                                 | 4.59E+00                                                                                     | 3.70E+04                                                                                            | 4.20E+04                                                                 |   | 5.12E+02                                                                                            | 99% Chebyshev                                                                                                  | 38 of 38                                                                                 |
| Cyclohexane Dibenz(a,h)anthracene                                                          | 1.13E-03<br><b>6.88E-02</b>                                                                                     | 1.85E-03<br>4.04E-01                                                                                     | 9.81E-04<br><b>4.50E-02</b>                                                                  | 4.20E+04<br><b>2.40E+00</b>                                                                         | 6.80E+03<br><b>2.30E-01</b>                                              | < | 1.25E-03<br>1.08E-02                                                                                | median<br><b>median</b>                                                                                        | 5 of 19<br>7 of 38                                                                       |
| Dibenzofuran                                                                               | 1.96E-02                                                                                                        | 8.62E-02                                                                                                 | 1.50E-02                                                                                     | 2.70E+03                                                                                            | 1.70E+04                                                                 | < | 1.50E-02                                                                                            | median                                                                                                         | 2 of 38                                                                                  |
| Diethyl Phthalate                                                                          | 1.01E-02                                                                                                        | 1.10E-02                                                                                                 | 9.92E-03                                                                                     | 2.04E+03                                                                                            | 1.00E+05                                                                 | < | 1.85E-02                                                                                            | median                                                                                                         | 2 of 38                                                                                  |
| Di-n-butyl Phthalate                                                                       | 1.05E-02                                                                                                        | 1.50E-02                                                                                                 | 1.00E-02                                                                                     | 1.62E+04                                                                                            | 6.80E+04                                                                 | < | 3.07E-02                                                                                            | median                                                                                                         | 2 of 38                                                                                  |
| Di-n-octyl Phthalate                                                                       | 1.90E-02                                                                                                        | 1.23E-01                                                                                                 | 1.54E-02                                                                                     | 1.30E+04                                                                                            | 2.70E+04                                                                 | ٧ | 9.52E-03                                                                                            | median                                                                                                         | 3 of 38                                                                                  |
| Ethylbenzene                                                                               | 2.69E-03                                                                                                        | 5.02E-03                                                                                                 | 1.14E-03                                                                                     | 1.00E+04                                                                                            | 2.30E+02                                                                 | < | 1.14E-03                                                                                            | median                                                                                                         | 5 of 19                                                                                  |
| Fluoranthene<br>Fluorene                                                                   | 1.44E-01<br>5.27E-02                                                                                            | 2.19E+00<br>1.41E-01                                                                                     | 2.14E-02<br>1.70E-02                                                                         | 2.48E+04<br>2.48E+04                                                                                | 2.40E+04<br>2.60E+04                                                     | < | 6.24E-01<br>3.92E-04                                                                                | 97.5% KM (Chebyshev)<br>median                                                                                 | 9 of 38<br>4 of 38                                                                       |
| Indeno(1,2,3-cd)pyrene                                                                     | 1.15E-01                                                                                                        | 1.51E+00                                                                                                 | 2.00E-02                                                                                     | 2.37E+01                                                                                            | 2.30E+00                                                                 | _ | 3.96E-01                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 13 of 38                                                                                 |
| Iron                                                                                       | 2.09E+04                                                                                                        | 1.02E+05                                                                                                 | 7.12E+03                                                                                     |                                                                                                     | 1.00E+05                                                                 |   | 3.69E+04                                                                                            | 95% Chebyshev                                                                                                  | 38 of 38                                                                                 |
| Lead                                                                                       | 5.30E+01                                                                                                        | 5.83E+00                                                                                                 | 6.30E+02                                                                                     | 1.60E+03                                                                                            | 8.00E+02                                                                 |   | 2.48E+02                                                                                            | 99% Chebyshev                                                                                                  | 34 of 38                                                                                 |
| Lithium                                                                                    | 1.92E+01                                                                                                        | 3.22E+01                                                                                                 | 2.59E+00                                                                                     | 1.90E+03                                                                                            | 2.30E+04                                                                 |   | 2.48E+02<br>2.08E+01                                                                                | 95% Student's-t                                                                                                | 36 of 38                                                                                 |
| m,p-xylene                                                                                 | 1.32E-03                                                                                                        | 1.39E-03                                                                                                 | 1.32E-03                                                                                     | 6.50E+03                                                                                            | 2.10E+02                                                                 | < | 4.22E-04                                                                                            | median                                                                                                         | 2 of 19                                                                                  |
| Manganese                                                                                  | 3.87E+02                                                                                                        | 1.21E+03                                                                                                 | 8.23E+01                                                                                     | 2.41E+04                                                                                            | 3.50E+04                                                                 |   | 6.39E+02                                                                                            | 97.5% Chebyshev                                                                                                | 38 of 38                                                                                 |
| Mercury                                                                                    | 1.43E-02                                                                                                        | 1.70E-01                                                                                                 | 3.40E-03                                                                                     | 3.26E+00                                                                                            | 3.40E+02                                                                 |   | 4.38E-02                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 15 of 38                                                                                 |
| Methylcyclohexane<br>Methylcyclohexane                                                     | 1.76E-03                                                                                                        | 2.78E-03                                                                                                 | 1.50E-03                                                                                     | 3.29E+04<br>4.51E+03                                                                                | 1.40E+02                                                                 | < | 1.54E-03                                                                                            | median                                                                                                         | 6 of 19                                                                                  |
| Molybdenum<br>Naphthalene                                                                  | 1.40E-01<br>3.24E+00                                                                                            | 1.07E+01<br>1.48E-01                                                                                     | 8.50E-02<br>1.30E-03                                                                         | 4.51E+03<br>1.90E+02                                                                                | 5.70E+03<br>2.10E+02                                                     | < | 2.49E+00<br>3.70E-03                                                                                | 97.5% KM (Chebyshev)<br>median                                                                                 | 21 of 38<br>6 of 19                                                                      |
|                                                                                            |                                                                                                                 | 5.17E+01                                                                                                 | 9.74E+00                                                                                     | 7.94E+03                                                                                            | 2.30E+04                                                                 | ` | 2.01E+01                                                                                            | 95% Student's-t                                                                                                | 38 of 38                                                                                 |
| Nickel                                                                                     | 1.80E+01                                                                                                        |                                                                                                          |                                                                                              |                                                                                                     |                                                                          |   | 5.70E-01                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 12 of 38                                                                                 |
| Nickel<br>Phenanthrene                                                                     | 1.50E-01                                                                                                        | 1.83E+00                                                                                                 | 1.80E-02                                                                                     | 1.86E+04                                                                                            |                                                                          |   |                                                                                                     |                                                                                                                |                                                                                          |
| Nickel<br>Phenanthrene<br>Pyrene                                                           | 1.50E-01<br>2.62E-01                                                                                            | 1.83E+00<br>4.64E+00                                                                                     | 1.49E-02                                                                                     | 1.86E+04                                                                                            | 3.20E+04                                                                 |   | 1.12E+00                                                                                            | 97.5% KM (Chebyshev)                                                                                           | 14 of 38                                                                                 |
| Nickel Phenanthrene Pyrene Silver                                                          | 1.50E-01<br>2.62E-01<br>1.05E-01                                                                                | 1.83E+00<br>4.64E+00<br>4.10E-01                                                                         | 1.49E-02<br>9.20E-02                                                                         | 1.86E+04<br>1.71E+03                                                                                | 3.20E+04<br>5.70E+03                                                     | < | 1.12E+00<br>5.90E-02                                                                                | 97.5% KM (Chebyshev)<br>median                                                                                 | 14 of 38<br>3 of 38                                                                      |
| Nickel<br>Phenanthrene<br>Pyrene<br>Silver<br>Strontium                                    | 1.50E-01<br>2.62E-01<br>1.05E-01<br>5.64E+01                                                                    | 1.83E+00<br>4.64E+00<br>4.10E-01<br>9.62E+01                                                             | 1.49E-02<br>9.20E-02<br>2.21E+01                                                             | 1.86E+04<br>1.71E+03<br>4.91E+05                                                                    | 3.20E+04<br>5.70E+03<br>1.00E+05                                         |   | 1.12E+00<br>5.90E-02<br>6.20E+01                                                                    | 97.5% KM (Chebyshev)<br>median<br>95% Student's-t                                                              | 14 of 38<br>3 of 38<br>38 of 38                                                          |
| Nickel Phenanthrene Pyrene Silver Strontium Tetrachloroethene                              | 1.50E-01<br>2.62E-01<br>1.05E-01<br>5.64E+01<br><b>1.26E-02</b>                                                 | 1.83E+00<br>4.64E+00<br>4.10E-01<br>9.62E+01<br>2.23E-01                                                 | 1.49E-02<br>9.20E-02<br>2.21E+01<br><b>1.35E-03</b>                                          | 1.86E+04<br>1.71E+03<br>4.91E+05<br><b>3.30E+02</b>                                                 | 3.20E+04<br>5.70E+03                                                     | < | 1.12E+00<br>5.90E-02<br>6.20E+01<br><b>2.11E-04</b>                                                 | 97.5% KM (Chebyshev)<br>median<br>95% Student's-t<br><b>median</b>                                             | 14 of 38<br>3 of 38<br>38 of 38<br><b>3 of 19</b>                                        |
| Nickel Phenanthrene Pyrene Silver Sitrontium Tetrachloroethene Tin                         | 1.50E-01<br>2.62E-01<br>1.05E-01<br>5.64E+01<br><b>1.26E-02</b><br>5.34E+00                                     | 1.83E+00<br>4.64E+00<br>4.10E-01<br>9.62E+01<br><b>2.23E-01</b><br>3.67E+00                              | 1.49E-02<br>9.20E-02<br>2.21E+01<br><b>1.35E-03</b><br>6.80E-01                              | 1.86E+04<br>1.71E+03<br>4.91E+05<br><b>3.30E+02</b><br>3.97E+05                                     | 3.20E+04<br>5.70E+03<br>1.00E+05<br><b>1.70E+00</b>                      |   | 1.12E+00<br>5.90E-02<br>6.20E+01<br><b>2.11E-04</b><br>5.70E-01                                     | 97.5% KM (Chebyshev) median 95% Student's-t median median                                                      | 14 of 38<br>3 of 38<br>38 of 38<br><b>3 of 19</b><br>5 of 38                             |
| Nickel Phenanthrene Pyrene Silver Strontium Tetrachloroethene                              | 1.50E-01<br>2.62E-01<br>1.05E-01<br>5.64E+01<br><b>1.26E-02</b>                                                 | 1.83E+00<br>4.64E+00<br>4.10E-01<br>9.62E+01<br>2.23E-01                                                 | 1.49E-02<br>9.20E-02<br>2.21E+01<br><b>1.35E-03</b>                                          | 1.86E+04<br>1.71E+03<br>4.91E+05<br><b>3.30E+02</b>                                                 | 3.20E+04<br>5.70E+03<br>1.00E+05<br><b>1.70E+00</b>                      | < | 1.12E+00<br>5.90E-02<br>6.20E+01<br><b>2.11E-04</b>                                                 | 97.5% KM (Chebyshev)<br>median<br>95% Student's-t<br><b>median</b>                                             | 14 of 38<br>3 of 38<br>38 of 38<br><b>3 of 19</b>                                        |
| Nickel Phenanthrene Pyrene Silver Sitorium Tetrachloroethene Tin Titanium Toluene Vanadium | 1.50E-01<br>2.62E-01<br>1.05E-01<br>5.64E+01<br><b>1.26E-02</b><br>5.34E+00<br>2.33E+01<br>3.24E-03<br>2.10E+01 | 1.83E+00<br>4.64E+00<br>4.10E-01<br>9.62E+01<br>2.23E-01<br>3.67E+00<br>5.70E+01<br>1.22E-02<br>4.58E+01 | 1.49E-02<br>9.20E-02<br>2.21E+01<br>1.35E-03<br>6.80E-01<br>3.41E+00<br>1.34E-03<br>7.85E+00 | 1.86E+04<br>1.71E+03<br>4.91E+05<br><b>3.30E+02</b><br>3.97E+05<br>1.00E+06<br>2.90E+04<br>2.29E+03 | 3.20E+04<br>5.70E+03<br>1.00E+05<br>1.70E+00<br><br>5.20E+02<br>1.10E+03 | < | 1.12E+00<br>5.90E-02<br>6.20E+01<br><b>2.11E-04</b><br>5.70E-01<br>4.03E+01<br>8.15E-03<br>2.33E+01 | 97.5% KM (Chebyshev) median 95% Student's-t median median 97.5% Chebyshev 97.5% KM (Chebyshev) 95% Student's-t | 14 of 38<br>3 of 38<br>38 of 38<br>3 of 19<br>5 of 38<br>38 of 38<br>8 of 19<br>38 of 38 |
| Nickel Phenanthrene Pyrene Silver Strontium Tetrachloroethene Tin Titanium Toluene         | 1.50E-01<br>2.62E-01<br>1.05E-01<br>5.64E+01<br><b>1.26E-02</b><br>5.34E+00<br>2.33E+01<br>3.24E-03             | 1.83E+00<br>4.64E+00<br>4.10E-01<br>9.62E+01<br>2.23E-01<br>3.67E+00<br>5.70E+01<br>1.22E-02             | 1.49E-02<br>9.20E-02<br>2.21E+01<br><b>1.35E-03</b><br>6.80E-01<br>3.41E+00<br>1.34E-03      | 1.86E+04<br>1.71E+03<br>4.91E+05<br><b>3.30E+02</b><br>3.97E+05<br>1.00E+06<br>2.90E+04             | 3.20E+04<br>5.70E+03<br>1.00E+05<br><b>1.70E+00</b><br><br>5.20E+02      | < | 1.12E+00<br>5.90E-02<br>6.20E+01<br><b>2.11E-04</b><br>5.70E-01<br>4.03E+01<br>8.15E-03             | 97.5% KM (Chebyshev) median 95% Student's-t median median 97.5% Chebyshev 97.5% KM (Chebyshev)                 | 14 of 38<br>3 of 38<br>38 of 38<br><b>3 of 19</b><br>5 of 38<br>38 of 38<br>8 of 19      |

- Notes:
  + Soil was collected from 0 to 4 ft. below ground surface.

  \*\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

  (1) \_ Tot Soil\_Comb PCL = TCEQ Protective Concentration Level for 30 acre source area Commercial/Industrial total soil combined pathway (includes inhalation; ingestion; dermal pathways).

  (2) \_ Comb EDA's \*Beginn 6 Human Health Medium-Specific Screening Levels 2004-2005\*. Industrial Outdoor Worker.

# TABLE 10 EXPOSURE POINT CONCENTATIONS (mg/L) NORTH AREA ZONE A GROUNDWATER

|                                           |                      | RME                  |                                               | # of Detects/#     |
|-------------------------------------------|----------------------|----------------------|-----------------------------------------------|--------------------|
| Chemical of Interest <sup>+</sup>         | Average              | EPC (1)              | Notes:                                        | of Samples         |
| 1,1,1-Trichloroethane                     | 1.48E+01             | 1.56E+02             | RME EPC is max detect                         | 5 of 16            |
| 1,1-Dichloroethane                        | 2.80E+00             | 3.15E+01             | RME EPC is max detect                         | 5 of 12            |
| 1,1-Dichloroethene 1,2,3-Trichloropropane | 3.46E+00<br>6.17E+00 | 2.92E+01<br>4.43E+01 | RME EPC is max detect RME EPC is max detect   | 6 of 16<br>5 of 16 |
| 1,2,4-Trimethylbenzene                    | 3.80E-02             | 4.43E+01<br>4.20E-02 | RME EPC is max detect                         | 1 of 12            |
| 1.2-Dichloroethane                        | 2.42E+01             | 3.28E+02             | RME EPC is max detect                         | 6 of 16            |
| 1,2-Dichloropropane                       | 4.90E-01             | 3.45E+00             | RME EPC is max detect                         | 4 of 16            |
| 2-Methylnaphthalene                       | 2.70E-03             | 1.60E-02             | RME EPC is max detect                         | 2 of 12            |
| 4.4'-DDD                                  | 2.48E-06             | 1.90E-05             | RME EPC is max detect                         | 1 of 12            |
| 4,4'-DDE                                  | 2.14E-05             | 2.70E-04             | RME EPC is max detect                         | 2 of 12            |
| 4-Chloroaniline                           | 1.50E-03             | 1.30E-02             | RME EPC is max detect                         | 1 of 12            |
| 4-Isopropyltoluene                        | 2.30E-02             | 2.00E-03             | RME EPC is max detect*                        | 1 of 12            |
| Acenaphthene                              | 9.00E-04             | 8.60E-03             | RME EPC is max detect                         | 1 of 12            |
| Acetone                                   | 2.81E-01             | 1.15E-01             | RME EPC is max detect*                        | 1 of 12            |
| Acetophenone                              | 6.80E-03             | 7.40E-02             | RME EPC is max detect                         | 1 of 12            |
| alpha-BHC                                 | 1.96E-05             | 2.00E-04             | RME EPC is max detect                         | 1 of 12            |
| Aluminum                                  | 8.18E-02             | 2.60E-01             | RME EPC is max detect                         | 5 of 12            |
| Aniline                                   | 1.30E-03             | 1.10E-02             | RME EPC is max detect                         | 1 of 12            |
| Anthracene                                | 4.30E-04             | 1.40E-03             | RME EPC is max detect                         | 2 of 12            |
| Antimony                                  | 1.98E-02             | 4.30E-02             | RME EPC is max detect                         | 11 of 12           |
| Arsenic                                   | 1.13E-02             | 2.80E-02             | RME EPC is max detect                         | 2 of 12            |
| Barium                                    | 1.64E-01             | 1.38E+00             | RME EPC is max detect                         | 12 of 12           |
| Benzene                                   | 1.02E+00             | 8.24E+00             | RME EPC is max detect                         | 7 of 16            |
| Benzo(b)fluoranthene                      | 3.23E-04             | 1.40E-03             | RME EPC is max detect                         | 1 of 12            |
| Benzo(g,h,i)perylene                      | 2.89E-04             | 1.50E-03             | RME EPC is max detect                         | 1 of 12            |
| Benzoic Acid                              | 1.10E-03             | 1.40E-03<br>8.30E-05 | RME EPC is max detect                         | 5 of 12            |
| beta-BHC<br>Bis(2-ethylhexyl)Phthalate    | 1.09E-05             |                      | RME EPC is max detect RME EPC is max detect   | 2 of 12<br>1 of 12 |
| Boron                                     | 3.70E-03<br>2.20E+00 | 6.00E-04<br>3.44E+00 | RME EPC is max detect                         | 12 of 12           |
| Carbazole                                 | 2.20E+00<br>2.20E-03 | 7.70E-03             | RME EPC is max detect                         | 3 of 12            |
| Carbon Tetrachloride                      | 5.60E-01             | 7.76E-03             | RME EPC is max detect                         | 1 of 16            |
| Chromium                                  | 9.10E-02             | 1.60E-01             | RME EPC is max detect                         | 12 of 12           |
| cis-1,2-Dichloroethene                    | 8.96E+00             | 1.24E+02             | RME EPC is max detect                         | 6 of 16            |
| Cobalt                                    | 2.60E-03             | 1.60E-02             | RME EPC is max detect                         | 3 of 12            |
| delta-BHC                                 | 5.97E-06             | 4.10E-05             | RME EPC is max detect                         | 2 of 12            |
| Dibenz(a,h)anthracene                     | 4.87E-04             | 2.90E-03             | RME EPC is max detect                         | 1 of 12            |
| Dibenzofuran                              | 6.01E-04             | 4.90E-03             | RME EPC is max detect                         | 1 of 12            |
| Dieldrin                                  | 5.01E-06             | 2.64E-05             | RME EPC is max detect                         | 1 of 16            |
| Endosulfan II                             | 1.29E-05             | 1.20E-04             | RME EPC is max detect                         | 6 of 17            |
| Endosulfan Sulfate                        | 2.46E-06             | 1.56E-05             | RME EPC is max detect                         | 1 of 12            |
| Endrin Aldehyde                           | 1.31E-05             | 1.30E-04             | RME EPC is max detect                         | 1 of 12            |
| Ethylbenzene                              | 9.69E-02             | 7.40E-01             | RME EPC is max detect                         | 1 of 13            |
| Fluorene                                  | 8.51E-04             | 6.10E-03             | RME EPC is max detect                         | 3 of 12            |
| gamma-BHC (Lindane)                       | 1.25E-04             | 1.50E-03             | RME EPC is max detect                         | 3 of 16            |
| Heptachlor Epoxide                        | 5.44E-06             | 2.50E-05             | RME EPC is max detect                         | 1 of 12            |
| Indeno(1,2,3-cd)pyrene                    | 4.73E-04             | 3.30E-03             | RME EPC is max detect                         | 1 of 12            |
| Iron                                      | 1.31E+01             | 3.66E+01             | RME EPC is max detect                         | 12 of 12           |
| Isopropylbenzene (Cumene)                 | 2.80E-02             | 3.80E-02             | RME EPC is max detect*                        | 2 of 12            |
| Lithium                                   | 3.19E-01             | 6.70E-01             | RME EPC is max detect                         | 12 of 12           |
| m,p-Cresol                                | 2.78E-03             | 1.20E-02             | RME EPC is max detect                         | 3 of 12            |
| m,p-Xylene                                | 6.85E-02             | 1.68E-01             | RME EPC is max detect                         | 1 of 12            |
| Manganese                                 | 7.74E+00             | 2.69E+01             | RME EPC is max detect                         | 12 of 12           |
| Methylene Chloride                        | 9.57E+01             | 1.23E+03             | RME EPC is max detect                         | 4 of 16            |
| Molybdenum                                | 7.20E-03             | 5.50E-02             | RME EPC is max detect                         | 1 of 12            |
| Naphthalene                               | 7.83E-02             | 3.22E-01             | RME EPC is max detect                         | 1 of 13            |
| Nickel                                    | 1.99E-02             | 1.40E-01             | RME EPC is max detect                         | 7 of 14            |
| n-Propylbenzene                           | 3.60E-02             | 3.10E-02             | RME EPC is max detect*                        | 1 of 12            |
| o-Cresol<br>o-Xylene                      | 1.40E-03<br>4.62E-02 | 8.10E-03<br>4.40E-02 | RME EPC is max detect*                        | 2 of 12<br>1 of 12 |
| o-xylene<br>Phenanthrene                  | 4.62E-02<br>8.31E-04 | 6.40E-03             | RME EPC is max detect*  RME EPC is max detect | 1 of 12<br>2 of 13 |
| Pyrene Pyrene                             | 2.23E-04             | 5.00E-04             | RME EPC is max detect                         | 1 of 13            |
| Silver                                    | 9.14E-03             | 1.70E-02             | RME EPC is max detect                         | 12 of 12           |
| Strontium                                 | 1.10E+01             | 1.88E+01             | RME EPC is max detect                         | 12 of 12           |
| Styrene                                   | 2.60E-02             | 2.50E-03             | RME EPC is max detect*                        | 1 of 12            |
| Tetrachloroethene                         | 1.95E+00             | 2.05E+01             | RME EPC is max detect                         | 4 of 16            |
| Thallium                                  | 4.60E-03             | 3.00E-02             | RME EPC is max detect                         | 2 of 12            |
| Titanium                                  | 1.20E-03             | 3.30E-03             | RME EPC is max detect                         | 3 of 12            |
| Toluene                                   | 3.35E-01             | 4.05E+00             | RME EPC is max detect                         | 4 of 16            |
| Trichloroethene                           | 1.15E+01             | 8.40E+01             | RME EPC is max detect                         | 7 of 16            |
| Vanadium                                  | 8.40E-03             | 2.40E-02             | RME EPC is max detect                         | 6 of 12            |
| Vinyl Chloride                            | 5.02E-01             | 5.09E+00             | RME EPC is max detect                         | 3 of 16            |
| Xylene (total)                            | 1.15E-01             | 2.12E-01             | RME EPC is max detect                         | 1 of 12            |
|                                           | _                    |                      |                                               | 1                  |

Notes:
\*The maximum detected value is sometimes lower than the average since 1/2 of the reporting limit was used as a proxy value when it was not detected and because J flag data were used in the risk assessment.

<sup>\*</sup> Chemicals of interest are any chemical measured in at least one sample.

<sup>(1)</sup> RME EPC is the reasonable maximim exposure exposure point concentration.

## TABLE 11 EXPOSURE POINT CONCENTATIONS (mg/L) WETLAND SURFACE WATER (TOTAL)

| Chemical of Interest* | Average  | Max Detection | Min Detection | TotRW <sub>Comb</sub> (1) | <sup>SW</sup> RBELs Saltwater<br>Fish Only <sup>(1)</sup> | RME EPC (2) | Statistic Used         | # of Detects/# of<br>Samples |
|-----------------------|----------|---------------|---------------|---------------------------|-----------------------------------------------------------|-------------|------------------------|------------------------------|
| 1,2-Dichloroethane    | 2.30E-03 | 3.85E-03      | 2.55E-03      | 1.96E-01                  | 4.93E-02                                                  | 3.85E-03    | RME EPC is max detect  | 3 of 4                       |
| Acrolein              | 1.21E-02 | 9.29E-03      | 9.29E-03      | 4.26E-01                  | 2.90E-01                                                  | 9.30E-03    | RME EPC is max detect* | 1 of 4                       |
| Aluminum              | 5.08E-01 | 8.00E-01      | 1.70E-01      | 4.03E+02                  |                                                           | 8.00E-01    | RME EPC is max detect  | 4 of 4                       |
| Barium                | 2.20E-01 | 3.70E-01      | 1.50E-01      | 6.49E+01                  |                                                           | 3.70E-01    | RME EPC is max detect  | 4 of 4                       |
| Boron                 | 1.96E+00 | 2.42E+00      | 8.30E-01      | 7.44E+01                  |                                                           | 2.42E+00    | RME EPC is max detect  | 4 of 4                       |
| Chromium              | 1.49E-02 | 3.70E-02      | 2.00E-02      | 1.26E+02                  | 2.20E+00                                                  | 3.70E-02    | RME EPC is max detect  | 2 of 4                       |
| Chromium VI           | 3.13E-03 | 8.00E-03      | 8.00E-03      | 2.43E-01                  |                                                           | 8.00E-03    | RME EPC is max detect  | 1 of 4                       |
| Copper                | 6.38E-03 | 1.10E-02      | 9.50E-03      | 3.31E+01                  |                                                           | 1.10E-02    | RME EPC is max detect  | 2 of 4                       |
| Iron                  | 6.45E-01 | 1.08E+00      | 1.90E-01      |                           |                                                           | 1.08E+00    | RME EPC is max detect  | 4 of 4                       |
| Lithium               | 1.89E-01 | 2.50E-01      | 5.70E-02      | 1.65E+01                  |                                                           | 2.50E-01    | RME EPC is max detect  | 4 of 4                       |
| Manganese             | 1.37E-01 | 3.40E-01      | 1.80E-02      | 4.09E+01                  | 1.00E-01                                                  | 3.40E-01    | RME EPC is max detect  | 4 of 4                       |
| Mercury               | 3.75E-05 | 7.00E-05      | 4.00E-05      | 9.73E-02                  | 2.50E-05                                                  | 7.00E-05    | RME EPC is max detect  | 2 of 4                       |
| Molybdenum            | 9.30E-03 | 1.50E-02      | 5.60E-03      | 3.47E+00                  |                                                           | 1.50E-02    | RME EPC is max detect  | 3 of 4                       |
| Nickel                | 1.10E-03 | 2.20E-03      | 1.20E-03      | 1.13E+00                  | 4.60E+00                                                  | 2.20E-03    | RME EPC is max detect  | 2 of 4                       |
| Strontium             | 5.27E+00 | 6.64E+00      | 1.87E+00      | 3.38E+02                  |                                                           | 6.64E+00    | RME EPC is max detect  | 4 of 4                       |
| Titanium              | 6.40E-03 | 9.80E-03      | 2.40E-03      | 8.67E+04                  |                                                           | 9.80E-03    | RME EPC is max detect  | 4 of 4                       |
| Zinc                  | 7.30E-03 | 2.20E-02      | 2.20E-02      | 2.01E+02                  | 2.60E+00                                                  | 2.20E-02    | RME EPC is max detect  | 1 of 4                       |

#### WETLAND SURFACE WATER (DISSOLVED METALS)

| Chemicals of<br>Interest <sup>+</sup> | Average  | Max Detection | Min Detection | TotRW <sub>Comb</sub> (1) | <sup>SW</sup> RBELs Saltwater<br>Fish Only <sup>(1)</sup> | RME EPC (2) | Statistic Used        | # of Detects/# of<br>Samples |
|---------------------------------------|----------|---------------|---------------|---------------------------|-----------------------------------------------------------|-------------|-----------------------|------------------------------|
| Barium                                | 3.20E-04 | 3.50E-01      | 1.40E-01      | 6.49E+01                  |                                                           | 3.50E-01    | RME EPC is max detect | 4 of 4                       |
| Boron                                 | 2.70E-02 | 2.75E+00      | 8.50E-01      | 7.44E+01                  |                                                           | 2.75E+00    | RME EPC is max detect | 4 of 4                       |
| Chromium                              | 1.20E-03 | 3.70E-02      | 1.90E-02      | 1.26E+02                  | 2.20E+00                                                  | 3.70E-02    | RME EPC is max detect | 2 of 4                       |
| Copper                                | 2.50E-03 | 1.10E-02      | 5.30E-03      | 3.31E+01                  |                                                           | 1.10E-02    | RME EPC is max detect | 3 of 4                       |
| Lithium                               | 3.50E-03 | 2.80E-01      | 5.70E-02      | 1.65E+01                  |                                                           | 2.80E-01    | RME EPC is max detect | 4 of 4                       |
| Manganese                             | 6.00E-04 | 3.30E-01      | 2.50E-02      | 4.09E+01                  | 1.00E-01                                                  | 3.30E-01    | RME EPC is max detect | 4 of 4                       |
| Molybdenum                            | 2.70E-03 | 1.70E-02      | 5.40E-03      | 3.47E+00                  |                                                           | 1.70E-02    | RME EPC is max detect | 3 of 4                       |
| Nickel                                | 4.50E-04 | 1.30E-03      | 4.90E-04      | 1.13E+00                  | 4.60E+00                                                  | 1.30E-03    | RME EPC is max detect | 2 of 4                       |
| Strontium                             | 9.40E-04 | 7.01E+00      | 1.89E+00      | 3.38E+02                  |                                                           | 7.01E+00    | RME EPC is max detect | 4 of 4                       |
|                                       |          | ·             | ·             |                           |                                                           |             |                       |                              |

Notes:

\*The maximum detected value is sometimes lower than the average since 1/2 of the reporting limit was used as a proxy value when it was not detected, and because J flag data were used in the risk assessment.

\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) - TRRP 24. TCEQ, March 31, 2006.

(2) RME EPC is the reasonable maximim exposure exposure point concentration.

## TABLE 12 EXPOSURE POINT CONCENTATIONS (mg/L) POND SURFACE WATER (TOTAL)

| Chemical of Interest <sup>+</sup> | Average  | Max Detection | Min Detection | TotRW <sub>Comb</sub> (1) | <sup>SW</sup> RBELs Saltwater<br>Fish Only <sup>(1)</sup> | RME EPC (2) | Statistic Used        | # of Detects/# of<br>Samples |
|-----------------------------------|----------|---------------|---------------|---------------------------|-----------------------------------------------------------|-------------|-----------------------|------------------------------|
| 4-Chloroaniline                   | 2.79E-04 | 8.23E-04      | 8.23E-04      | 2.14E+00                  | NA                                                        | 8.00E-04    | RME EPC is max detect | 1 of 6                       |
| Aluminum                          | 9.13E-01 | 2.22E+00      | 4.10E-01      | 4.03E+02                  | NA                                                        | 2.22E+00    | RME EPC is max detect | 5 of 6                       |
| Antimony                          | 3.82E-03 | 7.60E-03      | 3.00E-03      | 1.99E-01                  | 6.40E+00                                                  | 7.60E-03    | RME EPC is max detect | 3 of 6                       |
| Arsenic                           | 5.40E-03 | 1.30E-02      | 1.20E-02      | 2.85E-02                  | 1.40E-02                                                  | 1.30E-02    | RME EPC is max detect | 2 of 6                       |
| Barium                            | 1.45E-01 | 1.90E-01      | 1.30E-01      | 6.49E+01                  | NA                                                        | 1.90E-01    | RME EPC is max detect | 6 of 6                       |
| Benzo(a)pyrene                    | 1.12E-04 | 3.48E-04      | 3.48E-04      |                           | 5.40E-03                                                  | 3.00E-04    | RME EPC is max detect | 1 of 6                       |
| Benzo(b)fluoranthene              | 4.03E-04 | 1.81E-03      | 1.81E-03      |                           | 1.80E-03                                                  | 1.80E-03    | RME EPC is max detect | 1 of 6                       |
| Benzo(g,h,i)perylene              | 3.71E-04 | 1.73E-03      | 1.73E-03      |                           | NA                                                        | 1.70E-03    | RME EPC is max detect | 1 of 6                       |
| Benzo(k)fluoranthene              | 2.06E-04 | 5.42E-04      | 5.42E-04      |                           | 1.80E-03                                                  | 5.00E-04    | RME EPC is max detect | 1 of 6                       |
| Bis(2-ethylhexyl)phthalate        | 1.92E-02 | 4.00E-02      | 2.90E-02      |                           | 2.20E-01                                                  | 4.00E-02    | RME EPC is max detect | 3 of 6                       |
| Boron                             | 2.97E+00 | 3.52E+00      | 2.45E+00      | 7.44E+01                  | NA                                                        | 3.52E+00    | RME EPC is max detect | 6 of 6                       |
| Chromium                          | 8.50E-04 | 1.50E-03      | 1.50E-03      | 1.26E+02                  | 2.20E+01                                                  | 1.50E-03    | RME EPC is max detect | 1 of 6                       |
| Chromium VI                       | 8.50E-03 | 1.60E-02      | 1.50E-02      | 2.43E-01                  | NA                                                        | 1.60E-02    | RME EPC is max detect | 2 of 6                       |
| Chrysene                          | 2.48E-04 | 7.10E-04      | 7.10E-04      |                           | 5.40E-02                                                  | 7.00E-04    | RME EPC is max detect | 1 of 6                       |
| Cobalt                            | 9.12E-04 | 3.20E-03      | 5.20E-04      | 5.33E+01                  | NA                                                        | 3.20E-03    | RME EPC is max detect | 2 of 6                       |
| Dibenz(a,h)anthracene             | 6.26E-04 | 3.04E-03      | 3.04E-03      | -                         | 1.80E-03                                                  | 3.00E-03    | RME EPC is max detect | 1 of 6                       |
| Di-n-butyl Phthalate              | 3.12E-03 | 3.81E-03      | 1.07E-03      | 4.49E+00                  | 4.50E+01                                                  | 3.80E-03    | RME EPC is max detect | 5 of 6                       |
| Indeno(1,2,3-cd)pyrene            | 6.73E-04 | 3.44E-03      | 3.44E-03      |                           | 1.80E-03                                                  | 3.40E-03    | RME EPC is max detect | 1 of 6                       |
| Iron                              | 2.27E+00 | 6.67E+00      | 5.20E-01      |                           | NA                                                        | 6.67E+00    | RME EPC is max detect | 6 of 6                       |
| Lead                              | 2.63E-03 | 1.10E-02      | 1.10E-02      |                           | 1.69E-01                                                  | 1.10E-02    | RME EPC is max detect | 1 of 6                       |
| Lithium                           | 1.16E-01 | 1.60E-01      | 6.70E-02      | 1.65E+01                  | NA                                                        | 1.60E-01    | RME EPC is max detect | 6 of 6                       |
| Manganese                         | 6.37E-01 | 1.44E+00      | 8.50E-02      | 4.09E+01                  | 1.00E+00                                                  | 1.44E+00    | RME EPC is max detect | 6 of 6                       |
| Molybdenum                        | 8.73E-03 | 1.80E-02      | 1.30E-02      | 3.47E+00                  | NA                                                        | 1.80E-02    | RME EPC is max detect | 3 of 6                       |
| Nickel                            | 4.60E-03 | 7.90E-03      | 3.00E-03      | 1.13E+01                  | 4.60E+01                                                  | 7.90E-03    | RME EPC is max detect | 6 of 6                       |
| Selenium                          | 4.26E-03 | 9.80E-03      | 9.80E-03      | 4.13E+00                  | 4.20E+01                                                  | 9.80E-03    | RME EPC is max detect | 1 of 6                       |
| Silver                            | 9.30E-03 | 1.50E-02      | 3.70E-03      | 1.57E+00                  | NA                                                        | 1.50E-02    | RME EPC is max detect | 6 of 6                       |
| Strontium                         | 4.47E+00 | 7.19E+00      | 1.77E+00      | 3.38E+02                  | NA                                                        | 7.19E+00    | RME EPC is max detect | 6 of 6                       |
| Thallium                          | 2.86E-03 | 7.70E-03      | 6.20E-03      | 6.61E-02                  | 4.70E-03                                                  | 7.70E-03    | RME EPC is max detect | 2 of 6                       |
| Titanium                          | 1.90E-02 | 4.40E-02      | 2.10E-03      | 8.67E+04                  | NA                                                        | 4.40E-02    | RME EPC is max detect | 6 of 6                       |
| Vanadium                          | 3.20E-03 | 8.40E-03      | 4.30E-03      | 1.08E+00                  | NA                                                        | 8.40E-03    | RME EPC is max detect | 3 of 6                       |
| Zinc                              | 1.20E-01 | 6.30E-01      | 2.70E-02      | 2.01E+02                  | 2.60E+02                                                  | 6.30E-01    | RME EPC is max detect | 3 of 6                       |

#### POND SURFACE WATER (DISSOLVED METALS)

| Chemicals of Interest <sup>+</sup> | Average  | Max Detection | Min Detection | TotRW <sub>Comb</sub> (1) | <sup>SW</sup> RBELs Saltwater<br>Fish Only <sup>(1)</sup> | RME EPC  | Statistic Used        | # of Detects/# of<br>Samples |
|------------------------------------|----------|---------------|---------------|---------------------------|-----------------------------------------------------------|----------|-----------------------|------------------------------|
| Antimony                           | 3.50E-03 | 6.30E-03      | 3.10E-03      | 1.99E-01                  | 6.40E+00                                                  | 6.30E-03 | RME EPC is max detect | 3 of 6                       |
| Barium                             | 1.25E-01 | 1.30E-01      | 1.20E-01      | 6.49E+01                  | NA                                                        | 1.30E-01 | RME EPC is max detect | 6 of 6                       |
| Boron                              | 2.79E+00 | 3.33E+00      | 2.36E+00      | 7.44E+01                  |                                                           | 3.33E+00 | RME EPC is max detect | 6 of 6                       |
| Lithium                            | 1.45E-01 | 2.20E-01      | 8.00E-02      | 1.65E+01                  | NA                                                        | 2.20E-01 | RME EPC is max detect | 6 of 6                       |
| Manganese                          | 4.65E-01 | 1.06E+00      | 6.60E-02      | 4.09E+01                  | 1.00E+00                                                  | 1.06E+00 | RME EPC is max detect | 6 of 6                       |
| Molybdenum                         | 1.01E-02 | 1.90E-02      | 1.80E-02      | 3.47E+00                  | NA                                                        | 1.90E-02 | RME EPC is max detect | 3 of 6                       |
| Nickel                             | 1.43E-03 | 2.60E-03      | 1.90E-03      | 1.13E+01                  | 4.60E+01                                                  | 2.60E-03 | RME EPC is max detect | 3 of 6                       |
| Silver                             | 1.83E-03 | 2.90E-03      | 9.40E-04      | 1.57E+00                  | NA                                                        | 2.90E-03 | RME EPC is max detect | 6 of 6                       |
| Strontium                          | 4.32E+00 | 6.97E+00      | 1.78E+00      | 3.38E+02                  | NA                                                        | 6.97E+00 | RME EPC is max detect | 6 of 6                       |
| Thallium                           | 1.53E-03 | 3.20E-03      | 1.40E-03      | 6.61E-02                  | 4.70E-03                                                  | 3.20E-03 | RME EPC is max detect | 3 of 6                       |
| Vanadium                           | 7.58E-04 | 2.10E-03      | 2.10E-03      | 1.08E+00                  | NA                                                        | 2.10E-03 | RME EPC is max detect | 1 of 6                       |

Notes:

\*The maximum detected value is sometimes lower than the average since 1/2 of the reporting limit was used as a proxy value when it was not detected, and because J flag data were used in the risk assessment.

\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) - TRRP 24. TCEQ, March 31, 2006.

(2) RME EPC is the reasonable maximim exposure exposure point concentration.

#### TABLE 13 **EXPOSURE POINT CONCENTATIONS (mg/kg)** WETLAND SEDIMENT

|                         |          | Max       |               |                            |          |          |                      | # of Detects/# |
|-------------------------|----------|-----------|---------------|----------------------------|----------|----------|----------------------|----------------|
| Chemical of Interest*   | Average  | Detection | Min Detection | TotSed <sub>Comb</sub> (1) |          | 95% UCL  | Statistic Used (2)   | of Samples     |
| 1,2-Dichloroethane      | 1.85E-03 | 2.40E-03  | 1.83E-03      | 6.0E+02                    | <        | 1.50E-04 | median               | 3 of 48        |
| 2-Methylnaphthalene     | 2.25E-02 | 4.30E-01  | 1.22E-02      | 4.9E+02                    | <        | 1.20E-02 | median               | 4 of 48        |
| 4,4'-DDT                | 1.39E-03 | 9.22E-03  | 9.29E-04      | 8.7E+01                    |          | 2.52E-03 | 97.5% KM (Chebyshev) | 16 of 55       |
| Acenaphthene            | 2.13E-02 | 1.33E-01  | 1.60E-02      | 7.4E+03                    | <        | 1.11E-02 | median               | 4 of 48        |
| Acenaphthylene          | 4.88E-02 | 5.45E-01  | 2.91E-02      | 7.4E+03                    | <        | 1.27E-02 | median               | 4 of 48        |
| Aluminum                | 1.32E+04 | 1.82E+04  | 3.40E+03      | 1.5E+05                    |          | 1.40E+04 | 95% Student's-t      | 48 of 48       |
| Anthracene              | 2.99E-02 | 3.34E-01  | 8.38E-03      | 3.7E+04                    |          | 9.70E-02 | 97.5% KM (Chebyshev) | 8 of 48        |
| Antimony <sup>(3)</sup> | 1.24E+00 | 4.24E+00  | 4.60E-01      | 8.3E+01                    |          | 1.80E+00 | 97.5% KM (Chebyshev) | 40 of 48       |
| Arsenic                 | 2.78E+00 | 1.28E+01  | 1.00E+00      | 1.1E+02                    |          | 4.81E+00 | 97.5% KM (Chebyshev) | 35 of 48       |
| Barium                  | 1.52E+02 | 8.20E+02  | 3.60E+01      | 2.3E+04                    |          | 2.38E+02 | 95% Chebyshev        | 48 of 48       |
| Benzo(a)anthracene      | 9.20E-02 | 9.93E-01  | 5.46E-02      | 1.6E+01                    | <        | 1.14E-02 | median               | 5 of 48        |
| Benzo(a)pyrene          | 1.10E-01 | 1.30E+00  | 1.76E-02      | 1.6E+00                    |          | 3.47E-01 | 97.5% KM (Chebyshev) | 15 of 48       |
| Benzo(b)fluoranthene    | 9.23E-02 | 1.36E+00  | 1.62E-02      | 1.6E+01                    |          | 1.59E-01 | 95% KM (BCA)         | 19 of 48       |
| Benzo(g,h,i)perylene    | 2.06E-01 | 1.94E+00  | 4.40E-02      | 3.7E+03                    |          | 4.49E-01 | 95% KM (Chebyshev)   | 24 of 48       |
| Benzo(k)fluoranthene    | 1.01E-01 | 7.30E-01  | 6.92E-02      | 1.6E+02                    |          | 1.31E-01 | 95% KM (Bootstrap)   | 14 of 48       |
| Beryllium               | 8.94E-01 | 1.37E+00  | 2.80E-01      | 2.7E+01                    |          | 9.43E-01 | 95% Student's-t      | 48 of 48       |
| Boron <sup>(3)</sup>    | 1.53E+01 | 4.62E+01  | 5.17E+00      | 1.1E+05                    |          | 2.61E+01 | 97.5% KM (Chebyshev) | 24 of 48       |
| Cadmium                 | 1.16E-01 | 4.80E-01  | 3.30E-02      | 1.1E+03                    |          | 2.42E-01 | 97.5% KM (Chebyshev) | 20 of 48       |
| Carbazole               | 2.12E-02 | 1.41E-01  | 1.58E-02      | 7.1E+02                    | <        | 1.10E-02 | median               | 5 of 48        |
| Carbon Disulfide        | 3.48E-03 | 6.99E-03  | 3.34E-03      | 7.3E+04                    | <        | 1.40E-04 | median               | 4 of 48        |
| Chromium                | 1.51E+01 | 4.46E+01  | 8.96E+00      | 3.6E+04                    |          | 1.64E+01 | 95% Student's-t      | 48 of 48       |
| Chromium VI             | 1.63E+00 | 4.04E+00  | 1.30E+00      | 1.4E+02                    | <        | 5.67E-01 | median               | 6 of 25        |
| Chrysene                | 2.15E-01 | 4.05E+00  | 1.10E-02      | 1.6E+03                    |          | 8.71E-01 | 97.5% KM (Chebyshev) | 19 of 48       |
| Cobalt                  | 6.98E+00 | 9.89E+00  | 3.00E+00      | 3.2E+04                    |          | 7.32E+00 | 95% Student's-t      | 48 of 48       |
| Copper                  | 1.45E+01 | 4.90E+01  | 5.44E+00      | 2.1E+04                    |          | 2.21E+01 | 97.5% KM (Chebyshev) | 48 of 48       |
| Dibenz(a,h)anthracene   | 2.87E-01 | 2.91E+00  | 1.29E-01      | 1.6E+00                    | <        | 3.75E-02 | median               | 6 of 48        |
| Dibenzofuran            | 1.29E-02 | 8.00E-02  | 1.00E-02      | 6.1E+02                    | ٧        | 1.56E-02 | median               | 3 of 48        |
| Endosulfan Sulfate      | 8.46E-03 | 6.00E-02  | 7.31E-03      | 9.2E+02                    | <b>'</b> | 4.40E-04 | median               | 3 of 48        |
| Endrin Aldehyde         | 1.28E-03 | 1.00E-02  | 5.66E-04      | 4.6E+01                    |          | 3.32E-03 | 97.5% KM (Chebyshev) | 9 of 48        |
| Endrin Ketone           | 3.55E-03 | 1.30E-02  | 3.29E-03      | 4.6E+01                    | ٧        | 5.50E-04 | median               | 3 of 48        |
| Fluoranthene            | 1.04E-01 | 2.17E+00  | 1.20E-02      | 4.9E+03                    |          | 4.46E-01 | 97.5% KM (Chebyshev) | 13 of 48       |
| Fluorene                | 2.17E-02 | 1.39E-01  | 1.50E-02      | 4.9E+03                    | <        | 1.10E-02 | median               | 4 of 48        |
| gamma-Chlordane         | 8.77E-04 | 3.60E-03  | 7.69E-04      | 4.1E+01                    | <        | 4.40E-04 | median               | 4 of 48        |
| Indeno(1,2,3-cd)pyrene  | 2.20E-01 | 1.94E+00  | 6.28E-02      | 1.6E+01                    |          | 3.17E-01 | 95% KM (BCA)         | 23 of 48       |
| Iron                    | 1.72E+04 | 6.09E+04  | 1.11E+04      |                            |          | 1.88E+04 | 95% Student's-t      | 48 of 48       |
| Lead                    | 2.54E+01 | 2.37E+02  | 9.40E+00      | 5.0E+02                    |          | 4.68E+01 | 95% Chebyshev        | 48 of 48       |
| Lithium                 | 1.87E+01 | 2.76E+01  | 5.43E+00      | 1.1E+04                    |          | 1.96E+01 | 95% Student's-t      | 48 of 48       |
| Manganese               | 3.32E+02 | 1.01E+03  | 8.76E+01      | 1.4E+04                    |          | 5.17E+02 | 97.5% Chebyshev      | 48 of 48       |
| Mercury                 | 2.04E-02 | 8.10E-02  | 6.10E-03      | 3.4E+01                    |          | 3.80E-02 | 97.5% KM (Chebyshev) | 26 of 48       |
| Molybdenum              | 5.99E-01 | 3.24E+00  | 1.30E-01      | 1.8E+03                    |          | 1.20E+00 | 97.5% KM (Chebyshev) | 38 of 48       |
| Nickel                  | 1.73E+01 | 2.77E+01  | 1.09E+01      | 1.4E+03                    |          | 1.81E+01 | 95% Student's-t      | 48 of 48       |
| Phenanthrene            | 8.46E-02 | 1.30E+00  | 2.30E-02      | 3.7E+03                    |          | 1.56E-01 | 95% KM (BCA)         | 12 of 48       |
| Pyrene                  | 1.52E-01 | 1.64E+00  | 1.59E-02      | 3.7E+03                    |          | 4.77E-01 | 97.5% KM (Chebyshev) | 19 of 48       |
| Strontium               | 6.70E+01 | 3.30E+02  | 1.88E+01      | 1.5E+05                    |          | 1.15E+02 | 97.5% KM (Chebyshev) | 48 of 48       |
| Tin <sup>(3)</sup>      | 6.38E-01 | 4.61E+00  | 3.45E+00      | 9.2E+04                    |          | 1.26E+00 | 95% Chebyshev        | 4 of 48        |
| Titanium                | 2.91E+01 | 6.87E+01  | 8.15E+00      | 1.0E+06                    |          | 4.17E+01 | 97.5% Chebyshev      | 48 of 48       |
| Toluene                 | 1.58E-03 | 2.14E-03  | 1.57E-03      | 5.9E+04                    | <        | 7.30E-04 | median               | 3 of 48        |
| Vanadium                | 2.17E+01 | 3.20E+01  | 9.02E+00      | 3.3E+02                    |          | 2.28E+01 | 95% Student's-t      | 48 of 48       |
| Zinc                    | 1.39E+02 | 9.03E+02  | 3.15E+01      | 7.6E+04                    |          | 2.36E+02 | 95% Chebyshev        | 53 of 53       |
| ZIIIO                   | 1.592402 | 3.03L+02  | 3.13L+01      | 7.02704                    |          | 2.30L+02 | 9370 Onebysnev       | 33 0           |

<sup>\*</sup> Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) - TotSed<sub>Comb</sub> PCL = TCEQ Protective Concentration Level for total sediment combined pathway (includes inhalation; ingestion; dermal pathways).

<sup>(2) -</sup> Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).
(3) - Samples 2WSED8, SWSED10, 4WSED2, and 4WSED3 were re-analyzed for antimony, boron, and tin because theinitial data indicated concentrations much higher than data for the rest of the samples although QA/QC indicated that they were acceptable. The re-analysis was run twice with good concurrence between the two re-analyses but with very different values from the original so the first re-analyzed value was used in the UCL calculation.

# TABLE 14 EXPOSURE POINT CONCENTATIONS (mg/kg) POND SEDIMENT

| Chemical of Interest <sup>+</sup> | Averen   | Max<br>Detection | Min Detection | Tota (1)                   |   | RME EPC  | Statistic Used (2) | # of Detects/# of |
|-----------------------------------|----------|------------------|---------------|----------------------------|---|----------|--------------------|-------------------|
| Chemical of Interest              | Average  |                  | Min Detection | TotSed <sub>Comb</sub> (1) |   | _        |                    | Samples           |
| 2,4,6-Trichlorophenol             | 4.29E-02 | 4.29E-02         | 4.29E-02      | 1.3E+03                    | < | 2.69E-02 | median             | 1 of 8            |
| 4,4'-DDD                          | 6.76E-04 | 6.76E-04         | 6.76E-04      | 1.2E+02                    | < | 2.00E-02 | median             | 1 of 8            |
| 4,4'-DDT                          | 1.27E-03 | 1.57E-03         | 1.11E-03      | 8.7E+01                    | < | 1.10E-02 | median             | 3 of 8            |
| Acetone                           | 7.98E-02 | 7.98E-02         | 7.98E-02      | 6.6E+05                    | < | 4.25E-02 | median             | 1 of 8            |
| Aluminum                          | 1.17E+04 | 1.63E+04         | 7.99E+03      | 1.5E+05                    |   | 1.40E+04 | 95% Student's-t    | 8 of 8            |
| Antimony                          | 1.41E+00 | 1.85E+00         | 3.30E-01      | 8.3E+01                    | < | 4.40E-01 | median             | 8 of 8            |
| Arsenic                           | 3.76E+00 | 5.01E+00         | 3.39E+00      | 1.1E+02                    | < | 3.35E-01 | median             | 3 of 8            |
| Barium                            | 1.99E+02 | 4.17E+02         | 1.08E+02      | 2.3E+04                    |   | 3.83E+02 | 95% Chebyshev      | 8 of 8            |
| Benzo(b)fluoranthene              | 5.37E-02 | 1.06E-01         | 2.93E-02      | 1.6E+01                    | < | 3.38E-02 | median             | 6 of 8            |
| Benzo(g,h,i)perylene              | 1.35E-01 | 1.35E-01         | 1.35E-01      | 3.7E+03                    | < | 1.59E-02 | median             | 1 of 8            |
| Benzo(k)fluoranthene              | 1.14E-01 | 1.30E-01         | 1.10E-01      | 1.6E+02                    | < | 2.75E-02 | median             | 3 of 8            |
| Beryllium                         | 8.34E-01 | 1.13E+00         | 5.80E-01      | 2.7E+01                    |   | 9.72E-01 | 95% Student's-t    | 8 of 8            |
| beta-BHC                          | 6.99E-04 | 6.99E-04         | 6.99E-04      | 1.4E+01                    | < | 2.30E-02 | median             | 1 of 8            |
| Boron                             | 1.73E+01 | 2.84E+01         | 1.10E+01      | 1.1E+05                    | < | 1.24E+01 | median             | 5 of 8            |
| Bromomethane                      | 1.61E-02 | 3.10E-02         | 1.40E-02      | 1.0E+03                    | < | 1.35E-02 | median             | 2 of 8            |
| Cadmium                           | 2.13E-01 | 2.70E-01         | 1.90E-01      | 1.1E+03                    | < | 1.90E-01 | median             | 5 of 8            |
| Carbon Disulfide                  | 7.71E-03 | 7.71E-03         | 7.71E-03      | 7.3E+04                    | < | 9.60E-04 | median             | 1 of 8            |
| Chromium                          | 1.29E+01 | 2.01E+01         | 8.29E+00      | 3.6E+04                    |   | 1.60E+01 | 95% Student's-t    | 8 of 8            |
| Chrysene                          | 2.57E-02 | 2.57E-02         | 2.57E-02      | 1.6E+03                    | < | 1.40E-02 | median             | 1 of 8            |
| Cobalt                            | 6.94E+00 | 8.99E+00         | 5.19E+00      | 3.2E+04                    |   | 7.86E+00 | 95% Student's-t    | 8 of 8            |
| Copper                            | 1.52E+01 | 2.68E+01         | 8.33E+00      | 2.1E+04                    |   | 2.02E+01 | 95% Student's-t    | 8 of 8            |
| Iron                              | 1.53E+04 | 2.01E+04         | 1.13E+04      |                            |   | 1.74E+04 | 95% Student's-t    | 8 of 8            |
| Lead                              | 1.75E+01 | 3.05E+01         | 1.06E+01      | 5.0E+02                    |   | 2.23E+01 | 95% Student's-t    | 8 of 8            |
| Lithium                           | 1.85E+01 | 2.37E+01         | 1.35E+01      | 1.1E+04                    |   | 2.12E+01 | 95% Student's-t    | 8 of 8            |
| m,p-Cresol                        | 3.75E-02 | 3.75E-02         | 3.75E-02      |                            | < | 2.34E-02 | median             | 1 of 8            |
| Manganese                         | 4.88E+02 | 7.11E+02         | 3.52E+02      | 1.4E+04                    |   | 5.71E+02 | 95% Student's-t    | 8 of 8            |
| Methyl lodide                     | 4.10E-02 | 4.10E-02         | 4.10E-02      | 1.0E+03                    | < | 7.84E-03 | median             | 1 of 8            |
| Molybdenum                        | 2.59E-01 | 6.00E-01         | 2.10E-01      | 1.8E+03                    | < | 1.20E-01 | median             | 2 of 8            |
| Nickel                            | 1.63E+01 | 2.06E+01         | 1.23E+01      | 1.4E+03                    |   | 1.84E+01 | 95% Student's-t    | 8 of 8            |
| Pyrene                            | 2.13E-02 | 2.65E-02         | 2.01E-02      | 3.7E+03                    | < | 1.96E-02 | median             | 3 of 8            |
| Strontium                         | 1.04E+02 | 1.81E+02         | 6.33E+01      | 1.5E+05                    |   | 1.32E+02 | 95% Student's-t    | 8 of 8            |
| Titanium                          | 3.00E+01 | 4.05E+01         | 1.91E+01      | 1.0E+06                    |   | 3.54E+01 | 95% Student's-t    | 8 of 8            |
| Vanadium                          | 2.18E+01 | 2.74E+01         | 1.68E+01      | 3.3E+02                    |   | 2.46E+01 | 95% Student's-t    | 8 of 8            |
| Zinc                              | 3.32E+02 | 9.99E+02         | 3.82E+01      | 7.6E+04                    |   | 9.61E+02 | 95% Chebyshev      | 8 of 8            |
|                                   |          |                  |               |                            |   |          | •                  |                   |

Notes:

\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.

(1) - Tol Sed<sub>Comb</sub> PCL = TCEQ Protective Concentration Level for total sediment combined pathway (includes inhalation; ingestion; dermal pathways).

<sup>(2) -</sup> Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

## TABLE 15 EXPOSURE POINT CONCENTRATIONS (mg/kg) BACKGROUND SOIL+

|                        | 1        |               |               |                             | T                       |   |          |                 |                   |
|------------------------|----------|---------------|---------------|-----------------------------|-------------------------|---|----------|-----------------|-------------------|
|                        |          |               |               |                             |                         |   |          |                 |                   |
|                        |          |               |               |                             |                         |   |          |                 |                   |
|                        |          |               |               |                             | EPA Region 6            |   |          |                 |                   |
|                        |          |               |               |                             | Soil Screening          |   |          | Statistic       | # of Detects/# of |
| Chemical of Interest** | Average  | Max Detection | Min Detection | TotSoil <sub>Comb</sub> (1) | Criteria <sup>(2)</sup> |   | 95% UCL  | Used (3)        | Samples           |
| Antimony               | 1.62E+00 | 2.19E+00      | 2.50E-01      | 3.06E+02                    | 4.50E+02                | < | 8.90E-01 | median          | 5 of 10           |
| Arsenic                | 3.44E+00 | 5.90E+00      | 2.40E-01      | 1.96E+02                    | 1.80E+00                |   | 4.48E+00 | 95% Winsor's-t  | 10 of 10          |
| Barium                 | 3.33E+02 | 1.13E+03      | 1.50E+02      | 8.90E+04                    | 7.90E+04                |   | 9.02E+02 | 97.5% Chebyshev | 10 of 10          |
| Benzo(a)anthracene     | 8.20E-02 | 8.20E-02      | 8.20E-02      | 2.36E+01                    | 2.30E+00                | < | 7.61E-03 | median          | 1 of 10           |
| Benzo(a)pyrene         | 7.60E-02 | 7.60E-02      | 7.60E-02      | 2.37E+00                    | 2.30E-01                | < | 1.00E-02 | median          | 1 of 10           |
| Benzo(b)fluoranthene   | 5.70E-02 | 5.70E-02      | 5.70E-02      | 2.36E+01                    | 2.30E+00                | < | 8.22E-03 | median          | 1 of 10           |
| Benzo(g,h,i)perylene   | 8.30E-02 | 8.30E-02      | 8.30E-02      | 1.86E+04                    |                         | < | 3.50E-02 | median          | 1 of 10           |
| Benzo(k)fluoranthene   | 1.06E-01 | 1.06E-01      | 1.06E-01      | 2.37E+02                    | 2.30E+01                | < | 1.15E-02 | median          | 1 of 10           |
| Cadmium                | 8.30E-02 | 1.10E-01      | 4.10E-02      | 8.52E+02                    | 5.60E+02                | < | 1.90E-02 | median          | 3 of 10           |
| Carbazole              | 1.10E-02 | 1.10E-02      | 1.10E-02      | 9.54E+02                    | 9.60E+01                | < | 8.86E-03 | median          | 1 of 10           |
| Chromium               | 1.52E+01 | 2.01E+01      | 1.07E+01      | 5.70E+04                    | 5.00E+02                |   | 1.70E+01 | 95% Student's-t | 10 of 10          |
| Chrysene               | 8.30E-02 | 8.30E-02      | 8.30E-02      | 2.40E+03                    | 2.30E+02                | < | 1.40E-02 | median          | 1 of 10           |
| Copper                 | 1.21E+01 | 1.93E+01      | 7.68E+00      | 3.70E+04                    | 4.20E+04                |   | 1.44E+01 | 95% Student's-t | 10 of 10          |
| Fluoranthene           | 1.56E-01 | 1.56E-01      | 1.56E-01      | 2.48E+04                    | 2.40E+04                | < | 1.15E-02 | median          | 1 of 10           |
| Indeno(1,2,3-cd)pyrene | 4.17E-01 | 4.17E-01      | 4.17E-01      | 2.37E+01                    | 2.30E+00                | ٧ | 2.95E-02 | median          | 1 of 10           |
| Lead                   | 1.34E+01 | 1.52E+01      | 1.10E+01      | 1.60E+03                    | 8.00E+02                |   | 1.43E+01 | 95% Student's-t | 10 of 10          |
| Lithium                | 2.11E+01 | 3.25E+01      | 1.44E+01      | 1.90E+03                    | 2.30E+04                |   | 2.41E+01 | 95% Student's-t | 10 of 10          |
| Manganese              | 3.77E+02 | 5.51E+02      | 2.84E+02      | 2.41E+04                    | 3.50E+04                |   | 5.07E+02 | 95% Chebyshev   | 10 of 10          |
| Mercury                | 2.13E-02 | 3.00E-02      | 1.50E-02      | 3.26E+00                    | 3.40E+02                |   | 2.41E-02 | 95% Student's-t | 10 of 10          |
| Molybdenum             | 5.22E-01 | 6.80E-01      | 4.20E-01      | 4.51E+03                    | 5.70E+03                |   | 5.65E-01 | 95% Student's-t | 10 of 10          |
| Phenanthrene           | 1.37E-01 | 1.37E-01      | 1.37E-01      | 1.86E+04                    |                         | < | 6.72E-03 | median          | 1 of 10           |
| Pyrene                 | 1.27E-01 | 1.27E-01      | 1.27E-01      | 1.86E+04                    | 3.20E+04                | < | 2.00E-02 | median          | 1 of 10           |
| Zinc                   | 2.47E+02 | 9.69E+02      | 3.66E+01      | 2.45E+05                    | 1.00E+05                |   | 7.50E+02 | 95% Chebyshev   | 10 of 10          |
|                        |          |               |               |                             | l                       |   |          |                 | 1                 |

#### Notes:

- + Soil was collected from 0 to 4 ft. below ground surface.

  +\* Chemicals of interest are any chemical measured in at least one sample. Bolded compounds have a maximum concentration that exceeded one-tenth of the screening value.
- (1) TolSoilComb PCL = TCEQ Protective Concentration Level for 30 acre source area Commercial/Industrial total soil combined pathway (includes inhalation; ingestion; dermal pathways).
  (2) From EPA's "Region 6 Human Health Medium-Specific Screening Levels 2004-2005". Industrial Outdoor Worker.
- (3) Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

# TABLE 16 QUALITATIVE CURRENT OFF-SITE RESIDENTIAL RECEPTOR EVALUATION SOUTH AREA SOIL\*

|                                           |                      |                      |                      |                               |                      |                                            | 1                         |
|-------------------------------------------|----------------------|----------------------|----------------------|-------------------------------|----------------------|--------------------------------------------|---------------------------|
| Chemical of Interest*                     | Average              | Max<br>Detection     | Min Detection        | AirSoil <sub>Inh-VP</sub> (1) | 95% UCL              | Statistic Used <sup>(3)</sup>              | # of Detects/# of Samples |
|                                           |                      |                      |                      |                               |                      |                                            |                           |
| 1,3,5-Trimethylbenzene                    | 9.89E-02             | 4.36E+00             | 2.67E-04             | 6.00E+01                      | 5.56E-01             | 97.5% KM (Chebyshev)                       | 9 of 83                   |
| 2-Butanone                                | 3.29E-03             | 2.26E-02             | 9.92E-04             | 5.90E+04                      | 4.14E-03             | 95% KM (Bootstrap)                         | 4 of 83                   |
| 2-Hexanone                                | 1.65E-03             | 2.07E-02             | 1.09E-03             | 5.70E+01                      | 3.63E-02             | 97.5% KM (Chebyshev)                       | 8 of 83                   |
| 2-Methylnaphthalene                       | 6.97E-02             | 7.21E+00             | 1.06E-02             |                               | 1.60E-01             | 95% KM (BCA)                               | 32 of 166                 |
| 4,4'-DDD<br>4,4'-DDE                      | 7.76E-03<br>1.58E-03 | 1.12E+00<br>6.93E-02 | 3.69E-04<br>4.28E-04 |                               | 5.08E-02<br>2.81E-03 | 97.5% KM (Chebyshev)<br>95% KM (BCA)       | 21 of 166<br>22 of 166    |
| 4,4'-DDE<br>4,4'-DDT                      | 3.75E-03             | 1.13E-01             | 2.81E-04             | 6.20E+02                      | 9.27E-03             | 97.5% KM (Chebyshev)                       | 68 of 166                 |
| Acenaphthene                              | 4.33E-03             | 1.69E+00             | 1.13E-02             | 0.20E+02<br>                  | 1.16E-01             | 97.5% KW (Chebyshev)                       | 35 of 166                 |
| Acenaphthylene                            | 4.84E-02             | 1.09E+00<br>1.20E+00 | 1.72E-02             |                               | 7.19E-02             | 95% KM (BCA)                               | 37 of 166                 |
| Acetone                                   | 3.70E-02             | 1.60E-01             | 3.10E-02             | 5.80E+03                      | 5.41E-02             | 97.5% KM (Chebyshev)                       | 10 of 83                  |
| Aluminum                                  | 6.45E+03             | 1.57E+04             | 4.14E+02             | 2.60E+06                      | 8.20E+03             | 97.5% KW (Chebyshev)                       | 166 of 166                |
| Anthracene                                | 8.89E-02             | 2.46E+00             | 1.12E-02             | 2.002+00                      | 1.24E-01             | 95% KM (BCA)                               | 65 of 166                 |
| Antimony                                  | 1.45E+00             | 5.51E+00             | 2.00E-01             | 2.50E+05                      | 1.87E+00             | 97.5% KM (Chebyshev)                       | 144 of 166                |
| Aroclor-1254                              | 2.16E-01             | 1.15E+01             | 3.34E-03             | 2.80E+00                      | 7.73E-01             | 97.5% KM (Chebyshev)                       | 25 of 170                 |
|                                           |                      |                      | 0.0                  |                               |                      | (                                          |                           |
| Arsenic                                   | 3.33E+00             | 2.43E+01             | 2.30E-01             | 2.70E+03                      | 4.92E+00             | 97.5% KM (Chebyshev)                       | 139 of 166                |
| Barium                                    | 2.37E+02             | 2.18E+03             | 1.86E+01             | 2.50E+05                      | 3.30E+02             | 95% Chebyshev                              | 166 of 166                |
| Benzene                                   | 3.89E-03             | 2.21E-02             | 3.39E-04             | 8.40E+01                      | 6.09E-03             | 97.5% KM (Chebyshev)                       | 72 of 83                  |
| Benzo(a)anthracene                        | 2.69E-01             | 5.02E+00             | 1.18E-02             | 1.90E+03                      | 6.43E-01             | 97.5% KM (Chebyshev)                       | 44 of 166                 |
| Benzo(a)pyrene                            | 3.48E-01             | 4.88E+00             | 9.99E-03             | 4.40E+02                      | 7.63E-01             | 97.5% KM (Chebyshev)                       | 113 of 166                |
| Benzo(b)fluoranthene Benzo(q,h,i)perylene | 4.77E-01<br>2.17E-01 | 5.97E+00<br>4.24E+00 | 4.08E-02<br>9.89E-03 | 3.20E+03                      | 8.22E-01<br>4.94E-01 | 95% KM (Chebyshev)<br>97.5% KM (Chebyshev) | 102 of 166<br>81 of 166   |
| (0. 171 )                                 |                      |                      |                      |                               |                      |                                            |                           |
| Benzo(k)fluoranthene                      | 1.58E-01             | 4.25E+00             | 1.58E-02<br>1.40E-02 | 7.80E+04                      | 3.81E-01             | 97.5% KM (Chebyshev)<br>95% KM (BCA)       | 45 of 166                 |
| Beryllium                                 | 4.65E-01             | 4.60E+00             |                      | 4.80E+03                      | 5.25E-01             |                                            | 165 of 166<br>72 of 166   |
| Boron Butyl Benzyl Phthalate              | 5.68E+00<br>2.01E-02 | 5.44E+01<br>6.17E-01 | 2.43E+00<br>1.29E-02 | 1.00E+07<br>1.30E+04          | 6.51E+00<br>4.72E-02 | 95% KM (Bootstrap)<br>97.5% KM (Chebyshev) | 10 of 166                 |
| Cadmium                                   | 3.40E-01             | 9.71E+00             | 2.30E-02             | 6.50E+03                      | 4.67E-01             | 95% KM (Bootstrap)                         | 93 of 166                 |
| Carbazole                                 | 4.64E-02             | 1.54E+00             | 1.04E-02             | 0.50E+05                      | 1.19E-01             | 97.5% KM (Chebyshev)                       | 42 of 166                 |
| Carbon Disulfide                          | 1.67E-03             | 2.80E-02             | 9.87E-04             | 5.50E+03                      | 3.92E-03             | 97.5% KM (Chebyshev)                       | 13 of 83                  |
| Chromium                                  | 1.35E+01             | 1.36E+02             | 2.03E+00             | 5.00E+04                      | 1.78E+01             | 95% Chebyshev                              | 166 of 166                |
| Chrysene                                  | 3.28E-01             | 4.87E+00             | 9.01E-03             | 3.00E+05                      | 7.12E-01             | 97.5% KM (Chebyshev)                       | 93 of 166                 |
| Cobalt                                    | 4.11E+00             | 1.60E+01             | 4.90E-02             | 1.30E+03                      | 4.35E+00             | 95% Winsor-t                               | 165 of 166                |
| Copper                                    | 2.43E+01             | 4.87E+02             | 1.30E-01             | 5.00E+05                      | 4.01E+01             | 95% KM (Chebyshev)                         | 164 of 166                |
| Cyclohexane                               | 2.65E-01             | 2.17E+01             | 6.26E-04             | 4.70E+04                      | 1.91E+00             | 97.5% KM (Chebyshev)                       | 47 of 83                  |
| Dibenz(a,h)anthracene                     | 1.48E-01             | 1.64E+00             | 6.19E-02             | 1.00E+03                      | 1.80E-01             | 95% KM (Bootstrap)                         | 56 of 166                 |
| Dibenzofuran                              | 3.34E-02             | 8.21E-01             | 1.67E-02             |                               | 7.31E-02             | 97.5% KM (Chebyshev)                       | 23 of 166                 |
| Dieldrin                                  | 8.89E-04             | 2.05E-02             | 2.43E-04             | 1.60E+01                      | 2.11E-03             | 97.5% KM (Chebyshev)                       | 33 of 166                 |
| Di-n-butyl Phthalate                      | 4.18E-02             | 7.53E-01             | 3.11E-02             | 1.50E+04                      | 7.65E-02             | 97.5% KM (Chebyshev)                       | 11 of 166                 |
| Endosulfan Sulfate                        | 1.27E-03             | 7.13E-02             | 7.13E-02             |                               | 2.30E-03             | 95% KM (BCA)                               | 21 of 166                 |
| Endrin Aldehyde                           | 2.01E-03             | 7.38E-02             | 4.97E-04             |                               | 3.54E-03             | 95% KM (BCA)                               | 31 of 166                 |
| Endrin Ketone                             | 1.35E-03             | 2.00E-02             | 4.69E-04             | 9.70E+02                      | 2.53E-03             | 97.5% KM (Chebyshev)                       | 25 of 166                 |
| Ethylbenzene                              | 3.40E-03             | 1.05E-01             | 6.54E-04             | 7.90E+03                      | 5.91E-03             | 95% KM (Bootstrap)                         | 47 of 83                  |
| Fluoranthene                              | 5.95E-01             | 1.42E+01             | 1.33E-02             |                               | 1.41E+00             | 97.5% KM (Chebyshev)                       | 96 of 166                 |
| Fluorene                                  | 4.44E-02             | 1.11E+00             | 9.45E-03             |                               | 1.07E-01             | 97.5% KM (Chebyshev)                       | 41 of 166                 |
| gamma-Chlordane                           | 9.98E-04             | 1.56E-02             | 7.10E-04             | 5.00E+02                      | 1.84E-03             | 97.5% KM (Chebyshev)                       | 12 of 166                 |
| Indeno(1,2,3-cd)pyrene                    | 3.85E-01             | 6.49E+00             | 5.74E-02             | 1.30E+04                      | 6.58E-01             | 95% KM (Chebyshev)                         | 104 of 166                |
| Iron                                      | 1.43E+04             | 7.71E+04             | 2.41E+03             |                               | 1.75E+04             | 95% Chebyshev                              | 166 of 166                |
| Isopropylbenzene (cumene)                 | 8.31E-01             | 6.49E+01             | 3.18E-04             | 4.80E+03                      | 5.85E+00             | 97.5% KM (Chebyshev)                       | 16 of 83                  |
| Lead                                      | 5.35E+01             | 7.02E+02             | 2.48E+00             |                               | 1.04E+02             | 97.5% Chebyshev                            | 166 of 166                |
| Lithium                                   | 1.00E+01             | 2.86E+01             | 6.50E-01             |                               | 1.22E+01             | 95% Chebyshev                              | 166 of 166                |
| m,p-Xylene                                | 3.43E-02             | 2.56E+00             | 5.58E-04             | 4.80E+03                      | 1.69E-01             | 95% KM (Chebyshev)                         | 53 of 83                  |
| Manganese                                 | 2.61E+02             | 8.92E+02             | 5.93E+01             | 2.50E+04                      | 2.78E+02             | 95% Student's-t                            | 166 of 166                |
| Mercury                                   | 2.56E-02             | 8.50E-01             | 2.60E-03             | 2.40E+00                      | 4.00E-02             | 95%KM (BCA)                                | 73 of 166                 |
| Methylcyclohexane                         | 3.66E-02             | 2.73E+00             | 2.23E-04             | 2.40E+04                      | 1.80E-01             | 95% KM (Chebyshev)                         | 57 of 83                  |
| Molybdenum                                | 9.05E-01             | 1.04E+01             | 8.80E-02             | 2.50E+06                      | 1.62E+00             | 97.5% KM (Chebyshev)                       | 118 of 166                |
| Naphthalene                               | 3.26E-01             | 1.92E+01             | 4.82E-03             | 1.40E+02                      | 2.65E-03             | median                                     | 8 of 83                   |
| Nickel                                    | 1.17E+01             | 3.67E+01             | 2.70E+00             | 2.40E+04                      | 1.24E+01             | 95% Student's-t                            | 166 of 166                |
| n-Propylbenzene                           | 2.37E-02             | 1.80E+00             | 2.30E-04             | 3.30E+03                      | 1.63E-01             | 97.5% KM (Chebyshev)                       | 14 of 83                  |
| o-Xylene                                  | 1.30E-02             | 8.40E-01             | 2.23E-04             | 5.80E+03                      | 7.75E-02             | 97.5% KM (Chebyshev)                       | 32 of 83                  |
| Phenanthrene                              | 4.02E-01             | 1.26E+01             | 1.36E-02             |                               | 9.99E-01             | 97.5% KM (Chebyshev)                       | 95 of 166                 |
| Pyrene                                    | 4.32E-01             | 8.47E+00             | 1.21E-02             |                               | 9.71E-01             | 97.5% KM (Chebyshev)                       | 98 of 166                 |
| Strontium                                 | 7.56E+01             | 5.91E+02             | 1.65E+01             |                               | 1.01E+02             | 95% Chebyshev                              | 166 of 166                |
| Tin                                       | 8.11E-01             | 6.48E+00             | 5.20E-01             | 1.00E+07                      | 1.20E+00             | 97.5% KM (Chebyshev)                       | 40 of 166                 |
| Titanium                                  | 2.58E+01             | 6.45E+02             | 4.02E+00             |                               | 3.22E+01             | 95% Student's-t                            | 166 of 166                |
| Toluene                                   | 3.99E-03             | 1.92E-02             | 7.21E-04             | 3.20E+04                      | 6.04E-03             | 97.5% KM (Chebyshev)                       | 69 of 83                  |
| Vanadium                                  | 1.44E+01             | 4.56E+01             | 4.73E+00             | 2.50E+04                      | 1.73E+01             | 97.5% Chebyshev                            | 166 of 166                |
| Xylene (total)                            | 4.73E-02             | 3.40E+00             | 7.77E-04             | 4.80E+03                      | 3.04E-01             | 97.5% KM (Chebyshev)                       | 53 of 83                  |
|                                           |                      |                      |                      |                               |                      |                                            |                           |
| Zinc                                      | 4.34E+02             | 7.65E+03             | 6.17E+00             |                               | 8.15E+02             | 97.5% Chebyshev                            | 166 of 166                |

- \* Soil was collected from 0 to 4 ft. below ground surface.

  \* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent.
- (1) Air Soil Inh-VP PCL = TCEQ protective concentration Level for 30 acre source area Residential soil-to-air pathway (inhalation of volatiles and particulates).
- (2) Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

# TABLE 17 QUALITATIVE CURRENT OFF-SITE RESIDENTIAL RECEPTOR EVALUATION NORTH AREA SOIL\*

|                                              |                      | Max                  | Min                  |                               |                      | (2)                                        | # of Detects/# of    |
|----------------------------------------------|----------------------|----------------------|----------------------|-------------------------------|----------------------|--------------------------------------------|----------------------|
| Chemical of Interest**                       | Average              | Detection            | Detection            | AirSoil <sub>Inh-VP</sub> (1) | 95% UCL              | Statistic Used (2)                         | Samples              |
| 1,1-Dichloroethane                           | 2.67E-02             | 5.18E-01             | 1.61E-03             | 3.20E+03                      | 1.75E-04             | median                                     | 3 of 19              |
| 1,1-Dichloroethene                           | 1.73E-02             | 3.13E-01             | 1.78E-03             | 2.70E+03                      | 3.95E-04             | median                                     | 2 of 19              |
| 1,2-Dichloroethane<br>2-Butanone             | 1.95E-02<br>1.32E-02 | 1.77E-01<br>2.08E-01 | 2.31E-03<br>1.70E-03 | 7.10E+00<br>5.90E+04          | 1.27E-04<br>7.87E-02 | median<br>97.5% KM (Chebyshev)             | 4 of 19<br>11 of 19  |
| 2-Methylnaphthalene                          | 4.05E-02             | 5.30E-01             | 1.70E-03<br>1.00E-02 | 5.90E+04                      | 1.19E-02             | median                                     | 4 of 38              |
| 4,4'-DDE                                     | 2.50E-03             | 1.49E-02             | 2.16E-03             |                               | 4.28E-04             | median                                     | 2 of 38              |
| 4,4'-DDT                                     | 1.16E-02             | 1.08E-02             | 5.97E-04             | 6.20E+02                      | 7.94E-02             | 97.5% KM (Chebyshev)                       | 7 of 38              |
| Acenaphthene                                 | 1.99E-02             | 1.57E-01             | 2.10E-02             |                               | 1.11E-02             | median                                     | 4 of 38              |
| Aluminum                                     | 1.23E+04             | 1.83E+04             | 1.81E+03             | 2.60E+06                      | 1.33E+04             | 95% Student's-t                            | 38 of 38             |
| Anthracene                                   | 2.90E-02             | 2.64E-01             | 8.87E-03             |                               | 8.96E-02             | 97.5% KM (Chebyshev)                       | 6 of 38              |
| Antimony                                     | 1.45E+00             | 8.09E+00             | 1.66E+00             | 2.50E+05                      | 2.45E+00             | 95% KM (Bootstrap)                         | 16 of 38             |
| Aroclor-1254                                 | 1.81E-01             | 9.38E-02             | 1.22E-02             | 2.80E+00                      | 4.30E-03             | median                                     | 2 of 38              |
| Arsenic                                      | 2.44E+00             | 5.69E+00             | 5.40E-01             | 2.70E+03                      | 3.82E+00             | 97.5% KM (Chebyshev)                       | 32 of 38             |
| Barium                                       | 1.41E+02             | 3.62E+02             | 4.61E+01             | 2.50E+05                      | 2.34E+02             | 97.5% Chebyshev                            | 38 of 38             |
| Benzene                                      | 2.92E-03             | 6.32E-03             | 1.38E-03             | 8.40E+01                      | 5.39E-03             | 97.5% KM (Chebyshev)                       | 12 of 18             |
| Benzo(a)anthracene                           | 1.09E-01             | 1.18E+00             | 3.83E-02             | 1.90E+03                      | 1.11E-02             | median                                     | 4 of 38              |
| Benzo(a)pyrene                               | 9.37E-02<br>1.44E-01 | 1.42E+00             | 1.35E-02             | 4.40E+02                      | 3.78E-01             | 97.5% KM (Chebyshev)                       | 10 of 38             |
| Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene | 1.44E-01<br>1.03E-01 | 1.62E+00<br>1.28E+00 | 4.87E-02<br>2.37E-02 | 3.20E+03                      | 2.52E-01<br>3.42E-01 | 95% KM (Bootstrap)<br>97.5% KM (Chebyshev) | 11 of 38<br>14 of 38 |
| Benzo(k)fluoranthene                         | 1.07E-01             | 7.99E-01             | 6.80E-02             | 7.80E+04                      | 1.72E-02             | median                                     | 6 of 38              |
| Beryllium                                    | 7.15E-01             | 2.88E+00             | 6.60E-02             | 4.80E+03                      | 1.18E+00             | 97.5% KM (Chebyshev)                       | 35 of 38             |
| Bis(2-ethylhexyl)phthalate                   | 4.12E-02             | 2.39E-01             | 1.22E-02             | 4.00L+03                      | 9.96E-02             | 97.5% KM (Chebyshev)                       | 11 of 38             |
| Boron                                        | 7.64E+00             | 3.92E+01             | 3.14E+00             | 1.00E+07                      | 1.71E+01             | 97.5% KM (Chebyshev)                       | 26 of 38             |
| Bromoform                                    | 1.14E-02             | 1.80E-02             | 1.10E-02             | 4.30E+02                      | 1.86E-04             | median                                     | 2 of 19              |
| Butyl Benzyl Phthalate                       | 5.66E-02             | 1.51E-01             | 5.40E-02             | 1.30E+04                      | 1.36E-02             | median                                     | 2 of 38              |
| Cadmium                                      | 3.63E-01             | 8.00E-01             | 2.80E-01             | 6.50E+03                      | 5.19E-01             | 97.5% KM (Chebyshev)                       | 15 of 38             |
| Carbazole                                    | 1.74E-02             | 1.28E-01             | 1.08E-02             |                               | 1.10E-02             | median                                     | 7 of 38              |
| Carbon Disulfide                             | 8.64E-03             | 2.84E-02             | 7.57E-03             | 5.50E+03                      | 1.19E-04             | median                                     | 3 of 19              |
| Chromium                                     | 1.83E+01             | 1.28E+02             | 7.76E+00             | 5.00E+04                      | 3.21E+01             | 95% Chebyshev                              | 38 of 38             |
| Chrysene                                     | 1.03E-01             | 1.30E+00             | 1.04E-02             | 3.00E+05                      | 3.84E-01             | 97.5% KM (Chebyshev)                       | 11 of 38             |
| cis-1,2-Dichloroethene                       | 6.61E-02             | 9.99E-01             | 1.95E-02             | 6.30E+03                      | 1.38E-04             | median                                     | 2 of 19              |
| Cobalt                                       | 6.52E+00<br>6.56E+01 | 1.03E+01<br>2.00E+02 | 2.81E+00<br>4.59E+00 | 1.30E+03<br>5.00E+05          | 7.04E+00<br>5.12E+02 | 95% Student's-t<br>99% Chebyshev           | 38 of 38<br>38 of 38 |
| Copper<br>Cyclohexane                        | 1.13E-03             | 1.85E-03             | 9.81E-04             | 4.70E+04                      | 1.25E-03             | median                                     | 5 of 19              |
| Dibenz(a,h)anthracene                        | 6.88E-02             | 4.04E-01             | 4.50E-02             | 1.00E+03                      | 1.08E-02             | median                                     | 7 of 38              |
| Dibenzofuran                                 | 1.96E-02             | 8.62E-02             | 1.50E-02             |                               | 1.50E-02             | median                                     | 2 of 38              |
| Diethyl Phthalate                            | 1.01E-02             | 1.10E-02             | 9.92E-03             |                               | 1.85E-02             | median                                     | 2 of 38              |
| Di-n-butyl Phthalate                         | 1.05E-02             | 1.50E-02             | 1.00E-02             | 1.50E+04                      | 3.07E-02             | median                                     | 2 of 38              |
| Di-n-octyl Phthalate                         | 1.90E-02             | 1.23E-01             | 1.54E-02             |                               | 9.52E-03             | median                                     | 3 of 38              |
| Ethylbenzene                                 | 2.69E-03             | 5.02E-03             | 1.14E-03             | 7.90E+03                      | 1.14E-03             | median                                     | 5 of 19              |
| Fluoranthene                                 | 1.44E-01             | 2.19E+00             | 2.14E-02             |                               | 6.24E-01             | 97.5% KM (Chebyshev)                       | 9 of 38              |
| Fluorene                                     | 5.27E-02             | 1.41E-01             | 1.70E-02             |                               | 3.92E-04             | median                                     | 4 of 38              |
| Indeno(1,2,3-cd)pyrene                       | 1.15E-01             | 1.51E+00             | 2.00E-02             | 1.30E+04                      | 3.96E-01             | 97.5% KM (Chebyshev)                       | 13 of 38             |
| Iron .                                       | 2.09E+04             | 1.02E+05             | 7.12E+03             |                               | 3.69E+04             | 95% Chebyshev                              | 38 of 38             |
| Lead                                         | 5.30E+01             | 5.83E+00             | 6.30E+02             |                               | 2.48E+02             | 99% Chebyshev                              | 34 of 38             |
| Lithium<br>m,p-xylene                        | 1.92E+01<br>1.32E-03 | 3.22E+01<br>1.39E-03 | 2.59E+00<br>1.32E-03 | 4.80E+03                      | 2.08E+01<br>4.22E-04 | 95% Student's-t<br>median                  | 36 of 38<br>2 of 19  |
| Manganese                                    | 3.87E+02             | 1.21E+03             | 8.23E+01             | 2.50E+04                      | 6.39E+02             | 97.5% Chebyshev                            | 38 of 38             |
| Mercury                                      | 1.43E-02             | 1.70E-01             | 3.40E-03             | 2.40E+00                      | 4.38E-02             | 97.5% KM (Chebyshev)                       | 15 of 38             |
| Methylcyclohexane                            | 1.76E-03             | 2.78E-03             | 1.50E-03             | 2.40E+04                      | 1.54E-03             | median                                     | 6 of 19              |
| Molybdenum                                   | 1.40E-01             | 1.07E+01             | 8.50E-02             | 2.50E+06                      | 2.49E+00             | 97.5% KM (Chebyshev)                       | 21 of 38             |
| Naphthalene                                  | 3.24E+00             | 1.48E-01             | 1.30E-03             | 1.40E+02                      | 3.70E-03             | median                                     | 6 of 19              |
| Nickel                                       | 1.80E+01             | 5.17E+01             | 9.74E+00             | 2.40E+04                      | 2.01E+01             | 95% Student's-t                            | 38 of 38             |
| Phenanthrene                                 | 1.50E-01             | 1.83E+00             | 1.80E-02             |                               | 5.70E-01             | 97.5% KM (Chebyshev)                       | 12 of 38             |
| Pyrene                                       | 2.62E-01             | 4.64E+00             | 1.49E-02             |                               | 1.12E+00             | 97.5% KM (Chebyshev)                       | 14 of 38             |
| Silver                                       | 1.05E-01             | 4.10E-01             | 9.20E-02             | 5.00E+03                      | 5.90E-02             | median                                     | 3 of 38              |
| Strontium                                    | 5.64E+01             | 9.62E+01             | 2.21E+01             |                               | 6.20E+01             | 95% Student's-t                            | 38 of 38             |
| Tetrachloroethene                            | 1.26E-02             | 2.23E-01             | 1.35E-03             | 4.80E+02                      | 2.11E-04             | median                                     | 3 of 19              |
| Tin                                          | 5.34E+00             | 3.67E+00             | 6.80E-01             | 1.00E+07                      | 5.70E-01             | median                                     | 5 of 38              |
| Titanium                                     | 2.33E+01             | 5.70E+01             | 3.41E+00             | 3.20E+04                      | 4.03E+01             | 97.5% Chebyshev<br>97.5% KM (Chebyshev)    | 38 of 38             |
| Toluene<br>Vanadium                          | 3.24E-03<br>2.10E+01 | 1.22E-02<br>4.58E+01 | 1.34E-03<br>7.85E+00 | 3.20E+04<br>2.50E+04          | 8.15E-03<br>2.33E+01 | 97.5% KM (Chebysnev)<br>95% Student's-t    | 8 of 19<br>38 of 38  |
| Xylene (total)                               | 1.78E-01             | 1.76E+00             | 1.39E-03             | 4.80E+03                      | 8.58E-01             | 97.5% KM (Chebyshev)                       | 8 of 19              |
| • ' '                                        | 2.83E+02             | 5.64E+03             | 2.11E+01             | 4.002+03                      | 1.78E+03             | 99% Chebyshev                              | 38 of 38             |
| Zinc                                         | 2.83E+U2             |                      |                      |                               |                      |                                            |                      |

Notes:
+ Soil was collected from 0 to 4 ft. below ground surface.

\*\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a

\*\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a

\*\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a

\*\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a

\*\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a

\*\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a

\*\* Chemicals of interest are any chemical measured in at least one sample at a frequency of detection greater than five percent. Bolded compounds have a

\*\* Chemical Society of the sample at a frequency of detection greater than five percent. Bolded compounds have a second of the sample at a frequency of detection greater than five percent. Bolded compounds have a second of the sample at a frequency of detection greater than five percent. Bolded compounds have a second of the sample at a frequency of detection greater than five percent. Bolded compounds have a second of the sample at a frequency of detection greater than five percent. Bolded compounds have a second of the sample at a frequency of detection greater than five percent. Bolded compounds have a second of the sample at a frequency of detection greater than five percent. Bolded compounds have a second of the sample at a frequency of detection greater than five percent. Bolded compounds have a second of the sample at a frequency of detection greater than five percent. Bolded compo maximum concentration that exceeded the screening value.

(1) - Air Soil<sub>Inh-VP</sub> PCL = TCEQ protective concentration Level for 30 acre source area Residential soil-to-air pathway (inhalation of volatiles and particulates).

 $<sup>^{(2)}</sup>$  - Recommended exposure point concentration to be used based on data distribution per Pro UCL (see Appendix A).

TABLE 18
BACKGROUND COMPARISONS

# HYPOTHESIS TESTED: ARE SITE DATA STATISTICALLY DIFFERENT THAN BACKGROUND DATA?(1)

| CHEMICAL OF INTEREST | SOUTH AREA SURFACE<br>SOIL | SOUTH AREA<br>SOIL | NORTH AREA SURFACE<br>SOIL | NORTH AREA<br>SOIL | INTRACOASTAL<br>WATERWAY<br>SEDIMENT | WETLANDS SEDIMENT | POND SEDIMENT |
|----------------------|----------------------------|--------------------|----------------------------|--------------------|--------------------------------------|-------------------|---------------|
| Aluminum             | NA                         | NA                 | NA                         | NA                 | Yes*                                 | NA                | NA            |
| Antimony             | No                         | No                 | No                         | No                 | Yes*                                 | No                | No            |
| Arsenic              | No                         | No                 | No                         | No                 | Yes*                                 | No                | Yes*          |
| Barium               | No                         | No                 | Yes*                       | Yes*               | No                                   | Yes*              | No            |
| Beryllium            | NA NA                      | NA<br>NA           | NA NA                      | NA                 | Yes*                                 | NA                | NA<br>NA      |
| Boron                | NA NA                      | NA<br>NA           | NA NA                      | NA                 | Yes*                                 | NA NA             | NA<br>NA      |
| Cadmium              | No                         | No                 | Yes                        | Yes*               | NA                                   | Yes               | Yes           |
| Chromium             | No                         | No                 | No                         | No                 | NA<br>NA                             | No                | No            |
| Cobalt               | NA NA                      | NA                 | NA NA                      | NA                 | Yes*                                 | NA NA             | NA NA         |
| Copper               | Yes                        | No                 | No                         | No                 | No                                   | No                | No            |
| Iron                 | NA NA                      | NA                 | NA NA                      | NA                 | No                                   | NA NA             | No            |
| Lead                 | Yes                        | No                 | No                         | No                 | No                                   | No                | Yes           |
| Lithium              | Yes*                       | Yes*               | Yes*                       | No                 | Yes*                                 | No                | No            |
|                      | Yes*                       | Yes*               | No                         | No                 | No                                   | No                | Yes           |
| Manganese            | No                         | No                 | Yes*                       | Yes*               | No                                   | No                | NA<br>NA      |
| Mercury              | Yes                        |                    |                            |                    |                                      | -                 |               |
| Molybdenum           |                            | No                 | No                         | No                 | No                                   | No                | Yes*          |
| Nickel               | NA<br>NA                   | NA                 | NA<br>NA                   | NA                 | No                                   | NA<br>NA          | NA<br>NA      |
| Strontium            | NA<br>NA                   | NA                 | NA<br>NA                   | NA                 | Yes*                                 | NA                | NA<br>NA      |
| Titanium             | NA<br>NA                   | NA                 | NA<br>NA                   | NA                 | Yes*                                 | NA<br>NA          | NA<br>NA      |
| Vanadium             | NA NA                      | NA                 | NA                         | NA                 | Yes*                                 | NA                | NA            |
| Zinc                 | Yes                        | No                 | No                         | No                 | No                                   | No                | No            |

### Notes:

NA - No analysis was performed for compound in background.

 $<sup>^{(1)}</sup>$  Detailed statistical procedures are outlined in Section 2.2.2 and calculations are provided in Appendix B.

<sup>\*</sup> Statistical difference is due to background being greater than site.

TABLE 19 PCOCS IDENTIFIED AND QUANTITATIVELY EVALUATED IN THE BHHRA\*

| SOUTH AREA SOIL**                                                                                                                                                                                 | NORTH AREA SOIL**                                                                                                                                                    | INTRACOASTAL<br>WATERWAY SURFACE<br>WATER | INTRACOASTAL<br>WATERWAY<br>SEDIMENT            | WETLANDS SURFACE<br>WATER | WETLANDS SEDIMENT                                                         | POND SURFACE<br>WATER | POND SEDIMENT                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|---------------------------|---------------------------------------------------------------------------|-----------------------|--------------------------------|
| 4,4'-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Naphthalene | 1,2-Dichloroethane Aluminium Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Iron Tetrachloroethene | none+                                     | Benzo(a)pyrene<br>Dibenz(a,h)anthracene<br>Iron |                           | Aluminum Benzo(a)pyrene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Iron | none+                 | Aluminum<br>Iron<br>m,p-Cresol |

#### Notes:

<sup>\*</sup> Groundwater was not included in the table because all compounds measured in groundwater were evaluated quantitatively in the BHHRA.

\*\* Soil includes both surface and subsurface soil for the purposes of this table.

+ All COIs for surface water screened out, as discussed in Section 2.2.1.

# TABLE 20 EVALUATION OF EXPOSURE PATHWAYS

| PATHWAY NAME                           | POTENTIAL CONTAMINANTS OF CONCERN                                                                 | SOURCE                 | POTENTIAL<br>EXPOSURE<br>MEDIA | POTENTIAL<br>POINT OF<br>EXPOSURE | POTENTIALLY<br>EXPOSED<br>POPULATION*                          | POTENTIAL<br>ROUTE OF<br>EXPOSURE               | COMMENTS                                                                      |
|----------------------------------------|---------------------------------------------------------------------------------------------------|------------------------|--------------------------------|-----------------------------------|----------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|
|                                        | 4,4'-DDD, Aluminum, Aroclor-1254,<br>Benzo(a)anthracene, Benzo(a)pyrene,<br>Benzo(b)fluoranthene, |                        | Soil                           | On-site                           | Industrial Worker,<br>Construction Worker,<br>Youth Trespasser | Incidental ingestion and dermal contact         | Pathways quantitatively evaluated in BHHRA.                                   |
| South Area Soil                        | Indeno(1,2,3-cd)pyrene, Iron,                                                                     | Site Operations        | Air                            | On-site                           | Industrial Worker,<br>Construction Worker,<br>Youth Trespasser | Inhalation of VOCs and particulates             | Pathways quantitatively evaluated in BHHRA.                                   |
|                                        | Isopropylbenzene (cumene), Lead,<br>Naphthalene                                                   |                        | Air                            | Off-site                          | Off-Site Resident                                              | Inhalation of VOCs and particulates             | Pathway screened out as described in Section 2.2.                             |
| South Area Groundwater                 | VOCs                                                                                              | Site Operations        | Soil Gas to<br>Indoor Air      | On-site                           | Industrial Worker (future only)                                | Inhalation of vapors intruding from groundwater | Pathway quantitatively evaluated in BHHRA.                                    |
|                                        | 1,2-Dichloroethane, Aluminum, Aroclor-<br>1254, Benzo(a)anthracene,                               |                        | Soil                           | On-site                           | Industrial Worker,<br>Construction Worker,<br>Youth Trespasser | Incidental ingestion and dermal contact         | Pathways quantitatively evaluated in BHHRA.                                   |
| North Area Soil                        |                                                                                                   | Site Operations        | Air                            | On-site and Off-<br>site          | Industrial Worker,<br>Construction Worker,<br>Youth Trespasser | Inhalation of VOCs and particulates             | Pathways quantitatively evaluated in BHHRA.                                   |
|                                        |                                                                                                   |                        | Air                            | Off-site                          | Off-Site Resident                                              | Inhalation of VOCs and particulates             | Pathway screened out as described in Section 2.2.                             |
| North Area Groundwater                 | VOCs                                                                                              | Surface<br>Impoundment | Soil Gas to<br>Indoor Air      | On-site                           | Industrial Worker (future only)                                | Inhalation of vapors intruding from groundwater | Pathway quantitatively evaluated in BHHRA.                                    |
| Intracoastal Waterway<br>Sediment      | Benzo(a)pyrene, Dibenz(a,h)anthracene, Iron                                                       | Runoff from Site       | Sediment                       | Off-site                          | Contact Recreation                                             | Incidental ingestion and dermal contact         | Pathways quantitatively evaluated in BHHRA.                                   |
|                                        |                                                                                                   |                        | Fish Uptake                    | Off-site                          | Recreational Fisherman                                         | Fish ingestion                                  | Quantitatively evaluated in fish tissue risk assessment.                      |
| Intracoastal Waterway Surface<br>Water | COIs screened out as described in Section 2.2.                                                    | Runoff from Site       | Surface Water                  | Off-site                          | Contact Recreation                                             | Incidental ingestion and dermal contact         | Pathway screened out as described in Section 2.2. Quantitatively evaluated in |
|                                        | Aluminum Penna(a)numan                                                                            |                        | Fish Uptake                    | Off-site                          | Recreational Fisherman                                         | Fish ingestion                                  | fish tissue risk assessment.                                                  |
| North Wetlands Sediment                | Aluminum, Benzo(a)pyrene, Dibenz(a,h)anthracene, Indeno(1,2,3- cd)pyrene, Iron                    | Runoff from Site       | Sediment                       | On-site and Off-<br>site          | Contact Recreation                                             | Incidental ingestion and dermal contact         | Pathways quantitatively evaluated in BHHRA.                                   |
| North Wetlands Surface Water           | COIs screened out as described in Section 2.2.                                                    | Runoff from Site       | Surface Water                  | On-site and Off-<br>site          | Contact Recreation                                             | Incidental ingestion and dermal contact         | Pathway screened out as described in Section 2.2.                             |
| Pond Sediment                          | Aluminum, Iron, m,p-Cresol                                                                        | Runoff from Site       | Sediment                       | On-site                           | Contact Recreation                                             | Incidental ingestion and dermal contact         | Pathways quantitatively evaluated in BHHRA.                                   |
| Pond Surface Water                     | COIs screened out as described in Section 2.2.                                                    | Runoff from Site       | Surface Water                  | On-site                           | Contact Recreation                                             | Incidental ingestion and dermal contact         | Pathway screened out as described in Section 2.2.                             |

#### Notes

Unless otherwise noted, the timeframe considered was current and future exposure.

TABLE 21 EXPOSURE SCENARIOS BY MEDIA

| MEDIA                               | Future On-Site Industrial<br>Worker Receptor | Future On-Site Construction<br>Worker Receptor | Potential Current Youth<br>Trespasser | Potential Current Contact<br>Recreation | Potential Current Off-<br>Site Residential<br>Receptor |
|-------------------------------------|----------------------------------------------|------------------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------------------|
| South Area Surface Soil             | X <sup>(1)</sup>                             | X <sup>(1)</sup>                               | X <sup>(1)</sup>                      |                                         | X <sup>(2)</sup>                                       |
|                                     | X (1)                                        | X (1)                                          | X (1)                                 |                                         | X (3)                                                  |
| South Area Soil                     | 1                                            | <b>^</b> ``                                    | ^``                                   |                                         | <b>^</b> ` '                                           |
| South Area Groundwater              | X <sup>(6)</sup>                             |                                                |                                       |                                         |                                                        |
| Intracoastal Waterway Surface Water |                                              |                                                |                                       | X <sup>(4)</sup>                        |                                                        |
| Intracoastal Waterway Sediment      |                                              |                                                |                                       | X <sup>(5)</sup>                        |                                                        |
| Intracoastal Waterway Fish          |                                              |                                                |                                       |                                         | X*                                                     |
| North Area Surface Soil             | X <sup>(1)</sup>                             | X <sup>(1)</sup>                               | X <sup>(1)</sup>                      |                                         |                                                        |
| North Area Soil                     | X <sup>(1)</sup>                             | X <sup>(1)</sup>                               | X <sup>(1)</sup>                      |                                         |                                                        |
| North Area Groundwater              | X <sup>(7)</sup>                             |                                                |                                       |                                         |                                                        |
| North Area Wetlands Surface Water   |                                              | X <sup>+</sup>                                 | X <sup>(12)</sup>                     | X <sup>(8)</sup>                        |                                                        |
| North Area Wetlands Sediment        |                                              | X <sup>+</sup>                                 | X <sup>(12)</sup>                     | X <sup>(9)</sup>                        |                                                        |
| North Area Ponds Surface Water      |                                              | X <sup>+</sup>                                 | X <sup>(12)</sup>                     | X <sup>(10)</sup>                       |                                                        |
| North Area Ponds Sediment           |                                              | X <sup>+</sup>                                 | X <sup>(12)</sup>                     | X (11)                                  |                                                        |

#### Notes:

<sup>\*</sup> EPA-approved fish ingestion pathway risk assessment (PBW, 2007) concluded that this pathway does not pose a human health threat.

<sup>\*</sup> Exposure for this receptor was not quantified since exposure would be approximately four times less than the acceptable risk calculated for the contact recreation receptor. due to the less exposure incurred for the worker given the differences in exposure frequency and duration.

<sup>(1)</sup> Risks presented in Table 23.

<sup>(2)</sup> Risks presented in Table 24.

<sup>(3)</sup> Risks presented in Table 25.

<sup>(4)</sup> Screening evaluation presented in Table 4.

<sup>(5)</sup> Screening evaluation presented in Table 6.

<sup>(6)</sup> Risks presented in Table 26.

<sup>(7)</sup> Risks presented in Table 27.

<sup>(8)</sup> Screening evaluation presented in Table 11.

<sup>(9)</sup> Screening evaluation presented in Table 13.

<sup>(10)</sup> Screening evaluation presented in Table 12.

<sup>(11)</sup> Screening evaluation presented in Table 14.

<sup>(12)</sup> Trespasser risks were assumed to be equivalent to the contact recreation receptor.

TABLE 22
EXPOSURE ASSUMPTIONS FOR THE INDUSTRIAL WORKER SCENARIO

|           |                                          | AVERAGE  |            | RME      |            |
|-----------|------------------------------------------|----------|------------|----------|------------|
| PARAMETER | DEFINITION                               | VALUE    | REFERENCE  | VALUE    | REFERENCE  |
|           |                                          |          |            |          |            |
| PEF       | Particulate Emission Factor (m^3/kg)     | 1.00E+09 | EPA, 2004a | 1.00E+09 | EPA, 2004a |
| IR        | Ingestion rate of soil (mg/day)          | 50       | EPA, 2004a | 50       | EPA, 2004a |
| SA        | Skin surface area (cm2)                  | 3300     | EPA, 2004a | 3300     | EPA, 2004a |
| AF        | Soil to skin adherence factor (mg/cm2)   | 0.021    | EPA, 2001a | 0.2      | EPA, 2004a |
| EF        | Exposure frequency (day/yr)              | 250      | EPA, 2004a | 250      | EPA, 2004a |
| ED        | Exposure duration (yr)                   | 25       | EPA, 2004a | 25       | EPA, 2004a |
| BW        | Body weight (kg)                         | 70       | EPA, 1989  | 70       | EPA, 1989  |
| ATc       | Averaging time for carcinogens (days)    | 25550    | EPA, 1989  | 25550    | EPA, 1989  |
| ATnc      | Averaging time for noncarcinogens (days) | 9125     | EPA, 1989  | 9125     | EPA, 1989  |

TABLE 23
EXPOSURE ASSUMPTIONS FOR THE CONSTRUCTION WORKER SCENARIO

|           |                                          | AVERAGE  |                       | RME      |                       |
|-----------|------------------------------------------|----------|-----------------------|----------|-----------------------|
| PARAMETER | DEFINITION                               | VALUE    | REFERENCE             | VALUE    | REFERENCE             |
|           |                                          |          |                       |          |                       |
| PEF       | Particulate Emission Factor (m^3/kg)     | 1.00E+09 | EPA, 2004a            | 1.00E+09 | EPA, 2004a            |
| IR        | Ingestion rate of soil (mg/day)          | 165      | professional judgment | 330      | EPA, 2001             |
| SA        | Skin surface area (cm2)                  | 3300     | EPA, 2004a            | 3300     | EPA, 2004a            |
| AF        | Soil to skin adherence factor (mg/cm2)   | 0.14     | EPA, 2004b            | 0.3      | EPA, 2004b            |
| EF        | Exposure frequency (day/yr)              | 90       | professional judgment | 250      | professional judgment |
| ED        | Exposure duration (yr)                   | 1        | professional judgment | 1        | professional judgment |
| BW        | Body weight (kg)                         | 70       | EPA, 1989             | 70       | EPA, 1989             |
| ATc       | Averaging time for carcinogens (days)    | 25550    | EPA, 1989             | 25550    | EPA, 1989             |
| ATnc      | Averaging time for noncarcinogens (days) | 365      | EPA, 1989             | 365      | EPA, 1989             |

TABLE 24
EXPOSURE ASSUMPTIONS FOR THE YOUTH TRESPASSER SCENARIO

|           |                                          | AVERAGE  |                       | RME      |             |
|-----------|------------------------------------------|----------|-----------------------|----------|-------------|
| PARAMETER | DEFINITION                               | VALUE    | REFERENCE             | VALUE    | REFERENCE   |
|           |                                          |          |                       |          |             |
| PEF       | Particulate Emission Factor (m^3/kg)     | 1.00E+09 | EPA, 2004a            | 1.00E+09 | EPA, 2004a  |
| IR        | Ingestion rate of soil (mg/day)          | 100      | TNRCC, 1998           | 100      | TNRCC, 1998 |
| SA        | Skin surface area (cm2)                  | 3500     | TNRCC, 1998           | 3500     | TNRCC, 1998 |
| AF        | Soil to skin adherence factor (mg/cm2)   | 0.1      | TNRCC, 1998           | 0.1      | TNRCC, 1998 |
| EF        | Exposure frequency (day/yr)              | 25       | professional judgment | 50       | TNRCC, 1998 |
| ED        | Exposure duration (yr)                   | 6        | professional judgment | 12       | TNRCC, 1998 |
| BW        | Body weight (kg)                         | 40       | EPA, 1991a            | 40       | EPA, 1991a  |
| ATc       | Averaging time for carcinogens (days)    | 25550    | EPA, 1989             | 25550    | EPA, 1989   |
| ATnc      | Averaging time for noncarcinogens (days) | 9125     | EPA, 1989             | 9125     | EPA, 1989   |

TABLE 25
EXPOSURE ASSUMPTIONS FOR THE CONTACT RECREATION SCENARIO

|           |                                             | AVERAGE |                       | RME   |            |
|-----------|---------------------------------------------|---------|-----------------------|-------|------------|
| PARAMETER | DEFINITION                                  | VALUE   | REFERENCE             | VALUE | REFERENCE  |
|           |                                             |         |                       |       |            |
| IR        | Ingestion rate of soil or sediment (mg/day) | 100     | TCEQ, 2002            | 100   | TCEQ, 2002 |
| SA        | Skin surface area (cm2)                     | 4400    | TCEQ, 2002            | 4400  | TCEQ, 2002 |
| AF        | Sediment to skin adherence factor (mg/cm2)  | 0.3     | TCEQ, 2002            | 0.3   | TCEQ, 2002 |
| EF        | Exposure frequency (day/yr)                 | 19      | professional judgment | 39    | TCEQ, 2002 |
| ED        | Exposure duration (yr)                      | 13      | professional judgment | 25    | EPA, 1989  |
| BW        | Body weight (kg)                            | 70      | EPA, 1989             | 70    | EPA, 1989  |
| ATc       | Averaging time for carcinogens (days)       | 25550   | EPA, 1989             | 25550 | EPA, 1989  |
| ATnc      | Averaging time for noncarcinogens (days)    | 9125    | EPA, 1989             | 9125  | EPA, 1989  |

# TABLE 26 JOHNSON AND ETTINGER VAPOR INTRUSTION MODEL OUTPUT FOR SOUTH AREA GROUNDWATER

|                                   |          | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |             | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|-----------------------------------|----------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Potential Chemical of<br>Concern* | Average  |                                                                            |                                                                              | RME EPC (1) |                                                                            |                                                                              |
|                                   | •        | NIA                                                                        | 2.555.00                                                                     |             | NIA                                                                        | 0.005.05                                                                     |
| 1,1,1-Trichloroethane             | 1.85E-04 | NA                                                                         | 3.55E-06                                                                     | 1.40E-03    | NA                                                                         | 2.68E-05                                                                     |
| 1,1-Dichloroethane                | 2.10E-03 | NA                                                                         | 6.23E-05                                                                     | 1.50E-02    | NA                                                                         | 4.45E-04                                                                     |
| 2-Butanone                        | 4.30E-04 | NA                                                                         | 1.38E-07                                                                     | 3.00E-03    | NA                                                                         | 9.59E-07                                                                     |
| 2-Methylnaphthalene               | 7.76E-04 | NA                                                                         | 2.73E-05                                                                     | 8.80E-03    | NA                                                                         | 3.09E-04                                                                     |
| 4,4'-DDE                          | 3.34E-06 | 5.18E-11                                                                   | NA                                                                           | 1.00E-05    | 1.55E-10                                                                   | NA                                                                           |
| Acetophenone                      | 3.72E-03 | NA                                                                         | 5.91E-06                                                                     | 4.60E-02    | NA                                                                         | 7.31E-05                                                                     |
| Benzene                           | 4.25E-04 | 2.38E-08                                                                   | 2.38E-04                                                                     | 4.20E-03    | 2.36E-07                                                                   | 2.35E-03                                                                     |
| Benzo(b)fluoranthene              | 3.26E-04 | 2.95E-08                                                                   | NA                                                                           | 2.80E-03    | 1.36E-07                                                                   | NA                                                                           |
| Carbon Disulfide                  | 6.50E-05 | NA                                                                         | 8.94E-06                                                                     | 3.00E-04    | NA                                                                         | 4.13E-05                                                                     |
| Chrysene                          | 1.93E-04 | 1.83E-10                                                                   | NA                                                                           | 6.00E-04    | 5.69E-10                                                                   | NA                                                                           |
| cis-1,2-Dichloroethene            | 3.27E-03 | NA                                                                         | 1.07E-03                                                                     | 3.00E-02    | NA                                                                         | 9.86E-03                                                                     |
| Fluorene                          | 1.84E-04 | NA                                                                         | 1.56E-06                                                                     | 1.00E-03    | NA                                                                         | 8.48E-06                                                                     |
| gamma-BHC (Lindane)               | 7.66E-06 | 3.61E-10                                                                   | 2.16E-06                                                                     | 4.20E-05    | 1.98E-09                                                                   | 1.18E-05                                                                     |
| Isopropylbenzene (Cumene)         | 1.78E-04 | NA                                                                         | 1.34E-05                                                                     | 1.60E-03    | NA                                                                         | 1.21E-04                                                                     |
| Vinyl Chloride                    | 1.85E-04 | 6.15E-08                                                                   | 1.63E-04                                                                     | 1.90E-03    | 6.31E-07                                                                   | 1.67E-03                                                                     |
|                                   | TOTAL    | 1.15E-07                                                                   | 1.60E-03                                                                     | TOTAL       | 1.01E-06                                                                   | 1.49E-02                                                                     |

#### Notes

<sup>\*</sup> Only volatile compounds were assesses for this pathway.

<sup>(1)</sup> RME EPC is the reasonable maximim exposure exposure point concentration.

# TABLE 27 JOHNSON AND ETTINGER VAPOR INTRUSTION MODEL OUTPUT FOR NORTH AREA GROUNDWATER

| Incremental  | Hazard        | Incremental  | Hazard        |
|--------------|---------------|--------------|---------------|
| risk from    | quotient      | risk from    | quotient      |
| vapor        | from vapor    | vapor        | from vapor    |
| intrusion to | intrusion to  | intrusion to | intrusion to  |
| indoor air,  | indoor air,   | indoor air,  | indoor air,   |
| carcinogen   | noncarcinogen | carcinogen   | noncarcinogen |
| (unitless)   | (unitless)    | (unitless)   | (unitless)    |

|                        |          | (unitless) | (unitless) |             | (unitless) | (unitless) |
|------------------------|----------|------------|------------|-------------|------------|------------|
| Potential Chemical of  |          |            |            |             |            |            |
| Concern*+              | Average  |            |            | RME EPC (1) |            |            |
| 1,1,1-Trichloroethane  | 1.48E+01 | NA         | 2.84E-01   | 1.56E+02    | NA         | 2.99E+00   |
| 1,1-Dichloroethane     | 2.80E+00 | NA         | 8.31E-02   | 3.15E+01    | NA         | 9.34E-01   |
| 1,1-Dichloroethene     | 3.46E+00 | NA         | 1.26E+00   | 2.92E+01    | NA         | 1.06E+01   |
| 1,2,3-Trichloropropane | 6.17E+00 | 3.83E-03   | 3.19E+00   | 4.43E+01    | 2.75E-02   | 2.29E+01   |
| 1,2,4-Trimethylbenzene | 3.80E-02 | NA         | 8.29E-02   | 4.20E-02    | NA         | 9.16E-02   |
| 1,2-Dichloroethane     | 2.42E+01 | 1.39E-03   | NA         | 3.28E+02    | 1.89E-02   | NA         |
| 1,2-Dichloropropane    | 4.90E-01 | 3.46E-05   | 1.04E+00   | 3.45E+00    | 2.43E-04   | 7.32E+00   |
| 2-Methylnaphthalene    | 2.70E-03 | NA         | 9.49E-05   | 1.60E-02    | NA         | 5.62E-04   |
| 4,4'-DDE               | 2.14E-05 | 3.32E-10   | NA         | 2.70E-04    | 4.19E-09   | NA         |
| Acenaphthene           | 9.00E-04 | NA         | 6.96E-06   | 8.60E-03    | NA         | 6.65E-05   |
| Acetone                | 2.81E-01 | NA         | 1.33E-03   | 1.15E-01    | NA         | 5.45E-04   |
| Acetophenone           | 6.80E-03 | NA         | 1.08E-05   | 7.40E-02    | NA         | 1.18E-04   |
| alpha-BHC              | 1.96E-05 | 3.66E-09   | NA         | 2.00E-04    | 3.74E-08   | NA         |
| Benzene                | 1.02E+00 | 5.72E-05   | 5.70E-01   | 8.24E+00    | 4.62E-04   | 4.61E+00   |
| Benzo(b)fluoranthene   | 3.23E-04 | 2.92E-08   | NA         | 1.40E-03    | 1.27E-07   | NA         |
| Carbon Tetrachloride   | 5.60E-01 | 2.63E-04   | NA         | 7.58E+00    | 3.56E-03   | NA         |
| cis-1,2-Dichloroethene | 8.96E+00 | NA         | 2.94E+00   | 1.24E+02    | NA         | 4.08E+01   |
| Dibenzofuran           | 6.01E-04 | NA         | 1.51E-05   | 4.90E-03    | NA         | 1.23E-04   |
| Dieldrin               | 5.01E-06 | 2.52E-09   | 7.30E-06   | 2.64E-05    | 1.33E-08   | 3.85E-05   |
| Ethylbenzene           | 9.69E-02 | NA         | 1.89E-03   | 7.40E-01    | NA         | 1.44E-02   |
| Fluorene               | 8.51E-04 | NA         | 7.22E-06   | 6.10E-03    | NA         | 5.18E-05   |
| gamma-BHC (Lindane)    | 1.25E-04 | 5.89E-09   | 3.53E-05   | 1.50E-03    | 7.06E-08   | 4.23E-04   |
| m,p-Xylene             | 6.85E-02 | NA         | 1.34E-02   | 1.68E-01    | NA         | 3.28E-02   |
| Methylene Chloride     | 9.57E+01 | 1.77E-04   | 2.91E-01   | 1.23E+03    | 2.27E-03   | 3.74E+00   |
| Naphthalene            | 7.83E-02 | NA         | 6.40E-02   | 3.22E-01    | NA         | 2.63E-01   |
| o-Xylene               | 4.62E-02 | NA         | 7.26E-03   | 4.40E-02    | NA         | 6.92E-03   |
| Pyrene                 | 2.23E-04 | NA         | 7.70E-07   | 5.00E-04    | NA         | 1.73E-06   |
| Styrene                | 2.60E-02 | NA         | 1.98E-04   | 2.50E-03    | NA         | 1.91E-05   |
| Tetrachloroethene      | 1.95E+00 | 2.05E-04   | 1.35E-01   | 2.05E+01    | 2.15E-03   | 1.42E+00   |
| Toluene                | 3.35E-01 | NA         | 1.61E-02   | 4.05E+00    | NA         | 1.94E-01   |
| Trichloroethene        | 1.15E+01 | 1.43E-02   | 7.59E+00   | 8.40E+01    | 1.05E-01   | 5.54E+01   |
| Vinyl Chloride         | 5.02E-01 | 1.67E-04   | 4.42E-01   | 5.09E+00    | 1.69E-03   | 4.49E+00   |
|                        | TOTAL    | 2.04E-02   | 1.80E+01   | TOTAL       | 1.61E-01   | 1.56E+02   |

# Notes:

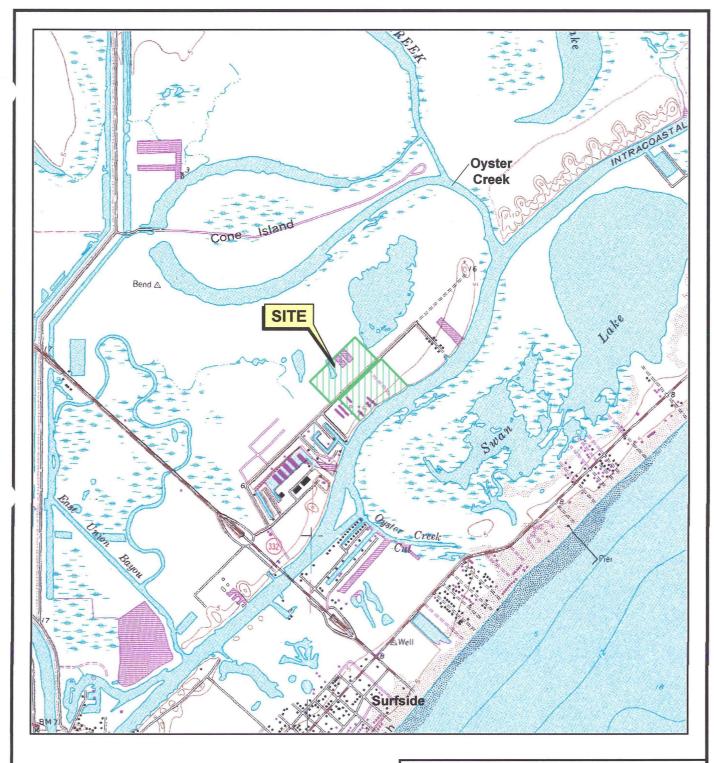
<sup>\*</sup> Only volatile compounds were assesses for this pathway.

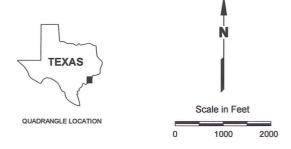
<sup>+</sup> Compounds with a cancer risk greater than 1 x 10<sup>-5</sup> or a hazard index greater than 1 have been bolded.

<sup>(1)</sup> RME EPC is the reasonable maximim exposure exposure point concentration.

# TABLE 28 SUMMARY OF HAZARD INDICES AND CANCER RISK ESTIMATES FOR SOIL AND SEDIMENT EXPOSURE

# **SOUTH AREA**


| HYPOTHETICAL ON-SITE RECEPTORS                              | CARCINOGENIC RISK    | NONCARCINOGENIC HAZARD INDEX |
|-------------------------------------------------------------|----------------------|------------------------------|
| Average Youth Trespasser (soil)                             | 9.85E-08<br>1.09E-06 | 1.79E-03<br>1.46E-02         |
| RME Youth Trespasser (soil)                                 | 1.09E-06             | 1.40E-02                     |
| Average Construction Worker (soil)                          | 5.22E-08             | 2.46E-02                     |
| RME Construction Worker (soil)                              | 8.19E-07             | 2.77E-01                     |
| Average Industrial Worker (soil)                            | 9.50E-07             | 2.01E-02                     |
| RME Industrial Worker (soil)                                | 6.08E-06             | 7.04E-02                     |
| Average Industrial Worker (vapor intrusion)                 | 1.15E-07             | 1.60E-03                     |
| RME Industrial Worker (vapor intrusion)                     | 1.01E-06             | 1.49E-02                     |
| TOTAL Average Industrial Worker (soil + vapor intrusion)    | 1.06E-06             | 2.17E-02                     |
| TOTAL RME Industrial Worker (soil + vapor intrusion)        | 7.09E-06             | 8.53E-02                     |
| Average Contact Recreation (Intracoastal Waterway Sediment) | 4.54E-08             | 8.35E-04                     |
| RME Contact Recreation (Intracoastal Waterway Sediment)     | 3.40E-08             | 5.43E-03                     |
|                                                             |                      |                              |


# **NORTH AREA**

| HYPOTHETICAL ON-SITE RECEPTORS                           | CARCINOGENIC RISK | NONCARCINOGENIC HAZARD INDEX |
|----------------------------------------------------------|-------------------|------------------------------|
| Average Youth Trespasser (soil)                          | 2.57E-08          | 6.21E-03                     |
| RME Youth Trespasser (soil)                              | 5.71E-07          | 2.80E-02                     |
| Average Construction Worker (soil)                       | 1.37E-08          | 8.72E-02                     |
| RME Construction Worker (soil)                           | 4.27E-07          | 5.45E-01                     |
| Average Industrial Worker (soil)                         | 2.54E-07          | 7.34E-02                     |
| RME Industrial Worker (soil)                             | 3.20E-06          | 9.28E-02                     |
| Average Industrial Worker (vapor intrusion)              | 2.04E-02          | 1.80E+01                     |
| RME Industrial Worker (vapor intrusion)                  | 1.61E-01          | 1.56E+02                     |
| TOTAL Average Industrial Worker (soil + vapor intrusion) | 2.04E-02          | 1.81E+01                     |
| TOTAL RME Industrial Worker (soil + vapor intrusion)     | 1.61E-01          | 1.56E+02                     |
| Average Contact Recreation (Wetlands Sediment)           | 1.09E-07          | 1.07E-03                     |
| RME Contact Recreation (Wetlands Sediment)               | 4.16E-07          | 4.65E-03                     |
| Average Contact Recreation (Pond Sediment)               | *                 | 6.10E-03                     |
| RME Contact Recreation (Pond Sediment)                   | *                 | 2.85E-02                     |

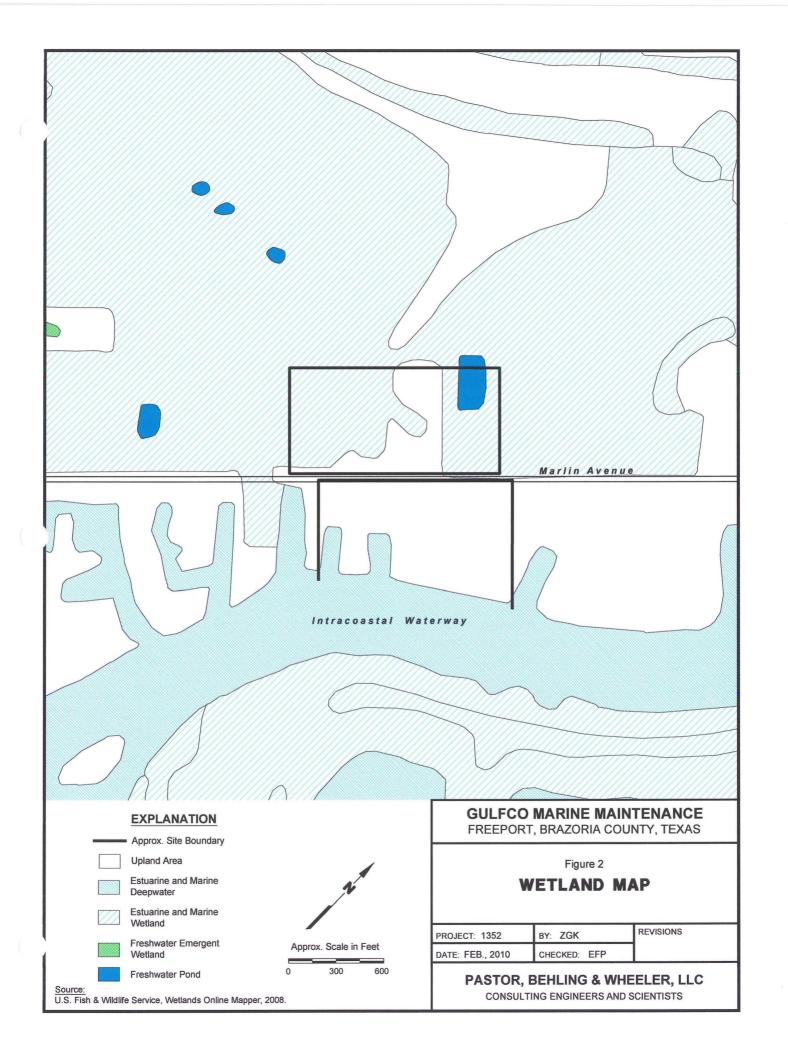
Notes:

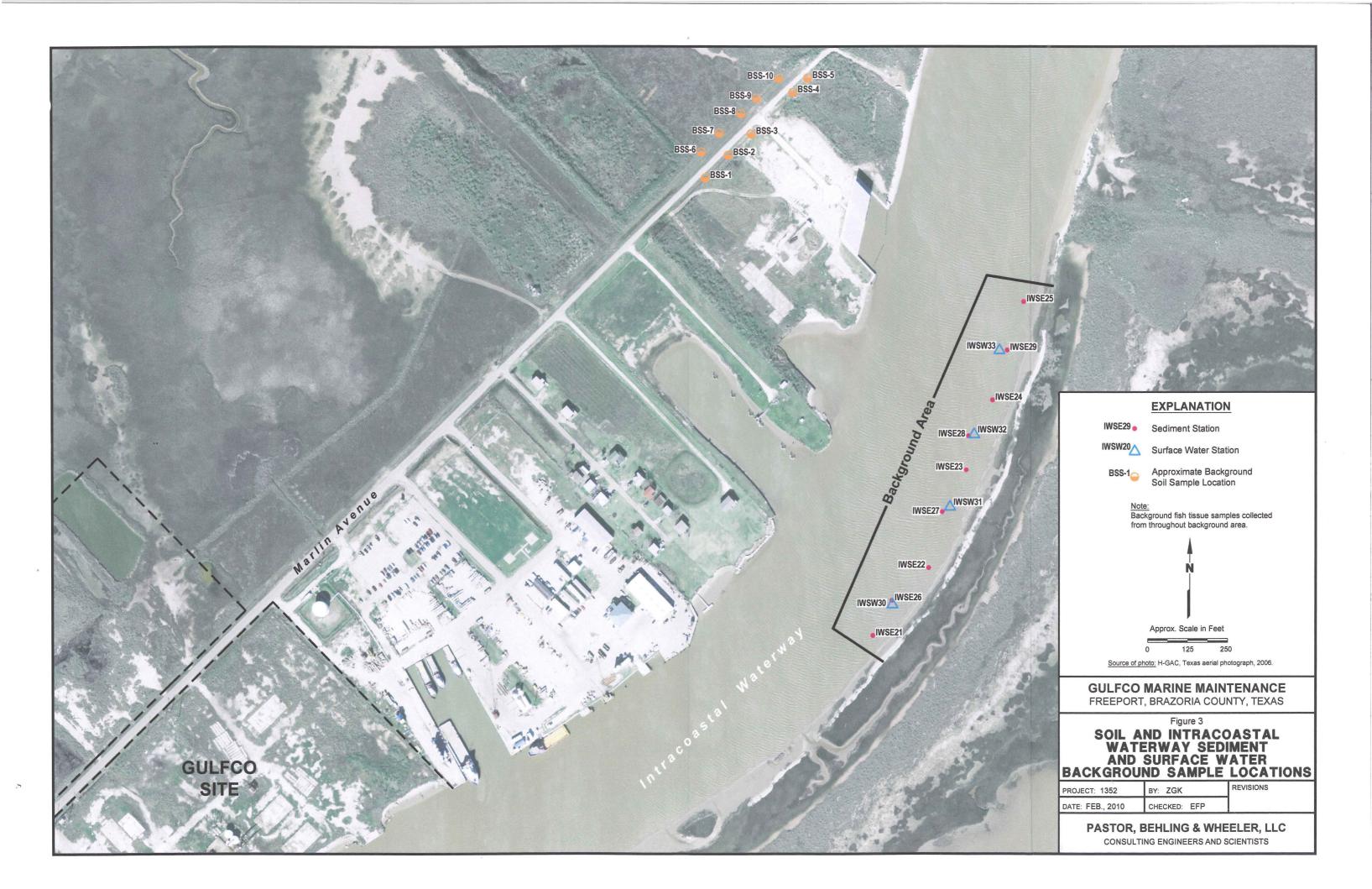
\* None of the COPCs for this media are considered carcinogenic by EPA.





Source:
Base map taken from http://www.tnris.state.tx.us Freeport, Texas 7.5 min.
U.S.G.S. quadrangle, 1974.


# GULFCO MARINE MAINTENANCE FREEPORT, BRAZORIA COUNTY, TEXAS


# Figure 1 SITE LOCATION MAP

| PROJECT: 1352    | BY: ZGK      | REVISIONS |
|------------------|--------------|-----------|
| DATE: FEB., 2010 | CHECKED: EFP |           |

# PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS





|                                                    |                             |                                         |                                                           | ,                                       |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
|----------------------------------------------------|-----------------------------|-----------------------------------------|-----------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|
| RELEASE<br><u>MECHANISM</u>                        |                             | ENVIRONME<br>TRANSPORT A                | NTAL<br>ND FATE                                           | EXPOSURE<br>ROUTE                       | POTENTIAL<br>FUTURE ON-SITE<br>CONSTRUCTION OR<br>INDUSTRIAL<br>WORKER RECEPTOR | POTENTIAL<br>RESIDENTIAL<br>OFF-SITE<br>RECEPTOR | POTENTIAL<br>YOUTH<br>TRESPASSER | POTENTIAL<br>CONTACT<br>RECREATION |                                                                                                                |
| Volatilization to Air dispersion the air from PSAs |                             |                                         |                                                           | Inhalation of ambient air               | ✓                                                                               | <b>✓</b>                                         | ✓                                |                                    |                                                                                                                |
| Fugitive dust Air dispersion                       |                             |                                         |                                                           | Inhalation of ambient air               | ✓                                                                               | ✓                                                | ✓                                |                                    |                                                                                                                |
| from PSAs Deposition ———— (Wet and dry)            | On soil                     |                                         |                                                           | Ingestion of soil                       |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
| , ,                                                |                             |                                         |                                                           | Skin contact with soil                  |                                                                                 |                                                  |                                  |                                    | -                                                                                                              |
|                                                    | On surface water            | Potable source                          |                                                           | Ingestion of drinking water             |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
|                                                    |                             |                                         |                                                           | Skin contact with drinking water        |                                                                                 |                                                  |                                  |                                    | j                                                                                                              |
|                                                    |                             |                                         | Root uptake by plants (if used for watering)              | Ingestion of fruits and vegetables      |                                                                                 |                                                  |                                  |                                    | ŀ                                                                                                              |
|                                                    |                             | — Fishable source———                    | — Uptake by fish — — — — — — — — — — — — — — — — — — —    | Ingestion of fish                       |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
|                                                    |                             | Agriculture use source                  | Root uptake by crops (if used for irrigation)             | Ingestion of fruit and vegetables       |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
|                                                    |                             | _                                       | Ingestion by animals ———————————————————————————————————— | Ingestion of meat and dairy products    |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
|                                                    |                             | Surface water used for water contact sp | ports ————————————————————————————————————                | Skin contact with/Incidental ingestion  | of water                                                                        |                                                  |                                  |                                    |                                                                                                                |
| Leaching to Groundwater                            | ② To potable well           |                                         |                                                           | Ingestion of drinking water             |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
| groundwater                                        | , pousso won                |                                         |                                                           | Skin contact with drinking water        |                                                                                 |                                                  |                                  |                                    | LEGEND:                                                                                                        |
|                                                    |                             |                                         | Root uptake by plants (if used for irrigation)            | Ingestion of fruits and vegetables      |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
| <b>:</b>                                           | 1                           |                                         |                                                           | · ·                                     |                                                                                 |                                                  |                                  |                                    | evaluated in Baseline Human Health<br>Risk Assessment (BHHRA)                                                  |
|                                                    | ② To agricultural well —    |                                         | Volatilization to air                                     | Inhalation of vapors (e.g., during show | wer)                                                                            |                                                  |                                  |                                    |                                                                                                                |
|                                                    | To agricultural well        |                                         | Root uptake by plants (if used for irrigation)            | Ingestion of fruits and vegetables      |                                                                                 |                                                  |                                  |                                    | NOTES:  (1) Based on surface soil samples collected on Lots 19                                                 |
|                                                    |                             |                                         | Ingestion by animals ———————————————————————————————————— | Ingestion of meat and dairy products    |                                                                                 |                                                  |                                  |                                    | and 20, it does not appear that significant entrainment and subsequent deposition of particulates has occurred |
|                                                    | ł                           |                                         | Volatilization to air                                     | Inhalation of vapors close to source    |                                                                                 |                                                  |                                  |                                    | at the Site or at off-site locations.                                                                          |
|                                                    |                             | 3                                       |                                                           | Skin contact                            |                                                                                 |                                                  |                                  |                                    | No water supply or agricultural wells are in use in the     Site vicinity and groundwater in the uppermost     |
| **                                                 | To surface water/ sediments | Potable source                          |                                                           | Ingestion of drinking water             |                                                                                 |                                                  |                                  |                                    | water-bearing units is not usable due to high total<br>dissolved solids concentrations. The incompleteness of  |
|                                                    |                             |                                         |                                                           | — Skin contact with drinking water      |                                                                                 |                                                  |                                  |                                    | this pathway is contingent on the continued stability of<br>the groundwater contaminant plume within the       |
|                                                    | 1                           | }                                       | Root uptake by plants (if used for watering)              | Ingestion of fruits and vegetables      |                                                                                 |                                                  |                                  |                                    | uppermost, non-potable water-bearing units at the Site.                                                        |
|                                                    |                             | <u> </u>                                | Volatilization to air                                     | Inhalation of vapors (e.g., during sho  | wer)                                                                            |                                                  |                                  |                                    | ③ Surface water is not a potable or agricultural source due<br>to high salinity.                               |
|                                                    |                             | Fishable source                         | Uptake by fish                                            | Ingestion of fish                       |                                                                                 | ✓                                                |                                  |                                    | <ul> <li>Indicates potential receptor for complete migration pathway.</li> </ul>                               |
|                                                    |                             | Agricultural use source                 | Root uptake by crops (if used for irrigation)             | Ingestion of fruits and vegetables      |                                                                                 |                                                  |                                  |                                    | patiway.                                                                                                       |
|                                                    |                             |                                         | Ingestion by animals —                                    | Ingestion of meat and dairy products    |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
|                                                    |                             | Surface water used for water contact sp | orts ————————————————————————————————————                 | Skin contact with and ingestion of wa   | ater                                                                            | <b>✓</b>                                         |                                  | <b>✓</b>                           |                                                                                                                |
|                                                    |                             | ļ                                       | Volatiližation to air                                     | Inhalation of vapors close to source    |                                                                                 | <b>✓</b>                                         |                                  | <b>✓</b>                           |                                                                                                                |
|                                                    |                             | L                                       | Sedimentation ————————————————————————————————————        | Skin contact with and/or ingestion of   | sediments                                                                       | <b>✓</b>                                         |                                  | ✓ ·                                |                                                                                                                |
|                                                    | Volatilization through soil | l pore space                            |                                                           | Inhalation of ambient/indoor air        | <b>✓</b>                                                                        |                                                  |                                  |                                    |                                                                                                                |
|                                                    |                             | 3                                       |                                                           |                                         | •                                                                               |                                                  |                                  |                                    |                                                                                                                |
| Surface runoff from PSAs                           | To surface water/ sediments | Otable source                           |                                                           | Ingestion of drinking water             |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
| Hom 1 OAS                                          | Codimonto                   | -                                       |                                                           | Skin contact with drinking water        |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
|                                                    |                             | }                                       | Root uptake by plants (if used for watering)              | Ingestion of fruits and vegetables      |                                                                                 |                                                  |                                  |                                    |                                                                                                                |
|                                                    |                             |                                         | Volatilization to air                                     | Inhalation of vapors (e.g., during sho  | wer)                                                                            |                                                  |                                  |                                    | GULFCO MARINE MAINTENANCE                                                                                      |
|                                                    |                             | Fishable source                         | Uptake by fish                                            | Ingestion of fish                       |                                                                                 | <b>✓</b>                                         |                                  |                                    | FREEPORT, BRAZORIA COUNTY, TEXAS                                                                               |
|                                                    |                             | Agricultural use source                 | Root uptake by crops (if used for irrigation)             | Ingestion of fruits and vegetables      |                                                                                 |                                                  |                                  |                                    | Figure 4                                                                                                       |
|                                                    |                             |                                         | Ingestion by animals                                      | Ingestion of meat and dairy products    |                                                                                 |                                                  |                                  | 1                                  | HUMAN HEALTH                                                                                                   |
|                                                    |                             | Surface water used for water contact sp | oorts ————————————————————————————————————                | Skin contact with and ingestion of wa   | ater                                                                            | <b>✓</b>                                         |                                  | · •                                | CONCEPTUAL SITE MODEL SOUTH AREA                                                                               |
|                                                    |                             | ļ.                                      | Volatilization to air                                     | Inhalation of vapors close to source    |                                                                                 | ✓ ·                                              |                                  | ·                                  | PROJECT: 1352 BY: ZGK REVISIONS:                                                                               |
|                                                    |                             | Į                                       | Sedimentation ————————————————————————————————————        | Skin contact with and/or ingestion of   | sediments                                                                       | ./                                               |                                  | ./                                 | DATE: FEB., 2010 CHECKED: KHT                                                                                  |
|                                                    |                             |                                         |                                                           | •                                       |                                                                                 | ▼                                                |                                  | •                                  | PASTOR, BEHLING & WHEELER, LLC                                                                                 |
| Soil ————————————————————————————————————          |                             |                                         |                                                           | Direct skin contact with and ingestion  | n of soil                                                                       |                                                  | ✓                                |                                    | CONSULTING ENGINEERS AND SCIENTISTS                                                                            |
| L                                                  |                             |                                         |                                                           |                                         |                                                                                 |                                                  |                                  |                                    | L                                                                                                              |

| RELEASE<br>MECHANISM                                     |                             | ENVIRONME<br>TRANSPORT A                  |                                                           | KOUTE                                                                 | POTENTIAL FUTURE ON-SITE CONSTRUCTION OR INDUSTRIAL WORKER RECEPTOR | POTENTIAL<br>RESIDENTIAL<br>OFF-SITE<br>RECEPTOR | POTENTIAL<br>YOUTH<br>TRESPASSER | POTENTIAL<br>CONTACT<br>RECREATION |                                                                                                                                                               |
|----------------------------------------------------------|-----------------------------|-------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|----------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volatilization to — Air dispersion ——— the air from PSAs |                             |                                           |                                                           | Inhalation of ambient air                                             | <b>✓</b>                                                            | <b>✓</b>                                         | <b>✓</b>                         |                                    |                                                                                                                                                               |
| Fugitive dust Air dispersion                             | On soil                     |                                           |                                                           | <ul><li>Inhalation of ambient air</li><li>Ingestion of soil</li></ul> | <b>✓</b>                                                            | <b>✓</b>                                         | <b>✓</b>                         |                                    |                                                                                                                                                               |
| (Wet and dry)                                            |                             |                                           |                                                           | - Skin contact with soil                                              |                                                                     |                                                  |                                  |                                    | `                                                                                                                                                             |
| •                                                        | On surface water ———        | Potable source                            |                                                           | <ul> <li>Ingestion of drinking water</li> </ul>                       |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             | 1                                         |                                                           | - Skin contact with drinking water                                    |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             |                                           | Deat untake by plants (if your forwatering)               | •                                                                     |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             |                                           | Root uptake by plants (if used for watering)              | - Ingestion of fruits and vegetables                                  |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             | Fishable source                           | Uptake by fish                                            | <ul> <li>Ingestion of fish</li> </ul>                                 |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             | Agriculture use source                    | Root uptake by crops (if used for irrigation)             | <ul> <li>Ingestion of fruit and vegetables</li> </ul>                 |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             |                                           | Ingestion by animals ———————————————————————————————————— | - Ingestion of meat and dairy products                                |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             | Surface water used for water contact sp   | ports                                                     | - Skin contact with/Incidental ingestion of                           | fwater                                                              |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          | ②<br>To potable well        |                                           |                                                           |                                                                       |                                                                     |                                                  |                                  |                                    | LEGEND:                                                                                                                                                       |
| Leaching to Groundwater                                  | To potable well             |                                           |                                                           | <ul> <li>Ingestion of drinking water</li> </ul>                       |                                                                     |                                                  |                                  |                                    | Pathway is Incomplete                                                                                                                                         |
| groundwater migration from PSAs                          |                             |                                           |                                                           | - Skin contact with drinking water                                    |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             |                                           |                                                           | <ul> <li>Ingestion of fruits and vegetables</li> </ul>                |                                                                     |                                                  |                                  |                                    | Pathway is Complete, Significance evaluated in Baseline Human Health                                                                                          |
|                                                          |                             |                                           | Volatilization to air                                     | <ul> <li>Inhalation of vapors (e.g., during showe</li> </ul>          | ar)                                                                 |                                                  |                                  |                                    | Risk Assessment (BHHRA)                                                                                                                                       |
|                                                          | ②                           |                                           |                                                           |                                                                       | ···)                                                                |                                                  |                                  |                                    | NOTES:                                                                                                                                                        |
|                                                          | To agricultural well        |                                           | Root uptake by plants (if used for irrigation)            | <ul> <li>Ingestion of fruits and vegetables</li> </ul>                |                                                                     |                                                  |                                  |                                    | The high moisture content and vegetated nature of the limited surface soils in the North Area are not                                                         |
|                                                          |                             |                                           | Ingestion by animals                                      | <ul> <li>Ingestion of meat and dairy products</li> </ul>              |                                                                     |                                                  |                                  |                                    | conducive to significant dust generation, dispersion and subsequent deposition.                                                                               |
|                                                          |                             |                                           | Volatilization to air                                     | <ul> <li>Inhalation of vapors close to source</li> </ul>              |                                                                     |                                                  |                                  |                                    | No water supply or agricultural wells are in use in the                                                                                                       |
| •                                                        |                             |                                           |                                                           | - Skin contact                                                        |                                                                     |                                                  |                                  |                                    | Site vicinity and groundwater in the uppermost<br>water-bearing units is not usable due to high total                                                         |
|                                                          | To surface water/           | Potable source                            |                                                           | - Ingestion of drinking water                                         |                                                                     |                                                  |                                  |                                    | dissolved solids concentrations. The determination of this pathway as incomplete is contingent on the                                                         |
|                                                          | sediments                   |                                           |                                                           | Skin contact with drinking water                                      |                                                                     |                                                  |                                  |                                    | continued stability of the groundwater contaminant plume within the uppermost, non-potable                                                                    |
|                                                          |                             |                                           | Root uptake by plants (if used for watering)              | <ul> <li>Ingestion of fruits and vegetables</li> </ul>                |                                                                     |                                                  |                                  |                                    | water-bearing units at the Site.                                                                                                                              |
|                                                          |                             |                                           | Volatilization to air                                     | <ul> <li>Inhalation of vapors (e.g., during shower</li> </ul>         | er)                                                                 |                                                  |                                  |                                    | (3) Groundwater communication with North Area surface<br>water features (e.g., ponds, wetlands) is not<br>significant due to water table elevations below the |
|                                                          |                             | Fishable source                           | ——— Uptake by fish ————————————————————————————————————   | <ul> <li>Ingestion of fish</li> </ul>                                 |                                                                     |                                                  |                                  |                                    | shallow depths of these features and the low<br>permeability of underlying day soils.                                                                         |
|                                                          |                             | Agricultural use source                   | Root uptake by crops (if used for irrigation)             | <ul> <li>Ingestion of fruits and vegetables</li> </ul>                |                                                                     |                                                  |                                  |                                    | Nearby surface water is not used for agricultural use                                                                                                         |
|                                                          |                             |                                           | Ingestion by animals                                      | Ingestion of meat and dairy products                                  |                                                                     |                                                  |                                  |                                    | or drinking water.                                                                                                                                            |
|                                                          |                             | Surface water                             |                                                           | Skin contact with and ingestion of water                              | r                                                                   |                                                  |                                  |                                    | Indicates potential receptor for complete migration pathway.                                                                                                  |
|                                                          | Ì                           | Surface water                             | Maladilanda da sin                                        | _                                                                     |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          | ii                          | Ī                                         | Volatilization to air                                     | <ul> <li>Inhalation of vapors close to source</li> </ul>              |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             | L                                         | Sedimentation ————————————————————————————————————        | <ul> <li>Skin contact with and/or ingestion of se</li> </ul>          | diments                                                             |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          | Volatilization through soil | pore space                                |                                                           | <ul> <li>Inhalation of ambient/indoor air</li> </ul>                  | ✓                                                                   |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             | 4 Potable source                          |                                                           |                                                                       |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
| Surface runoff from PSAs                                 | To surface water/ sediments | Potable source                            |                                                           | <ul> <li>Ingestion of drinking water</li> </ul>                       |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             | 1                                         |                                                           | <ul> <li>Skin contact with drinking water</li> </ul>                  |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             |                                           | Root uptake by plants (if used for watering)              | <ul> <li>Ingestion of fruits and vegetables</li> </ul>                |                                                                     |                                                  |                                  |                                    | GULFCO MARINE MAINTENANCE                                                                                                                                     |
|                                                          |                             |                                           | Volatilization to air                                     | <ul> <li>Inhalation of vapors (e.g., during shower</li> </ul>         | er)                                                                 |                                                  |                                  |                                    | FREEPORT, BRAZORIA COUNTY, TEXAS                                                                                                                              |
|                                                          |                             | Agricultural use source                   | Root uptake by crops (if used for irrigation)             | <ul> <li>Ingestion of fruits and vegetables</li> </ul>                |                                                                     |                                                  |                                  |                                    |                                                                                                                                                               |
|                                                          |                             |                                           | Ingestion by animals                                      | <ul> <li>Ingestion of meat and dairy products</li> </ul>              |                                                                     |                                                  |                                  |                                    | Figure 5 HUMAN HEALTH                                                                                                                                         |
|                                                          |                             | Surface water in pond and wetlands are    | •                                                         |                                                                       |                                                                     |                                                  | ,                                | ,                                  | CONCEPTUAL SITE MODEL                                                                                                                                         |
|                                                          |                             | — - Ounaco water in pond and wellands are |                                                           | Skin contact with and ingestion of water                              | •                                                                   |                                                  | <b>✓</b>                         | <b>✓</b>                           | NORTH AREA                                                                                                                                                    |
|                                                          |                             | ļ                                         | Volatilization to air                                     | <ul> <li>Inhalation of vapors close to source</li> </ul>              | <b>✓</b>                                                            |                                                  | <b>✓</b>                         | <b>√</b>                           | PROJECT: 1352 BY: ZGK REVISIONS:                                                                                                                              |
|                                                          |                             | ·                                         | Sedimentation ————————————————————————————————————        | <ul> <li>Skin contact with and/or ingestion of se</li> </ul>          | ediments 🗸                                                          |                                                  | <b>✓</b>                         | <b>✓</b>                           | DATE: FEB., 2010 CHECKED: KHT                                                                                                                                 |
| Soil ————————————————————————————————————                |                             |                                           |                                                           | <ul> <li>Direct skin contact with and ingestion or</li> </ul>         | of soil                                                             |                                                  | <b>✓</b>                         |                                    | PASTOR, BEHLING & WHEELER, LLC CONSULTING ENGINEERS AND SCIENTISTS                                                                                            |

'n

APPENDIX A
PRO UCL OUTPUT

# APPENDIX A-1

SOUTH OF MARLIN SURFACE SOIL

# Nonparametric UCL Statistics for Data Sets with Non-Detects

**User Selected Options** 

From File C:\Users\Michael\....\ProUCL data analysis\S of Marlin-SURFACE soil\ProUCL input.

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

# 2-Methylnaphthalene

| Total Number of Data                                                                      | 83                                 |
|-------------------------------------------------------------------------------------------|------------------------------------|
| Number of Non-Detect Data                                                                 | 61                                 |
| Number of Detected Data                                                                   | 22                                 |
| Minimum Detected                                                                          | 0.0106                             |
| Maximum Detected                                                                          | 0.501                              |
| Percent Non-Detects                                                                       | 73.49%                             |
| Minimum Non-detect                                                                        | 0.00946                            |
| Maximum Non-detect                                                                        | 0.106                              |
|                                                                                           |                                    |
| Mean of Detected Data                                                                     | 0.0806                             |
| Mean of Detected Data  Median of Detected Data                                            | 0.0806<br>0.0349                   |
|                                                                                           |                                    |
| Median of Detected Data                                                                   | 0.0349                             |
| Median of Detected Data Variance of Detected Data                                         | 0.0349<br>0.0156                   |
| Median of Detected Data Variance of Detected Data SD of Detected Data                     | 0.0349<br>0.0156<br>0.125          |
| Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data | 0.0349<br>0.0156<br>0.125<br>1.552 |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 79
Number treated as Detected 4
Single DL Percent Detection 95.18%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

| rapian moior (ran) moured         |         |
|-----------------------------------|---------|
| Mean                              | 0.0297  |
| SD                                | 0.0701  |
| Standard Error of Mean            | 0.00789 |
| 95% KM (t) UCL                    | 0.0428  |
| 95% KM (z) UCL                    | 0.0427  |
| 95% KM (BCA) UCL                  | 0.0465  |
| 95% KM (Percentile Bootstrap) UCL | 0.0436  |
| 95% KM (Chebyshev) UCL            | 0.0641  |
| 97.5% KM (Chebyshev) UCL          | 0.079   |
| 99% KM (Chebyshev) UCL            | 0.108   |
|                                   |         |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

# 4,4'-DDD

| Total Number of Data      | . 83 |
|---------------------------|------|
| Number of Non-Detect Data | 78   |
| Number of Detected Data   | 5    |

| Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                                                                                                 | 0.00264<br>0.0243<br><b>93.98%</b><br>2.35E-04<br>0.00276                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.0097<br>0.00401<br>8.64E-05<br>0.0093<br>0.959<br>1.266<br>-5.005<br>0.95 |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

79 Number treated as Non-Detect Number treated as Detected 4 Single DL Percent Detection 95.18%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set.

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00307  |
| SD                                | 0.00264  |
| Standard Error of Mean            | 3.24E-04 |
| 95% KM (t) UCL                    | 0.0036   |
| 95% KM (z) UCL                    | 0.0036   |
| 95% KM (BCA) UCL                  | 0.0138   |
| 95% KM (Percentile Bootstrap) UCL | 0.00485  |
| 95% KM (Chebyshev) UCL            | 0.00448  |
| 97.5% KM (Chebyshev) UCL          | 0.00509  |
| 99% KM (Chebyshev) ÚCL            | 0.00629  |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.00027 [per recommendation in ProUCL User Guide]

# 4,4'-DDE

| Total Number of Data      | 83       |
|---------------------------|----------|
| Number of Non-Detect Data | 66       |
| Number of Detected Data   | 17       |
| Minimum Detected          | 4.28E-04 |
| Maximum Detected          | 0.0693   |
| Percent Non-Detects       | 79.52%   |
| Minimum Non-detect        | 3.26E-04 |

| 0.0163   |
|----------|
| 0.00765  |
| 0.0022   |
| 2.81E-04 |
| 0.0168   |
| 2.193    |
| 3.524    |
| -6.02    |
| 1.385    |
|          |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect81Number treated as Detected2Single DL Percent Detection97.59%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method                                           | N/A      |
|----------------------------------------------------------------|----------|
| Kaplan Meier (KM) Method                                       |          |
| Mean                                                           | 0.00192  |
| SD                                                             | 0.00792  |
| Standard Error of Mean                                         | 8.96E-04 |
| 95% KM (t) UCL                                                 | 0.00341  |
| 95% KM (z) UCL                                                 | 0.00339  |
| 95% KM (BCA) UCL                                               | 0.00382  |
| 95% KM (Percentile Bootstrap) UCL                              | 0.00365  |
| 95% KM (Chebyshev) UCL                                         | 0.00583  |
| 97.5% KM (Chebyshev) UCL                                       | 0.00752  |
| 99% KM (Chebyshev) UCL                                         | 0.0108   |
| Data appear Lognormal (0.05)<br>May want to try Lognormal UCLs |          |

\_\_\_\_\_\_

# 4,4'-DDT

| Total Number of Data                                                                      | 83                                     |
|-------------------------------------------------------------------------------------------|----------------------------------------|
| Number of Non-Detect Data                                                                 | 46                                     |
| Number of Detected Data                                                                   | 37                                     |
| Minimum Detected                                                                          | 2.81E-04                               |
| Maximum Detected                                                                          | 0.0625                                 |
| Percent Non-Detects                                                                       | 55.42%                                 |
| Minimum Non-detect                                                                        | 1.25E-04                               |
| Maximum Non-detect                                                                        | 0.00626                                |
| Mean of Detected Data                                                                     | 0.00835                                |
| Mean of Detected Data                                                                     |                                        |
| Median of Detected Data                                                                   | 0.00304                                |
|                                                                                           |                                        |
| Median of Detected Data                                                                   | 0.00304                                |
| Median of Detected Data<br>Variance of Detected Data                                      | 0.00304<br>1.58E-04                    |
| Median of Detected Data<br>Variance of Detected Data<br>SD of Detected Data               | 0.00304<br>1.58E-04<br>0.0126          |
| Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data | 0.00304<br>1.58E-04<br>0.0126<br>1.506 |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

| Observations < Largest DL are treated as NDs |        |
|----------------------------------------------|--------|
| Number treated as Non-Detect                 | 70     |
| Number treated as Detected                   | 13     |
| Single DL Percent Detection                  | 84.34% |

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.00389 |
| SD                                | 0.0092  |
| Standard Error of Mean            | 0.00102 |
| 95% KM (t) UCL                    | 0.00559 |
| 95% KM (z) UCL                    | 0.00558 |
| 95% KM (BCA) UCL                  | 0.00567 |
| 95% KM (Percentile Bootstrap) UCL | 0.0057  |
| 95% KM (Chebyshev) UCL            | 0.00836 |
| 97.5% KM (Chebyshev) UCL          | 0.0103  |
| 99% KM (Chebyshev) UCL            | 0.0141  |
| · • •                             |         |

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

# Acenaphthene

| Total Number of Data      | 83     |
|---------------------------|--------|
| Number of Non-Detect Data | 57     |
| Number of Detected Data   | 26     |
| Minimum Detected          | 0.0113 |
| Maximum Detected          | 1.69   |
| Percent Non-Detects       | 68.67% |
| Minimum Non-detect        | 0.0087 |
| Maximum Non-detect        | 0.0975 |
| Mean of Detected Data     | 0.168  |
| Median of Detected Data   | 0.072  |
| Variance of Detected Data | 0.114  |
| SD of Detected Data       | 0.337  |
| CV of Detected Data       | 2.009  |
| Skewness of Detected Data | 4.078  |
| Mean of Detected log data | -2.641 |
| SD of Detected Log data   | 1.211  |

# Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),

| Observations < Largest DL are treated as NDs |        |
|----------------------------------------------|--------|
| Number treated as Non-Detect                 | 73     |
| Number treated as Detected                   | 10     |
| Single DL Percent Detection                  | 87.95% |

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

 Mean
 0.0608

 SD
 0.199

| Standard Error of Mean            | 0.0222 |
|-----------------------------------|--------|
| 95% KM (t) UCL                    | 0.0978 |
| 95% KM (z) UCL                    | 0.0974 |
| 95% KM (BCA) UCL                  | 0.11   |
| 95% KM (Percentile Bootstrap) UCL | 0.102  |
| 95% KM (Chebyshev) UCL            | 0.158  |
| 97.5% KM (Chebyshev) UCL          | 0.2    |
| 99% KM (Chebyshev) UCL            | 0.282  |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

\_\_\_\_\_\_

# Acenaphthylene

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected                                  | 83<br>64<br><b>19</b><br>0.0184<br>0.935            |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Percent Non-Detects                                                                                                                       | 77.11%                                              |
| Minimum Non-detect                                                                                                                        | 0.00986                                             |
| Maximum Non-detect                                                                                                                        | 0.11                                                |
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data | 0.135<br>0.072<br>0.0414<br>0.204<br>1.503<br>3.708 |
| Mean of Detected log data<br>SD of Detected Log data                                                                                      | 2.521<br>0.954                                      |
| <u>~</u>                                                                                                                                  |                                                     |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 76
Number treated as Detected 7
Single DL Percent Detection 91.57%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method | N/A |
|----------------------|-----|
|----------------------|-----|

| Kaplan Meier ( | KM) | Method |
|----------------|-----|--------|
|----------------|-----|--------|

| 0.0455. |
|---------|
| 0.107   |
| 0.012   |
| 0.0655  |
| 0.0653  |
| 0.082   |
| 0.0704  |
| 0.098   |
| 0.121   |
| 0.165   |
|         |

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

\_.\_.\_.

# Aluminum

| Number of Valid Observations    | 83       |
|---------------------------------|----------|
| Number of Distinct Observations | 79       |
| Minimum                         | 414      |
| Maximum                         | 15200    |
| Mean                            | 5335     |
| Median                          | 4650     |
| SD                              | 3345     |
| Variance                        | 11191315 |
| Coefficient of Variation        | 0.627    |
| Skewness                        | 0.744    |
| Mean of log data                | 8.345    |
| SD of log data                  | 0.757    |

| 95% Useful UCLs<br>Student's-t UCL         | 5946         |
|--------------------------------------------|--------------|
| 95% UCLs (Adjusted for Skewness)           | E071         |
| 95% Adjusted-CLT UCL<br>95% Modified-t UCL | 5971<br>5951 |
| Non-Parametric UCLs                        |              |
| 95% CLT UCL                                | 5939         |
| 95% Jackknife UCL                          | 5946         |
| 95% Standard Bootstrap UCL                 | 5943         |
| 95% Bootstrap-t UCL                        | 6001         |
| 95% Hall's Bootstrap UCL                   | 5973         |
| 95% Percentile Bootstrap UCL               | 5960         |
| 95% BCA Bootstrap UCL                      | 6000         |
| 95% Chebyshev(Mean, Sd) UCL                | 6936         |
| 97.5% Chebyshev(Mean, Sd) UCL              | 7628         |
| 99% Chebyshev(Mean, Sd) UCL                | 8989         |

# Data appear Normal (0.05) May want to try Normal UCLs

Anthracene

| Total Number of Data      | 83      |
|---------------------------|---------|
| Number of Non-Detect Data | 46      |
| Number of Detected Data   | 37      |
| Minimum Detected          | 0.0112  |
| Maximum Detected          | 2.46    |
| Percent Non-Detects       | 55.42%  |
| Minimum Non-detect        | 0.00982 |
| Maximum Non-detect        | 0.107   |
| Mean of Detected Data     | 0.203   |
| Median of Detected Data   | 0.0886  |
| Variance of Detected Data | 0.175   |
| SD of Detected Data       | 0.418   |
| CV of Detected Data       | 2.06    |
| Skewness of Detected Data | 4.761   |
| Mean of Detected log data | -2.479  |
| SD of Detected Log data   | 1.282   |
| =                         |         |

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs

| Number treated as Non-Detect | 65     |
|------------------------------|--------|
| Number treated as Detected   | 18     |
| Single DL Percent Detection  | 78.31% |

Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0971 |
| SD                                | 0.291  |
| Standard Error of Mean            | 0.0324 |
| 95% KM (t) UCL                    | 0.151  |
| 95% KM (z) UCL                    | 0.15   |
| 95% KM (BCA) UCL                  | 0.158  |
| 95% KM (Percentile Bootstrap) UCL | 0.156  |
| 95% KM (Chebyshev) UCL            | 0.238  |
| 97.5% KM (Chebyshev) UCL          | 0.299  |
| 99% KM (Chebyshev) UCL            | 0.419  |
|                                   |        |

Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs

# **Antimony**

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 83<br>48<br><b>35</b><br>1.13<br>5.14<br><b>57.83%</b><br>0.19<br>0.43 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 2.372<br>2.17<br>0.831<br>0.912<br>0.384<br>1.014<br>0.796<br>0.372    |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method     | N/A    |
|--------------------------|--------|
| Kaplan Meier (KM) Method |        |
| Mean                     | 1.654  |
| SD                       | 0.847  |
| Standard Error of Mean   | 0.0943 |
| 95% KM (t) UCL           | 1.811  |
| 95% KM (z) UCL           | 1.809  |
| 95% KM (BCA) UCL         | 1.872  |

| 95% KM (Percentile Bootstrap) UCL<br>95% KM (Chebyshev) UCL<br>97.5% KM (Chebyshev) UCL<br>99% KM (Chebyshev) UCL                                                                                                                       | 1.845<br>2.065<br><b>2.242</b><br>2.592 |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|
| Data appear Gamma Distributed (0.05)<br>May want to try Gamma UCLs                                                                                                                                                                      |                                         | · |
|                                                                                                                                                                                                                                         |                                         |   |
| Aroclor-1254                                                                                                                                                                                                                            |                                         |   |
| Total Number of Data                                                                                                                                                                                                                    | 85                                      |   |
| Number of Non-Detect Data                                                                                                                                                                                                               | 73                                      |   |
| Number of Detected Data                                                                                                                                                                                                                 | 12                                      |   |
| Minimum Detected                                                                                                                                                                                                                        | 0.0109                                  |   |
| Maximum Detected                                                                                                                                                                                                                        | 7.98<br><b>85.88%</b>                   |   |
| Percent Non-Detects Minimum Non-detect                                                                                                                                                                                                  | 0.00325                                 |   |
| Maximum Non-detect                                                                                                                                                                                                                      | 0.0381                                  |   |
| Maximum Non detect                                                                                                                                                                                                                      | 0.0001                                  |   |
| Mean of Detected Data                                                                                                                                                                                                                   | 0.967                                   |   |
| Median of Detected Data                                                                                                                                                                                                                 | 0.144                                   |   |
| Variance of Detected Data                                                                                                                                                                                                               | 5.039                                   |   |
| SD of Detected Data CV of Detected Data                                                                                                                                                                                                 | 2.245<br>2.321                          |   |
| Skewness of Detected Data                                                                                                                                                                                                               | 3.277                                   |   |
| Mean of Detected log data                                                                                                                                                                                                               | -1.66                                   |   |
| SD of Detected Log data                                                                                                                                                                                                                 | 1.897                                   | • |
| Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection | 76<br>9<br>89.41%                       |   |
| Data Dsitribution Test with Detected Values Only<br>Data appear Gamma Distributed at 5% Significance Le                                                                                                                                 | vel                                     |   |
| Winsorization Method                                                                                                                                                                                                                    | N/A                                     |   |
| Kaplan Meier (KM) Method                                                                                                                                                                                                                |                                         |   |
| Mean                                                                                                                                                                                                                                    | 0.146                                   |   |
| SD<br>Standard F                                                                                                                                                                                                                        | 0.873                                   |   |
| Standard Error of Mean                                                                                                                                                                                                                  | 0.099<br>0.31                           |   |
| 95% KM (t) UCL<br>95% KM (z) UCL                                                                                                                                                                                                        | 0.309                                   |   |
| 95% KM (BCA) UCL                                                                                                                                                                                                                        | 0.401                                   |   |
| 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                       | 0.342                                   |   |
| 95% KM (Chebyshev) UCL                                                                                                                                                                                                                  | 0.577                                   |   |
| 97.5% KM (Chebyshev) UCL                                                                                                                                                                                                                | 0.764                                   |   |
| 99% KM (Chebyshev) UCL                                                                                                                                                                                                                  | 1.13                                    |   |
| Data appear Gamma Distributed (0.05)<br>May want to try Gamma UCLs                                                                                                                                                                      |                                         |   |
| Arsenic                                                                                                                                                                                                                                 |                                         |   |
| Total Number of Data                                                                                                                                                                                                                    | 83                                      |   |
| Number of Non-Detect Data                                                                                                                                                                                                               | 12                                      |   |

| Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                                                                         | 71<br>0.26<br>24.3<br>14.46%<br>0.17<br>1.44                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 4.313<br>2.93<br>16.5<br>4.062<br>0.942<br>2.522<br>1.106<br>0.882 |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

| Number treated as Non-Detect | 23     |
|------------------------------|--------|
| Number treated as Detected   | 60     |
| Single DL Percent Detection  | 27.71% |

Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method | 27.71% |
|----------------------|--------|
| Mean                 | 2.801  |
| SD                   | 1.229  |
| 95% Winsor (t) UCL   | 3.029  |

| Kaplan | Meier | (KM) | Method |
|--------|-------|------|--------|
| Mean   |       |      |        |

| ra-prant meior (ran) meanea       |       |
|-----------------------------------|-------|
| Mean                              | 3.739 |
| SD                                | 3.984 |
| Standard Error of Mean            | 0.44  |
| 95% KM (t) UCL                    | 4.472 |
| 95% KM (z) UCL                    | 4.463 |
| 95% KM (BCA) UCL                  | 4.578 |
| 95% KM (Percentile Bootstrap) UCL | 4.49  |
| 95% KM (Chebyshev) UCL            | 5.659 |
| 97.5% KM (Chebyshev) UCL          | 6.49  |
| 99% KM (Chebyshev) UCL            | 8.122 |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

# Barium

| Number of Valid Observations    | 83     |
|---------------------------------|--------|
| Number of Distinct Observations | 79     |
| Minimum                         | 18.6   |
| Maximum                         | 2180   |
| Mean                            | 345.2  |
| Median                          | 206    |
| SD                              | 349    |
| Variance                        | 121792 |
| Coefficient of Variation        | 1.011  |
| Skewness                        | 2.74   |
| Mean of log data                | 5.482  |
| SD of log data                  | 0.84   |

| 95% Useful UCLs<br>Student's-t UCL | 408.9 |
|------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)   |       |
| 95% Adjusted-CLT UCL               | 420.5 |
| 95% Modified-t UCL                 | 410.9 |
| Non-Parametric UCLs                |       |
| 95% CLT UCL                        | 408.2 |
| 95% Jackknife UCL                  | 408.9 |
| 95% Standard Bootstrap UCL         | 407.6 |
| 95% Bootstrap-t UCL                | 422   |
| 95% Hall's Bootstrap UCL           | 433.9 |
| 95% Percentile Bootstrap UCL       | 411   |
| 95% BCA Bootstrap UCL              | 425.9 |
| 95% Chebyshev(Mean, Sd) UCL        | 512.2 |
| 97.5% Chebyshev(Mean, Sd) UCL      | 584.4 |
| 99% Chebyshev(Mean, Sd) UCL        | 726.4 |
| Data appear Lognormal (0.05)       |       |
| May want to try Lognormal UCLs     |       |

Benzo(a)anthracene

| Total Number of Data      | 83     |
|---------------------------|--------|
| Number of Non-Detect Data | 53     |
| Number of Detected Data   | 30     |
| Minimum Detected          | 0.0286 |
| Maximum Detected          | 5.02   |
| Percent Non-Detects       | 63.86% |
| Minimum Non-detect        | 0.0089 |
| Maximum Non-detect        | 0.0998 |
|                           |        |
| Mean of Detected Data     | 0.936  |
| Median of Detected Data   | 0.573  |
| Variance of Detected Data | 1.21   |
| SD of Detected Data       | 1.1    |
| CV of Detected Data       | 1.175  |
| Skewness of Detected Data | 2.02   |
| Mean of Detected log data | -0.895 |
| SD of Detected Log data   | 1.505  |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 60 Number treated as Detected 23 Single DL Percent Detection 72.29%

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method | N/A |
|----------------------|-----|
|----------------------|-----|

Kaplan Meier (KM) Method

Mean 0.357 0.783 SD Standard Error of Mean 0.0874 95% KM (t) UCL 0.502

| 95% KM (z) UCL<br>95% KM (BCA) UCL<br>95% KM (Percentile Bootstrap) UCL<br>95% KM (Chebyshev) UCL<br>97.5% KM (Chebyshev) UCL<br>99% KM (Chebyshev) UCL | 0.501<br>0.521<br>0.509<br>0.738<br>0.903<br>1.226 |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---|
| Data appear Gamma Distributed (0.05)<br>May want to try Gamma UCLs                                                                                      |                                                    |   |
|                                                                                                                                                         |                                                    |   |
| Benzo(a)pyrene                                                                                                                                          |                                                    |   |
| Total Number of Data                                                                                                                                    | 83                                                 |   |
| Number of Non-Detect Data                                                                                                                               | 18                                                 |   |
| Number of Detected Data                                                                                                                                 | 65                                                 |   |
| Minimum Detected                                                                                                                                        | 0.0103                                             |   |
| Maximum Detected                                                                                                                                        | 4.57                                               |   |
| Percent Non-Detects                                                                                                                                     | 21.69%                                             |   |
| Minimum Non-detect                                                                                                                                      | 0.00886                                            |   |
| Maximum Non-detect                                                                                                                                      | 0.0984                                             |   |
| Mean of Detected Data                                                                                                                                   | 0.575                                              |   |
| Median of Detected Data                                                                                                                                 | 0.0887                                             |   |
| Variance of Detected Data                                                                                                                               | 1.014                                              |   |
| SD of Detected Data                                                                                                                                     | 1.007                                              |   |
| CV of Detected Data                                                                                                                                     | 1.751                                              |   |
| Skewness of Detected Data                                                                                                                               | 2.332                                              |   |
| Mean of Detected log data                                                                                                                               | -2.005                                             |   |
| SD of Detected Log data                                                                                                                                 | 1.79                                               |   |
| Note: Data have multiple DLs - Use of KM Method<br>For all methods (except KM, DL/2, and ROS Method<br>Observations < Largest DL are treated as NDs     |                                                    |   |
| Number treated as Non-Detect                                                                                                                            | 52                                                 |   |
| Number treated as Detected                                                                                                                              | 31                                                 |   |
| Single DL Percent Detection                                                                                                                             | 62.65%                                             |   |
| Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                   |                                                    |   |
| Winsorization Method                                                                                                                                    | N/A                                                |   |
| Kaplan Meier (KM) Method                                                                                                                                |                                                    |   |
| Mean                                                                                                                                                    | 0.453                                              | • |
| SD                                                                                                                                                      | 0.914                                              |   |
| Standard Error of Mean                                                                                                                                  | 0.101                                              |   |
| 95% KM (t) UCL                                                                                                                                          | 0.621                                              |   |
| 95% KM (z) UCL                                                                                                                                          | 0.619                                              |   |
| 95% KM (BCA) UCL                                                                                                                                        | 0.624                                              |   |
| 95% KM (Percentile Bootstrap) UCL                                                                                                                       | 0.628                                              |   |
| 95% KM (Chebyshev) UCL                                                                                                                                  | 0.894                                              |   |
| 97:5% KM (Chebyshev) UCL<br>99% KM (Chebyshev) UCL                                                                                                      | <b>1.085</b><br>1.459                              |   |
| 30 /0 INVI (Oliebystiev) OOL                                                                                                                            | 1.400                                              |   |
| Potential UCL to Use                                                                                                                                    |                                                    |   |
|                                                                                                                                                         |                                                    |   |

83

Benzo(b)fluoranthene

Total Number of Data

| Number of Non-Detect Data                           | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Number of Detected Data                             | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Minimum Detected                                    | 0.0408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Maximum Detected                                    | 5.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Percent Non-Detects                                 | 26.51%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Minimum Non-detect                                  | 0.00677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Maximum Non-detect                                  | 0.147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| Mean of Detected Data                               | 0.784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Median of Detected Data                             | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Variance of Detected Data                           | 1.421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| SD of Detected Data                                 | 1.192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| CV of Detected Data                                 | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Skewness of Detected Data                           | 2.244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Mean of Detected log data                           | -1.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| SD of Detected Log data                             | 1.393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Note: Data have multiple DLs - Use of KM Meth       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| For all methods (except KM, DL/2, and ROS Meth      | uus),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Observations < Largest DL are treated as NDs        | 477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| Number treated as Non-Detect                        | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Number treated as Detected                          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Single DL Percent Detection                         | 56.63%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Date Daitribution Test with Datestad Values Only    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| Data Distribution Test with Detected Values Only    | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| Data do not follow a Discernable Distribution (0.05 | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| Winsorization Method                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| VVIIISONZATION WETHOU                               | 1477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Kaplan Meier (KM) Method                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • |
| Mean                                                | 0.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| SD                                                  | 1.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Standard Error of Mean                              | 0.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 95% KM (t) UCL                                      | 0.784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 95% KM (z) UCL                                      | 0.782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 95% KM (BCA) UCL                                    | 0.823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 95% KM (Percentile Bootstrap) UCL                   | 0.793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 95% KM (Chebyshev) UCL                              | 1.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|                                                     | 1.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 97.5% KM (Chebyshev) UCL                            | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| 99% KM (Chebyshev) UCL                              | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Potential UCL to Use                                | tat museum et al. 1860 and 186 |   |
| 95% KM (Chebyshev) UCL                              | 1.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| Benzo(g,h,i)perylene                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| Total Number of Data                                | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Number of Non-Detect Data                           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Number of Detected Data                             | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Minimum Detected Data                               | 0.00989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Maximum Detected                                    | 4.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Percent Non-Detects                                 | 40.96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Minimum Non-detect                                  | 0.00887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Maximum Non-detect                                  | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Waxiiituiii Non-uetect                              | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Mean of Detected Data                               | 0.502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Median of Detected Data                             | 0.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Variance of Detected Data                           | 0.744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| SD of Detected Data                                 | 0.863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| CV of Detected Data                                 | 1 710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |

1.719

CV of Detected Data

| Skewness of Detected Data | 2.664  |
|---------------------------|--------|
| Mean of Detected log data | -1.881 |
| SD of Detected Log data   | 1.582  |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 76
Number treated as Detected 7
Single DL Percent Detection 91.57%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization | Method | N/A |
|---------------|--------|-----|
|               |        |     |

Kaplan Meier (KM) Method Mean

0.304 SD 0.699 Standard Error of Mean 0.0776 95% KM (t) UCL 0.433 95% KM (z) UCL 0.432 95% KM (BCA) UCL 0.441 95% KM (Percentile Bootstrap) UCL 0.436 95% KM (Chebyshev) UCL 0.643 97.5% KM (Chebyshev) UCL 0.789 99% KM (Chebyshev) UCL

Data appear Lognormal (0.05) May want to try Lognormal UCLs

# Benzo(k)fluoranthene

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 83<br>50<br><b>33</b><br>0.0195<br>4.25<br><b>60.24%</b><br>0.0137<br>0.153 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.583<br>0.228<br>0.722<br>0.85<br>1.458<br>2.793<br>-1.499                 |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 64
Number treated as Detected 19
Single DL Percent Detection 77.11%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method                                                                                                                                                                                                                       | N/A                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL                                                   | 0.244<br>0.595<br>0.0663<br>0.354<br>0.353<br>0.359<br>0.356<br>0.533<br>0.658                      |  |
| Data appear Lognormal (0.05)<br>May want to try Lognormal UCLs                                                                                                                                                                             |                                                                                                     |  |
|                                                                                                                                                                                                                                            |                                                                                                     |  |
| Beryllium                                                                                                                                                                                                                                  |                                                                                                     |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data | 83<br>1<br><b>82</b><br>0.014<br>4.6<br><b>1.20%</b><br>0.0031<br>0.0031<br>0.413<br>0.325<br>0.277 |  |
| SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data                                                                                                                        | 0.527<br>1.275<br>6.355<br>-1.306<br>0.991                                                          |  |
| Data Dsitribution Test with Detected Values Only<br>Data Follow Appr. Gamma Distribution at 5% Significance                                                                                                                                | ce Level                                                                                            |  |
| Winsorization Method<br>Mean<br>SD<br>95% Winsor (t) UCL                                                                                                                                                                                   | 0.991<br>0.366<br>0.257<br>0.413                                                                    |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL                                                   | 0.408<br>0.522<br>0.0577<br>0.504<br>0.503<br>0.524<br>0.514<br>0.66<br>0.768<br>0.982              |  |

Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs

| Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |   |
| Total Number of Data                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83                                                                                             |   |
| Number of Non-Detect Data                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49                                                                                             |   |
| Number of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34                                                                                             |   |
| Minimum Detected                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.43                                                                                           |   |
| Maximum Detected                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.4                                                                                           |   |
| Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59.04%                                                                                         |   |
| Minimum Non-detect                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.95                                                                                           |   |
| Maximum Non-detect                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.3                                                                                           |   |
| Mana (D. L. La I Dala                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.004                                                                                          |   |
| Mean of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.961                                                                                          |   |
| Median of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.78                                                                                           |   |
| Variance of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81.05                                                                                          |   |
| SD of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.003                                                                                          |   |
| CV of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.904                                                                                          |   |
| Skewness of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.951                                                                                          |   |
| Mean of Detected log data                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.084                                                                                          |   |
| SD of Detected Log data                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.622                                                                                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |   |
| Note: Data have multiple DLs - Use of KM Method                                                                                                                                                                                                                                                                                                                                                                                                                | is recommended                                                                                 |   |
| For all methods (except KM, DL/2, and ROS Methods                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |   |
| Observations < Largest DL are treated as NDs                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>/</i> 1                                                                                     |   |
| Number treated as Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81                                                                                             | • |
| Number treated as Non-Betect Number treated as Detected                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                              |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.59%                                                                                         |   |
| Single DL Percent Detection                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97.5976                                                                                        |   |
| Data Daitribution Toot with Datastad Values Only                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |   |
| Data Dsitribution Test with Detected Values Only                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |   |
| Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |   |
| Data do not follow a Discernable Distribution (0.05)  Winsorization Method                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                            |   |
| Winsorization Method                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                            |   |
| Winsorization Method                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>5.559                                                                                   |   |
| Winsorization Method  Kaplan Meier (KM) Method                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |   |
| Winsorization Method Kaplan Meier (KM) Method Mean                                                                                                                                                                                                                                                                                                                                                                                                             | 5.559                                                                                          |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean                                                                                                                                                                                                                                                                                                                                                                               | 5.559<br>6.776                                                                                 |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL                                                                                                                                                                                                                                                                                                                                                               | 5.559<br>6.776<br>0.756<br>6.817                                                               |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean SD  Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL                                                                                                                                                                                                                                                                                                                                                  | 5.559<br>6.776<br>0.756<br>6.817<br>6.803                                                      |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean SD  Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL                                                                                                                                                                                                                                                                                                                                 | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256                                             |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean SD  Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                               | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074                                    |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean SD  Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL                                                                                                                                                                                                                                                                        | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856                           |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean SD  Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL                                                                                                                                                                                                                                               | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856<br>10.28                  |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean SD  Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL                                                                                                                                                                                                                                                                        | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856                           |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean SD  Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                                                                        | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856<br>10.28                  |   |
| Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                                                                           | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856<br>10.28<br>13.08         |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean SD  Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL  Potential UCL to Use 95% KM (t) UCL                                                                                                                                                                                   | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856<br>10.28<br>13.08         |   |
| Winsorization Method  Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                                                   | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856<br>10.28<br>13.08         |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean SD  Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL  Potential UCL to Use 95% KM (t) UCL                                                                                                                                                                                   | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856<br>10.28<br>13.08         |   |
| Winsorization Method  Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                            | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856<br>10.28<br>13.08         |   |
| Winsorization Method  Kaplan Meier (KM) Method  Mean SD  Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL  Potential UCL to Use 95% KM (t) UCL                                                                                                                                                                                   | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856<br>10.28<br>13.08         |   |
| Winsorization Method  Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                            | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856<br>10.28<br>13.08         |   |
| Winsorization Method  Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                            | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856<br>10.28<br>13.08         |   |
| Winsorization Method  Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL  Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL  Butyl benzyl phthalate                                                                                      | 5.559<br>6.776<br>0.756<br>6.817<br>6.803<br>7.256<br>7.074<br>8.856<br>10.28<br>13.08         |   |
| Winsorization Method  Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL  Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL  Butyl benzyl phthalate  Total Number of Data                                                              | 5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08                                    |   |
| Winsorization Method  Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 95% KM (t) UCL Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL  Butyl benzyl phthalate  Total Number of Data Number of Non-Detect Data                                               | 5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08 6.817 7.074                        |   |
| Winsorization Method  Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 95% KM (t) UCL 95% KM (t) UCL  Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL  Butyl benzyl phthalate  Total Number of Data Number of Non-Detect Data Number of Detected Data       | 5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08  6.817 7.074  83 77 6 0.0129       |   |
| Winsorization Method  Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL  Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL  Butyl benzyl phthalate  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected | 5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08  6.817 7.074  83 77 6 0.0129 0.297 |   |
| Winsorization Method  Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 95% KM (t) UCL                              | 5.559 6.776 0.756 6.817 6.803 7.256 7.074 8.856 10.28 13.08  6.817 7.074  83 77 6 0.0129       |   |

0.123

Maximum Non-detect

| Mean of Detected Data     | 0.0956 |
|---------------------------|--------|
| Median of Detected Data   | 0.0359 |
| Variance of Detected Data | 0.013  |
| SD of Detected Data       | 0.114  |
| CV of Detected Data       | 1.193  |
| Skewness of Detected Data | 1.455  |
| Mean of Detected log data | -2.959 |
| SD of Detected Log data   | 1.207  |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 81
Number treated as Detected 2
Single DL Percent Detection 97.59%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.019   |
| SD                                | 0.0352  |
| Standard Error of Mean            | 0.00424 |
| 95% KM (t) UCL                    | 0.0261  |
| 95% KM (z) UCL                    | 0.026   |
| 95% KM (BCA) UCL                  | 0.0493  |
| 95% KM (Percentile Bootstrap) UCL | 0.0415  |
| 95% KM (Chebyshev) UCL            | 0.0375  |
| 97.5% KM (Chebyshev) UCL          | 0.0455  |
| 99% KM (Chebyshev) UCL            | 0.0612  |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.01250
[per recommendation in ProUCL User Guide]

# Cadmium

| Total Number of Data      | 83     |
|---------------------------|--------|
| Number of Non-Detect Data | 33     |
| Number of Detected Data   | 50     |
| Minimum Detected          | 0.023  |
| Maximum Detected          | 9.71   |
| Percent Non-Detects       | 39.76% |
| Minimum Non-detect        | 0.017  |
| Maximum Non-detect        | 0.052  |
| Mean of Detected Data     | 0.764  |
| Median of Detected Data   | 0.47   |

| Variance of Detected Data | 1.948 |
|---------------------------|-------|
| SD of Detected Data       | 1.396 |
| CV of Detected Data       | 1.828 |
| Skewness of Detected Data | 5.725 |
| Mean of Detected log data | -0.79 |
| SD of Detected Log data   | 0.942 |
|                           |       |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 34
Number treated as Detected 49
Single DL Percent Detection 40.96%

40.96%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method

| Mean                              | 0.189 |
|-----------------------------------|-------|
| SD                                | 0.112 |
| 95% Winsor (t) UCL                | 0.211 |
| Kaplan Meier (KM) Method          |       |
| Mean                              | 0.469 |
| SD                                | 1:132 |
| Standard Error of Mean            | 0.126 |
| 95% KM (t) UCL                    | 0.678 |
| 95% KM (z) UCL                    | 0.676 |
| 95% KM (BCA) UCL                  | 0.751 |
| 95% KM (Percentile Bootstrap) UCL | 0.707 |
| 95% KM (Chebyshev) UCL            | 1.016 |
| 97.5% KM (Chebyshev) UCL          | 1.253 |
|                                   |       |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

99% KM (Chebyshev) UCL

### Carbazole

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 83<br>54<br><b>29</b><br>0.0104<br>1.54<br><b>65.06%</b><br>0.00864<br>0.0967 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.157<br>0.0855<br>0.0927<br>0.304<br>1.94<br>3.888<br>-2.751                 |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

| Number treated as Non-Detect | 70     |
|------------------------------|--------|
| Number treated as Detected   | 13     |
| Single DL Percent Detection  | 84.34% |

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method     | N/A    |
|--------------------------|--------|
| Kaplan Meier (KM) Method |        |
| Mean                     | 0.062  |
| SD                       | 0.19   |
| Standard Error of Mean   | 0.0212 |
| 95% KM (t) UCL           | 0.0973 |
| 95% KM (z) UCI           | 0.0969 |

 95% KM (t) UCL
 0.0973

 95% KM (z) UCL
 0.0969

 95% KM (BCA) UCL
 0.107

 95% KM (Percentile Bootstrap) UCL
 0.104

 95% KM (Chebyshev) UCL
 0.155

 97.5% KM (Chebyshev) UCL
 0.195

0.273

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

99% KM (Chebyshev) UCL

#### Chromium

| Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                 | 83<br>75<br>3.37<br>136<br>16.08<br>12.6<br>15.7<br>246.5<br>0.977<br>5.833<br>2.58<br>0.568 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 95% Useful UCLs<br>Student's-t UCL<br>95% UCLs (Adjusted for Skewness)                                                                                                                                                                 | 18.94                                                                                        |
| 95% Adjusted-CLT UCL<br>95% Modified-t UCL                                                                                                                                                                                             | 20.09<br>19.13                                                                               |
| Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL | 18.91<br>18.94<br>18.9<br>21.61<br>32<br>19.25<br>20.82<br>23.59<br><b>26.84</b><br>33.22    |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

| Chrysene                                                                                                                                                                                                                                               |                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                                                                                     | 83<br>27<br><b>56</b><br>0.00932<br>4.87<br><b>32.53%</b><br>0.00842<br>0.0906       |
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data                                                            | 0.6<br>0.16<br>0.927<br>0.963<br>1.604<br>2.449<br>-1.726<br>1.665                   |
| Note: Data have multiple DLs - Use of KM Method is<br>For all methods (except KM, DL/2, and ROS Methods),<br>Observations < Largest DL are treated as NDs<br>Number treated as Non-Detect<br>Number treated as Detected<br>Single DL Percent Detection |                                                                                      |
| Data Dsitribution Test with Detected Values Only<br>Data do not follow a Discernable Distribution (0.05)                                                                                                                                               |                                                                                      |
| Winsorization Method                                                                                                                                                                                                                                   | N/A                                                                                  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL                                                               | 0.409<br>0.831<br>0.092<br>0.562<br>0.56<br>0.562<br>0.567<br>0.81<br>0.984<br>1.324 |
| Potential UCL to Use                                                                                                                                                                                                                                   |                                                                                      |
| Cobalt                                                                                                                                                                                                                                                 |                                                                                      |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                                                                                     | 83<br>1<br><b>82</b><br>0.049<br>16<br><b>1.20%</b><br>0.025<br>0.025                |

3.75

Mean of Detected Data

| Median of Detected Data                                  | 3.495     |
|----------------------------------------------------------|-----------|
| Variance of Detected Data                                | 4.948     |
| SD of Detected Data                                      | 2.224     |
| CV of Detected Data                                      | 0.593     |
| Skewness of Detected Data                                | 2.276     |
| Mean of Detected log data                                | 1.135     |
| SD of Detected Log data                                  | 0.731     |
| Data Dsitribution Test with Detected Values Only         |           |
| Data Follow Appr. Gamma Distribution at 5% Significan    | re Level  |
| Data i ollow Appr. Camina Distribution at 5% digitilican | ioc Ecver |
| Winsorization Method                                     | 0.731     |
| Mean                                                     | 3.617     |
| SD                                                       | 1.87      |
| 95% Winsor (t) UCL                                       | 3.959     |
| 55 % THISSI (4) 552                                      | 5.555     |
| Kaplan Meier (KM) Method                                 |           |
| Mean                                                     | 3.706     |
| SD                                                       | 2.234     |
| Standard Error of Mean                                   | 0.247     |
| 95% KM (t) UCL                                           | 4.116     |
| 95% KM (z) UCL                                           | 4.112     |
| 95% KM (BCA) UCL                                         | 4.111     |
| 95% KM (Percentile Bootstrap) UCL                        | 4.129     |
| 95% KM (Chebyshev) UCL                                   | 4.781     |
| 97.5% KM (Chebyshev) UCL                                 | 5,247     |
| 99% KM (Chebyshev) UCL                                   | 6.161     |
| •                                                        |           |
| Data follow Appr. Gamma Distribution (0.05)              |           |
| May want to try Gamma UCLs                               |           |
|                                                          |           |
|                                                          |           |

# Copper

| Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data | 83<br>78<br>1.55<br>216<br>27.98<br>16.4<br>35.35<br>1249<br>1.263<br>3.794<br>2.929<br>0.844 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 95% Useful UCLs<br>Student's-t UCL<br>95% UCLs (Adjusted for Skewness)                                                                                                 | 34.43                                                                                         |
| 95% Adjusted-CLT UCL<br>95% Modified-t UCL                                                                                                                             | 36.09<br>34.7                                                                                 |
| Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL                 | 34.36<br>34.43<br>34.31<br>38.14<br>39.6<br>35.32                                             |

| 95% BCA Bootstrap UCL         | 36.93 |
|-------------------------------|-------|
| 95% Chebyshev(Mean, Sd) UCL   | 44.89 |
| 97.5% Chebyshev(Mean, Sd) UCL | 52.21 |
| 99% Chebyshev(Mean, Sd) UCL   | 66.58 |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 83<br>47<br><b>36</b><br>0.0639<br>1.64<br><b>56.63%</b><br>0.00846<br>0.0946 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.347<br>0.143<br>0.148<br>0.385<br>1.109<br>1.917<br>-1.528<br>0.938         |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 54
Number treated as Detected 29
Single DL Percent Detection 65.06%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method | N/A |
|----------------------|-----|
|----------------------|-----|

| Mean                              | 0.187  |
|-----------------------------------|--------|
| SD                                | 0.286  |
| Standard Error of Mean            | 0.0319 |
| 95% KM (t) UCL                    | 0.24   |
| 95% KM (z) UCL                    | 0.239  |
| 95% KM (BCA) UCL ,                | 0.249  |
| 95% KM (Percentile Bootstrap) UCL | 0.245  |
| 95% KM (Chebyshev) UCL            | 0.326  |
| 97.5% KM (Chebyshev) UCL          | 0.386  |
| 99% KM (Chebyshev) UCL            | 0.504  |

# Potential UCL to Use

| 95% KM (t) UCL       | 0.24      |
|----------------------|-----------|
| 95% KM (% Bootstrap) | UCL 0.245 |

## Dibenzofuran

Total Number of Data

83

| Number of Non-Detect Data                                                                   | 66                  |   |
|---------------------------------------------------------------------------------------------|---------------------|---|
| Number of Detected Data                                                                     | 17                  |   |
| Minimum Detected                                                                            | 0.0167              |   |
| Maximum Detected                                                                            | 0.821               |   |
| Percent Non-Detects                                                                         | 79.52%              |   |
| Minimum Non-detect                                                                          | 0.0124              |   |
| Maximum Non-detect                                                                          | 0.139               |   |
| Mean of Detected Data                                                                       | 0.132               |   |
| Median of Detected Data                                                                     | 0.0603              |   |
| Variance of Detected Data                                                                   | 0.0456              |   |
| SD of Detected Data                                                                         | 0.214               |   |
| CV of Detected Data                                                                         | 1.623               |   |
| Skewness of Detected Data                                                                   | 2.78                |   |
| Mean of Detected log data                                                                   | -2.684              |   |
| SD of Detected Log data                                                                     | 1.02                |   |
| N ( D ( )   K'   D   )   (1700 )                                                            | a. 1.               |   |
| Note: Data have multiple DLs - Use of KM Me<br>For all methods (except KM, DL/2, and ROS Me |                     |   |
| Observations < Largest DL are treated as NDs                                                | arous <sub>/1</sub> |   |
| Number treated as Non-Detect                                                                | 81                  |   |
| Number treated as Detected                                                                  | 2                   |   |
| Single DL Percent Detection                                                                 | 97.59%              |   |
| Single DE Fordon Detection                                                                  | 07.0070             |   |
| Data Dsitribution Test with Detected Values Only                                            | y                   |   |
| Data do not follow a Discernable Distribution (0.0                                          | 05)                 |   |
| Winsorization Method                                                                        | N/A                 |   |
| winsonzation wethod                                                                         | N/A                 |   |
| Kaplan Meier (KM) Method                                                                    |                     |   |
| Mean                                                                                        | 0.041               |   |
| SD                                                                                          | 0.105               |   |
| Standard Error of Mean                                                                      | 0.0119              |   |
| 95% KM (t) UCL                                                                              | 0.0607              |   |
| 95% KM (z) UCL                                                                              | 0.0605              |   |
| 95% KM (BCA) UCL                                                                            | 0.0723              |   |
| 95% KM (Percentile Bootstrap) UCL                                                           | 0.0659              |   |
| 95% KM (Chebyshev) UCL                                                                      | 0.0927              |   |
| 97.5% KM (Chebyshev) UCL                                                                    | 0.115               |   |
| 99% KM (Chebyshev) UCL                                                                      | 0.159               |   |
| 33 / Tall (Shobyshov) 332                                                                   | 0.100               |   |
| Potential UCL to Use                                                                        |                     |   |
| 95% KM (BCA) UCL                                                                            | 0.0723              |   |
|                                                                                             |                     |   |
| Dieldrin                                                                                    |                     |   |
| Total Number of Data                                                                        | 83                  |   |
| Number of Non-Detect Data                                                                   | 62                  |   |
| Number of Detected Data                                                                     | 21                  |   |
| Minimum Detected                                                                            | 2.43E-04            | • |
| Maximum Detected                                                                            | 0.0205              |   |
| Percent Non-Detects                                                                         | 74.70%              |   |
| Minimum Non-detect                                                                          | 1.40E-04            |   |
| Maximum Non-detect                                                                          | 0.00701             |   |
|                                                                                             |                     |   |
| Mean of Detected Data                                                                       | 0.00336             |   |
| Median of Detected Data                                                                     | 0.00138             |   |
| Variance of Detected Data                                                                   | 2.95E-05            |   |
| SD of Detected Data                                                                         | 0.00543             |   |
| CV of Detected Data                                                                         | 1 617               |   |

1.617

CV of Detected Data

| Skewness of Detected Data | 2.499  |
|---------------------------|--------|
| Mean of Detected log data | -6.547 |
| SD of Detected Log data   | 1.257  |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 80
Number treated as Detected 3
Single DL Percent Detection 96.39%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00104  |
| SD                                | 0.00299  |
| Standard Error of Mean            | 3.36E-04 |
| 95% KM (t) UCL                    | 0.0016   |
| 95% KM (z) UCL                    | 0.00159  |
| 95% KM (BCA) UCL                  | 0.00187  |
| 95% KM (Percentile Bootstrap) UCL | 0.00163  |
| 95% KM (Chebyshev) UCL            | 0.00251  |
| 97.5% KM (Chebyshev) UCL          | 0.00314  |
| 99% KM (Chebyshev) UCL            | 0.00439  |

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

#### Di-n-butyl phthalate

| Total Number of Data      | 83     |
|---------------------------|--------|
| Number of Non-Detect Data | 74     |
| Number of Detected Data   | 9      |
| Minimum Detected          | 0.0368 |
| Maximum Detected          | 0.753  |
| Percent Non-Detects       | 89.16% |
| Minimum Non-detect        | 0.0251 |
| Maximum Non-detect        | 0.28   |
| Mean of Detected Data     | 0.217  |
| Median of Detected Data   | 0.0819 |
| Variance of Detected Data | 0.0586 |
| SD of Detected Data       | 0.242  |
| CV of Detected Data       | 1.117  |
| Skewness of Detected Data | 1.577  |
| Mean of Detected log data | -2.084 |
| SD of Detected Log data   | 1.12   |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect80Number treated as Detected3Single DL Percent Detection96.39%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method                                               | N/A    |
|--------------------------------------------------------------------|--------|
| Kaplan Meier (KM) Method                                           |        |
| Mean                                                               | 0.0566 |
| SD                                                                 | 0.0938 |
| Standard Error of Mean                                             | 0.0109 |
| 95% KM (t) UCL                                                     | 0.0748 |
| 95% KM (z) UCL                                                     | 0.0746 |
| 95% KM (BCA) UCL                                                   | 0.0993 |
| 95% KM (Percentile Bootstrap) UCL                                  | 0.0819 |
| 95% KM (Chebyshev) UCL                                             | 0.104  |
| 97.5% KM (Chebyshev) UCL                                           | 0.125  |
| 99% KM (Chebyshev) UCL                                             | 0.166  |
| Data appear Gamma Distributed (0.05)<br>May want to try Gamma UCLs |        |

Endosulfan sulfate

| Total Number of Data      | 83       |
|---------------------------|----------|
| Number of Non-Detect Data | 66       |
| Number of Detected Data   | 17       |
| Minimum Detected          | 4.56E-04 |
| Maximum Detected          | 0.0713   |
| Percent Non-Detects       | 79.52%   |
| Minimum Non-detect        | 2.65E-04 |
| Maximum Non-detect        | 0.0133   |
|                           |          |
| Mean of Detected Data     | 0.00837  |
| Median of Detected Data   | 0.00154  |
| Variance of Detected Data | 3.09E-04 |
| SD of Detected Data       | 0.0176   |
| CV of Detected Data       | 2.098    |
| Skewness of Detected Data | 3.28     |
| Mean of Detected log data | -6.019   |
| SD of Detected Log data   | 1.472    |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect80Number treated as Detected3Single DL Percent Detection96.39%

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method N/A

Kaplan Meier (KM) Method

Mean 0.00209 SD 0.00835

| Standard Error of Mean            | 9.45E-04                                            |
|-----------------------------------|-----------------------------------------------------|
| 95% KM (t) UCL                    | 0.00366                                             |
| 95% KM (z) UCL                    | 0.00364                                             |
| 95% KM (BCA) UCL                  | 0.00421                                             |
| 95% KM (Percentile Bootstrap) UCL | 0.00385                                             |
| 95% KM (Chebyshev) UCL            | 0.0062                                              |
| 97.5% KM (Chebyshev) UCL          | 0.00799                                             |
| 99% KM (Chebyshev) UCL            | 0.0115                                              |
|                                   | eranda araba eran eran eran eran eran eran eran era |

| Potential U | CL to Use |                | 1.000047    |         |
|-------------|-----------|----------------|-------------|---------|
| 0.001.171.1 |           |                |             | 0.00404 |
| 95% KM (    | BCA) UCI  | PARK INC. PARK | THE CONTROL | 0.00421 |

## Endrin aldehyde

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 83<br>61<br><b>22</b><br>4.97E-04<br>0.0738<br><b>73.49%</b><br>3.36E-04<br>0.00374 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.00814<br>0.00243<br>2.63E-04<br>0.0162<br>1.991<br>3.585<br>-5.742<br>1.237       |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect76Number treated as Detected7Single DL Percent Detection91.57%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method | N/A |
|----------------------|-----|

| Kanlan | Meier  | (KM)    | Method  |
|--------|--------|---------|---------|
| Napian | MICICI | (17171) | Wictiou |

| Mean                              | 0.00253  |
|-----------------------------------|----------|
| SD                                | 0.00882  |
| Standard Error of Mean            | 9.91E-04 |
| 95% KM (t) UCL                    | 0.00418  |
| 95% KM (z) UCL                    | 0.00416  |
| 95% KM (BCA) UCL                  | 0.00487  |
| 95% KM (Percentile Bootstrap) UCL | 0.00446  |
| 95% KM (Chebyshev) UCL            | 0.00685  |
| 97.5% KM (Chebyshev) UCL          | 0.00872  |
| 99% KM (Chebyshev) UCL            | 0.0124   |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

#### Endrin ketone

| Total Number of Data      | 83       |
|---------------------------|----------|
| Number of Non-Detect Data | 66       |
| Number of Detected Data   | 17       |
| Minimum Detected          | 0.00123  |
| Maximum Detected          | 0.02     |
| Percent Non-Detects       | 79.52%   |
| Minimum Non-detect        | 4.26E-04 |
| Maximum Non-detect        | 0.021    |
| Mean of Detected Data     | 0.00614  |
| Median of Detected Data   | 0.0041   |
| Variance of Detected Data | 2.68E-05 |
| SD of Detected Data       | 0.00518  |
| CV of Detected Data       | 0.844    |
| Skewness of Detected Data | 1.296    |
| Mean of Detected log data | -5.439   |
| SD of Detected Log data   | 0.881    |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 83
Number treated as Detected 0
Single DL Percent Detection 100.00%

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method | N/A |
|----------------------|-----|

| Kaplan Meier (KM) Method          |          |
|-----------------------------------|----------|
| Mean                              | 0.00225  |
| SD                                | 0.00303  |
| Standard Error of Mean            | 3.45E-04 |
| 95% KM (t) UCL                    | 0.00283  |
| 95% KM (z) UCL                    | 0.00282  |
| 95% KM (BCA) UCL                  | 0.00319  |
| 95% KM (Percentile Bootstrap) UCL | 0.00297  |
| 95% KM (Chebyshev) UCL            | 0.00376  |
| 97.5% KM (Chebyshev) UCL          | 0.00441  |
| 99% KM (Chebyshev) UCL            | 0.00569  |
|                                   |          |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

#### Fluoranthene

| Total Number of Data      | 83     |
|---------------------------|--------|
| Number of Non-Detect Data | 24     |
| Number of Detected Data   | 59     |
| Minimum Detected          | 0.0133 |
| Maximum Detected          | 14.2   |
| Percent Non-Detects       | 28.92% |
| Minimum Non-detect        | 0.0107 |
| Maximum Non-detect        | 0.117  |
| Mean of Detected Data     | 1.119  |
| Median of Detected Data   | 0.24   |

| 4.976 |
|-------|
| 2.231 |
| 1.994 |
| 4.072 |
| -1.32 |
| 1.802 |
|       |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 47
Number treated as Detected 36
Single DL Percent Detection 56.63%

N/A

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Kaplan Meier (KM) Method          |       |
|-----------------------------------|-------|
| Mean                              | 0.8   |
| SD                                | 1.931 |
| Standard Error of Mean            | 0.214 |
| 95% KM (t) UCL                    | 1.155 |
| 95% KM (z) UCL                    | 1.151 |
| 95% KM (BCA) UCL                  | 1.188 |
| 95% KM (Percentile Bootstrap) UCL | 1.157 |
| 95% KM (Chebyshev) UCL            | 1.731 |
| 97.5% KM (Chebyshev) UCL          | 2.135 |
| 99% KM (Chebyshev) UCL            | 2.926 |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

Winsorization Method

#### Fluorene

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 83<br>55<br><b>28</b><br>0.00945<br>1.11<br><b>66.27%</b><br>0.0086<br>0.0962 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.133<br>0.0693<br>0.059<br>0.243<br>1.829<br>3.384<br>-2.823<br>1.177        |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 74
Number treated as Detected 9
Single DL Percent Detection 89.16%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0518 |
| SD                                | 0.15   |
| Standard Error of Mean            | 0.0168 |
| 95% KM (t) UCL                    | 0.0797 |
| 95% KM (z) UCL                    | 0.0794 |
| 95% KM (BCA) UCL                  | 0.0885 |
| 95% KM (Percentile Bootstrap) UCL | 0.0819 |
| 95% KM (Chebyshev) UCL            | 0.125  |
| 97.5% KM (Chebyshev) UCL          | 0.157  |
| 99% KM (Chebyshev) UCL            | 0.219  |
|                                   |        |

gamma-Chlordane

Data appear Lognormal (0.05) May want to try Lognormal UCLs

| Total Number of Data<br>Number of Non-Detect Data | 83<br>75       |
|---------------------------------------------------|----------------|
| Number of Detected Data                           | 8              |
| Minimum Detected                                  | 7.10E-04       |
| Maximum Detected                                  | 0.0156         |
| Percent Non-Detects                               | 90.36%         |
| Minimum Non-detect                                | 2.20E-04       |
| Maximum Non-detect                                | 0.011          |
| Mean of Detected Data                             | 0.00604        |
| Median of Detected Data                           | 0.00376        |
| Variance of Detected Data                         | 3.27E-05       |
| SD of Detected Data                               | 0.00572        |
| CV of Detected Data                               | 0.948          |
| Skewness of Detected Data                         | 1.091          |
| Mean of Detected log data                         | <i>-</i> 5.575 |
| SD of Detected Log data                           | 1.109          |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 81
Number treated as Detected 2
Single DL Percent Detection 97.59%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method N/A

| Kaplan Meier (KM) Method          |          |
|-----------------------------------|----------|
| Mean                              | 0.00123  |
| SD                                | 0.00229  |
| Standard Error of Mean            | 2.69E-04 |
| 95% KM (t) UCL                    | 0.00167  |
| 95% KM (z) UCL                    | 0.00167  |
| 95% KM (BCA) UCL                  | 0.00414  |
| 95% KM (Percentile Bootstrap) UCL | 0.00381  |
| 95% KM (Chebyshev) UCL            | 0.0024   |
| 97.5% KM (Chebyshev) UCL          | 0.0029   |
| 99% KM (Chebyshev) UCL            | 0.0039   |

Data appear Normal (0.05) May want to try Normal UCLs

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 83<br>20<br><b>63</b><br>0.0634<br>6.49<br><b>24.10%</b><br>0.0142<br>0.158 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.616<br>0.165<br>1.079<br>1.039<br>1.687<br>3.54<br>-1.365<br>1.245        |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect51Number treated as Detected32Single DL Percent Detection61.45%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 0.483 |
| SD                                | 0.928 |
| Standard Error of Mean            | 0.103 |
| 95% KM (t) UCL                    | 0.654 |
| 95% KM (z) UCL                    | 0.652 |
| 95% KM (BCA) UCL                  | 0.68  |
| 95% KM (Percentile Bootstrap) UCL | 0.661 |
| 95% KM (Chebyshev) UCL            | 0.931 |
| 97.5% KM (Chebyshev) UCL          | 1.124 |
| 99% KM (Chebyshev) UCL            | 1.505 |

# Potential UCL to Use

| Iron                             |          |  |
|----------------------------------|----------|--|
| Number of Valid Observations     | 83       |  |
| Number of Distinct Observations  | 73       |  |
| Minimum                          | 3450     |  |
| Maximum                          | 77100    |  |
| Mean                             | 16285    |  |
| Median                           | 13400    |  |
| SD                               | 11193    |  |
| Variance                         | 1.25E+08 |  |
| Coefficient of Variation         | 0.687    |  |
| Skewness                         | 3.11     |  |
| Mean of log data                 | 9.548    |  |
| SD of log data                   | 0.52     |  |
|                                  |          |  |
| 95% Useful UCLs                  | 18220    |  |
| Student's-t UCL                  | 18329    |  |
| 95% UCLs (Adjusted for Skewness) |          |  |
| 95% Adjusted-CLT UCL             | 18754    |  |
| 95% Modified-t UCL               | 18399    |  |
| Non-Parametric UCLs              | ·        |  |
| 95% CLT UCL                      | 18306    |  |
| 95% Jackknife UCL                | 18329    |  |
| 95% Standard Bootstrap UCL       | 18305    |  |
|                                  | 19144    |  |
| 95% Bootstrap-t UCL              |          |  |
| 95% Hall's Bootstrap UCL         | 19421    |  |
| 95% Percentile Bootstrap UCL     | 18450    |  |
| 95% BCA Bootstrap UCL            | 18967    |  |
| 95% Chebyshev(Mean, Sd) UCL      | 21640    |  |
| 97.5% Chebyshev(Mean, Sd) UCL    | 23957    |  |
| 99% Chebyshev(Mean, Sd) UCL      | 28509    |  |
| Data appear Lognormal (0.05)     |          |  |
| May want to try Lognormal UCLs   |          |  |
|                                  |          |  |
| Lead                             |          |  |
| Number of Valid Observations     | 83       |  |
| Number of Distinct Observations  | 80       |  |
| Minimum                          | 2.82     |  |
| Maximum                          | 643      |  |
| Mean                             | 69.61    |  |
| Median                           | 34.4     |  |
| SD                               | 112.8    |  |
| Variance                         | 12720    |  |
| Coefficient of Variation         | 1.62     |  |
|                                  | 3.653    |  |
| Skewness<br>Mann of log data     | 3.584    |  |
| Mean of log data                 | 1.077    |  |
| SD of log data                   | 1.077    |  |
| 95% Useful UCLs                  |          |  |
| Student's-t UCL                  | 90.2     |  |
| 95% UCLs (Adjusted for Skewness) |          |  |
| 95% Adjusted-CLT UCL             | 95.27    |  |
| 0070 Adjusted-OLT OOL            | OO.L1    |  |

| 95% Modified-t UCL                   | 91.03  |
|--------------------------------------|--------|
|                                      |        |
| Non-Parametric UCLs                  |        |
| 95% CLT UCL                          | 89.97  |
| 95% Jackknife UCL                    | 90.2   |
| 95% Standard Bootstrap UCL           | 89.8   |
| 95% Bootstrap-t UCL                  | 101.1  |
| 95% Hall's Bootstrap UCL             | 96.41  |
| 95% Percentile Bootstrap UCL         | 91.07  |
| 95% BCA Bootstrap UCL                | 97.2   |
| 95% Chebyshev(Mean, Sd) UCL          | 123.6  |
| 97.5% Chebyshev (Mean, Sd) UCL       | 146.9  |
| 99% Chebyshev(Mean, Sd) UCL          | 192.8  |
| 33 % Onebyshev(Mean, od) OOL         | 102.0  |
| Data appear Lognormal (0.05)         |        |
| May want to try Lognormal UCLs       |        |
| way want to try Lognormal OCLS       |        |
|                                      |        |
| Lithium                              |        |
|                                      |        |
| Number of Valid Observations         | 83     |
| Number of Distinct Observations      | 80     |
| Minimum                              | 0.65   |
| Maximum                              | 28     |
| Mean                                 | 7.856  |
| Median                               | 6.44   |
| SD                                   | 5.715  |
| <del>-</del>                         | 32.67  |
| Variance                             |        |
| Coefficient of Variation             | 0.728  |
| Skewness                             | 1.032  |
| Mean of log data                     | 1.76   |
| SD of log data                       | 0.847  |
| 95% Useful UCLs                      |        |
| Student's-t UCL                      | 8.899  |
| Student's-t OCL                      | 0.055  |
| 95% UCLs (Adjusted for Skewness)     |        |
| 95% Adjusted-CLT UCL                 | 8.963  |
| 95% Modified-t UCL                   | 8.911  |
| 3370 Modified-t OOL                  | 0.011  |
| Non-Parametric UCLs                  |        |
| 95% CLT UCL                          | 8.887  |
| 95% Jackknife UCL                    | 8.899  |
| 95% Standard Bootstrap UCL           | 8.865  |
| 95% Bootstrap-t UCL                  | 9.016  |
| 95% Hall's Bootstrap UCL             | 8.939  |
| 95% Percentile Bootstrap UCL         | 8.92   |
| 95% BCA Bootstrap UCL                | 9.002  |
| 95% Chebyshev(Mean, Sd) UCL          | 10.59  |
| 97.5% Chebyshev(Mean, Sd) UCL        | -11.77 |
| 99% Chebyshev(Mean, Sd) UCL          | 14.1   |
| 22.75 Chianyonor (maani aa) 201      | • • •  |
| Data appear Gamma Distributed (0.05) |        |
| May want to try Gamma UCLs           |        |
|                                      |        |
| -                                    |        |
| Manganese                            |        |
| Number of Valid Observations         | 83     |
| Number of Distinct Observations      | 71     |
| Minimum                              | 59.3   |
| Withittutt                           | ,      |

| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 257.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 129.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Mean of log data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| SD of log data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Data do not follow a Discernable Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 05% 116-11101 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 95% Useful UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 281.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 204.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 95% Adjusted-CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 284.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 95% Modified-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 281.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Non-Parametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 280.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 281.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 95% Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 280.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| 95% Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 287.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 280.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 285.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 319.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 346.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 398.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Potential UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Potential UCL to Use Use 95% Student's-t UCL Or 95% Modified-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 281.1<br><b>281.7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Use 95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A CONTRACTOR OF THE PROPERTY O | · — · — · — · — · -                   |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 281.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>281.7 83</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · — · — · — · -                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83<br>46<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · — · — · — · -                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83<br>46<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - <b></b>                             |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83<br>46<br>37<br>0.0032<br>0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect                                                                                                                                                                                                                                                                                                                                                                                             | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect                                                                                                                                                                                                                                                                                                                                                                                             | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data                                                                                                                                                                                                                                                                                                                                                    | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%<br>0.002<br>0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · — · — · — · — · •                   |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data                                                                                                                                                                                                                                                                                                                            | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%<br>0.002<br>0.048<br>0.0447<br>0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data                                                                                                                                                                                                                                                                                                  | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%<br>0.002<br>0.048<br>0.0447<br>0.019<br>0.0119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · · |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data                                                                                                                                                                                                                                                                              | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%<br>0.002<br>0.048<br>0.0447<br>0.019<br>0.0119<br>0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data                                                                                                                                                                                                                                                                                                  | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%<br>0.002<br>0.048<br>0.0447<br>0.019<br>0.0119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data                                                                                                                                                                                                                                                                              | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%<br>0.002<br>0.048<br>0.0447<br>0.019<br>0.0119<br>0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data                                                                                                                                                                                                                                | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%<br>0.002<br>0.048<br>0.0447<br>0.019<br>0.0119<br>0.109<br>2.445<br>5.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected Data Mean of Detected Data                                                                                                                                                                                    | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%<br>0.002<br>0.048<br>0.0447<br>0.019<br>0.0119<br>0.109<br>2.445<br>5.279<br>-4.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data                                                                                                                                                                                                                                | 83<br>46<br>37<br>0.0032<br>0.66<br>55.42%<br>0.002<br>0.048<br>0.0447<br>0.019<br>0.0119<br>0.109<br>2.445<br>5.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data Variance of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Metho For all methods (except KM, DL/2, and ROS Method                                              | 83 46 37 0.0032 0.66 55.42% 0.002 0.048  0.0447 0.019 0.0119 0.109 2.445 5.279 -4.004 1.162  d is recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected Data Skewness of Detected Data Skewness of Detected Data Shewness of Detected Data Mean of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Metho                           | 83 46 37 0.0032 0.66 55.42% 0.002 0.048  0.0447 0.019 0.0119 0.109 2.445 5.279 -4.004 1.162  d is recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data Variance of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Metho For all methods (except KM, DL/2, and ROS Method                                              | 83 46 37 0.0032 0.66 55.42% 0.002 0.048  0.0447 0.019 0.0119 0.109 2.445 5.279 -4.004 1.162  d is recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Use 95% Student's-t UCL Or 95% Modified-t UCL  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data Variance of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Metho For all methods (except KM, DL/2, and ROS Method Observations < Largest DL are treated as NDs | 83 46 37 0.0032 0.66 55.42% 0.002 0.048  0.0447 0.019 0.0119 0.109 2.445 5.279 -4.004 1.162  d is recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |

| O' 1   | ь. | <b>D</b> | <b>-</b> |      |
|--------|----|----------|----------|------|
| Single | DΙ | Percent  | Dete     | CHOR |

91.57%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0222  |
| SD                                | 0.0748  |
| Standard Error of Mean            | 0.00832 |
| 95% KM (t) UCL                    | 0.0361  |
| 95% KM (z) UCL                    | 0.0359  |
| 95% KM (BCA) UCL                  | 0.0378  |
| 95% KM (Percentile Bootstrap) UCL | 0.0375  |
| 95% KM (Chebyshev) UCL            | 0.0585  |
| 97.5% KM (Chebyshev) UCL          | 0.0742  |
| 99% KM (Chebyshev) UCL            | 0.105   |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

## Molybdenum

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 83<br>12<br><b>71</b><br>0.098<br>8.42<br><b>14.46%</b><br>0.068<br>0.078 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 1.521<br>1<br>2.632<br>1.622<br>1.066<br>2.021<br>-0.11<br>1.096          |

# Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method     | 1.096 |
|--------------------------|-------|
| Mean                     | 1.067 |
| SD                       | 0.956 |
| 95% Winsor (t) UCL       | 1.243 |
| Kaplan Meier (KM) Method |       |
| Mean                     | 1.315 |
| SD                       | 1.572 |
| Standard Error of Mean   | 0.174 |
| 95% KM (t) UCL           | 1.604 |
| 95% KM (z) UCL           | 1.601 |

| 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97,5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data follow Appr. Gamma Distribution (C                                                                      | 1.611<br>1.617<br>2.073<br>-2.4<br>3.044                                      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| May want to try Gamma UCLs                                                                                                                                                                                                             | •                                                                             |  |
| Nickel                                                                                                                                                                                                                                 |                                                                               |  |
| Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness                                                                                                 | 83<br>67<br>2.84<br>36.7<br>11.64<br>11.2<br>4.938<br>24.38<br>0.424<br>1.825 |  |
| Mean of log data<br>SD of log data                                                                                                                                                                                                     | 2.373<br>0.411                                                                |  |
| 95% Useful UCLs<br>Student's-t UCL                                                                                                                                                                                                     | 12.54                                                                         |  |
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL<br>95% Modified-t UCL                                                                                                                                                         | 12.65<br>12.56                                                                |  |
| Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL | 12.53<br>12.54<br>12.53<br>12.7<br>12.84<br>12.58<br>12.7<br>14<br>15.02      |  |
| Data appear Gamma Distributed (0.05)<br>May want to try Gamma UCLs                                                                                                                                                                     |                                                                               |  |
| Phenanthrene                                                                                                                                                                                                                           |                                                                               |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data                                               | 83<br>26<br><b>57</b><br>0.0139<br>12.6<br><b>31.33%</b><br>0.0115<br>0.122   |  |
| Median of Detected Data                                                                                                                                                                                                                | 0.154                                                                         |  |

| Variance of Detected Data | 3.32  |
|---------------------------|-------|
| SD of Detected Data       | 1.822 |
| CV of Detected Data       | 2.463 |
| Skewness of Detected Data | 5.422 |
| Mean of Detected log data | -1.59 |
| SD of Detected Log data   | 1.565 |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect51Number treated as Detected32Single DL Percent Detection61.45%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 0.513 |
| SD                                | 1.534 |
| Standard Error of Mean            | 0.17  |
| 95% KM (t) UCL                    | 0.796 |
| 95% KM (z) UCL                    | 0.793 |
| 95% KM (BCA) UCL                  | 0.814 |
| 95% KM (Percentile Bootstrap) UCL | 0.825 |
| 95% KM (Chebyshev) UCL            | 1.254 |
| 97.5% KM (Chebyshev) UCL          | 1.574 |
| 99% KM (Chebyshev) UCL            | 2.203 |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

#### Pyrene

| Total Number of Data Number of Non-Detect Data | 83<br>26 |
|------------------------------------------------|----------|
| Number of Detected Data                        | 57       |
| Minimum Detected                               | 0.0121   |
| Maximum Detected                               | 8.47     |
| Percent Non-Detects                            | 31.33%   |
| Minimum Non-detect                             | 0.0111   |
| Maximum Non-detect                             | 0.3      |
| Mean of Detected Data                          | 0.765    |
| Median of Detected Data                        | 0.206    |
| Variance of Detected Data                      | 1.966    |
| SD of Detected Data                            | 1.402    |
| CV of Detected Data                            | 1.832    |
| Skewness of Detected Data                      | 3.609    |
| Mean of Detected log data                      | -1.517   |
| SD of Detected Log data                        | 1.658    |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 62
Number treated as Detected 21
Single DL Percent Detection 74.70%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 0.532 |
| SD                                | 1.203 |
| Standard Error of Mean            | 0.133 |
| 95% KM (t) UCL                    | 0.753 |
| 95% KM (z) UCL                    | 0.751 |
| 95% KM (BCA) UCL                  | 0.781 |
| 95% KM (Percentile Bootstrap) UCL | 0.772 |
| 95% KM (Chebyshev) UCL            | 1.112 |
| 97.5% KM (Chebyshev) UCL          | 1.363 |
| 99% KM (Chebyshev) UCL            | 1.857 |
| Data appear Lognormal (0.05)      |       |

Data appear Lognormal (0.05)
May want to try Lognormal UCLs

#### Selenium

#### **Total Number of Data**

83

Dataset has no Detected Values.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.96

#### Silver

### **Total Number of Data**

83

Dataset has no Detected Values.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UTLs are all less than the maximum detection limit = 1.98

#### Strontium

| Number of Valid Observations    | 83    |
|---------------------------------|-------|
| Number of Distinct Observations | 76    |
| Minimum                         | 16.5  |
| Maximum                         | 527   |
| Mean                            | 70.61 |
| Median                          | 57.3  |
| SD                              | 63.98 |
| Variance                        | 4094  |
| Coefficient of Variation        | 0.906 |
| Skewness                        | 5.044 |
| Mean of log data                | 4.06  |
| SD of log data                  | 0.583 |

## Data do not follow a Discernable Distribution

| 95% Useful UCLs |       |
|-----------------|-------|
| Student's-t UCL | 82.29 |

| OFFICE (Additional for Observation)                      |                 |   |  |
|----------------------------------------------------------|-----------------|---|--|
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL | 86.31           |   |  |
| 95% Modified-t UCL                                       | 82.94           |   |  |
|                                                          |                 |   |  |
| Non-Parametric UCLs                                      |                 |   |  |
| 95% CLT UCL                                              | 82.16           |   |  |
| 95% Jackknife UCL                                        | 82.29<br>82.12  |   |  |
| 95% Standard Bootstrap UCL<br>95% Bootstrap-t UCL        | 91.51           |   |  |
| 95% Hall's Bootstrap UCL                                 | 139.9           |   |  |
| 95% Percentile Bootstrap UCL                             | 82.73           |   |  |
| 95% BCA Bootstrap UCL                                    | 88.37           |   |  |
| 95% Chebyshev(Mean, Sd) UCL                              | 101.2           |   |  |
| 97.5% Chebyshev(Mean, Sd) UCL                            | 114.5           |   |  |
| 99% Chebyshev(Mean, Sd) UCL                              | 140.5           |   |  |
| Potential UCL to Use                                     |                 |   |  |
| Use 95% Chebyshev (Mean, Sd) UCL                         | 101.2           | • |  |
|                                                          |                 |   |  |
| Tin                                                      |                 |   |  |
|                                                          |                 |   |  |
| Total Number of Data                                     | 83              |   |  |
| Number of Non-Detect Data  Number of Detected Data       | 64<br><b>19</b> |   |  |
| Minimum Detected Data                                    | 0.55            |   |  |
| Maximum Detected                                         | 4.95            |   |  |
| Percent Non-Detects                                      | 77.11%          |   |  |
| Minimum Non-detect                                       | 0.46            |   |  |
| Maximum Non-detect                                       | 1.02            |   |  |
| Mean of Detected Data                                    | 1.666           |   |  |
| Median of Detected Data                                  | 1.68            |   |  |
| Variance of Detected Data                                | 1.302           |   |  |
| SD of Detected Data                                      | 1.141           |   |  |
| CV of Detected Data                                      | 0.685           |   |  |
| Skewness of Detected Data                                | 1.434           |   |  |
| Mean of Detected log data<br>SD of Detected Log data     | 0.301<br>0.671  |   |  |
| SD of Detected Log data                                  | 0.071           |   |  |
| Note: Data have multiple DLs - Use of KM Method is       | recommended     |   |  |
| For all methods (except KM, DL/2, and ROS Methods),      |                 |   |  |
| Observations < Largest DL are treated as NDs             | 70              |   |  |
| Number treated as Non-Detect Number treated as Detected  | 72<br>11        |   |  |
| Single DL Percent Detection                              | 86.75%          |   |  |
| _                                                        |                 |   |  |
| Data Distribution Test with Detected Values Only         |                 |   |  |
| Data appear Gamma Distributed at 5% Significance Lev     | vei             |   |  |
| Winsorization Method                                     | N/A             |   |  |
| Kaplan Meier (KM) Method                                 |                 |   |  |
| Mean                                                     | 0.806           |   |  |
| SD                                                       | 0.709           |   |  |
| Standard Error of Mean                                   | 0.0799          |   |  |
| 95% KM (t) UCL                                           | 0.939           |   |  |
| 95% KM (Z) UCL                                           | 0.938<br>0.972  |   |  |
| 95% KM (BCA) UCL<br>95% KM (Percentile Bootstrap) UCL    | 0.941           |   |  |
| 5575 TAN (1 GIOGINIO BOOKSTAP) OOL                       | 5.5 / 1         |   |  |

| 95% KM (Chebyshev) UCL<br>97.5% KM (Chebyshev) UCL<br>99% KM (Chebyshev) UCL                                                                                                                                                                                       | 1.155<br><b>1.305</b><br>1.602                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| Data appear Gamma Distributed (0.05)<br>May want to try Gamma UCLs                                                                                                                                                                                                 |                                                                                        |  |
|                                                                                                                                                                                                                                                                    |                                                                                        |  |
| Titanium                                                                                                                                                                                                                                                           |                                                                                        |  |
| Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                                             | 83<br>71<br>11.5<br>645<br>29.8<br>19.5<br>69.4<br>4816<br>2.329<br>8.71<br>3.055      |  |
| -                                                                                                                                                                                                                                                                  |                                                                                        |  |
| Data do not follow a Discernable Distribution                                                                                                                                                                                                                      | า                                                                                      |  |
| 95% Useful UCLs<br>Student's-t UCL                                                                                                                                                                                                                                 | 42.47                                                                                  |  |
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL<br>95% Modified-t UCL                                                                                                                                                                                     | 50.11<br>43.68                                                                         |  |
| Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL | 42.33<br>42.47<br>42.36<br>93.11<br>87.11<br>44.76<br>54.32<br>63<br>77.37             |  |
| Potential UCL to Use<br>Use 95% Chebyshev (Mean, Sd) UCL                                                                                                                                                                                                           |                                                                                        |  |
| Vanadium                                                                                                                                                                                                                                                           |                                                                                        |  |
| vanadium                                                                                                                                                                                                                                                           |                                                                                        |  |
| Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data                                                                                                            | 83<br>67<br>5.42<br>45.6<br>13.76<br>12.9<br>6.248<br>39.04<br>0.454<br>2.186<br>2.538 |  |

| SD of log data                       | 0.404 |
|--------------------------------------|-------|
| 95% Useful UCLs<br>Student's-t UCL   | 14.9  |
| Oldden 3-1 OOL                       | 14.5  |
| 95% UCLs (Adjusted for Skewness)     |       |
| 95% Adjusted-CLT UCL                 | 15.06 |
| 95% Modified-t UCL                   | 14.93 |
| Non-Parametric UCLs                  |       |
| 95% CLT UCL                          | 14.89 |
| 95% Jackknife UCL                    | 14.9  |
| 95% Standard Bootstrap UCL           | 14.9  |
| 95% Bootstrap-t UCL                  | 15.11 |
| 95% Hall's Bootstrap UCL             | 15.17 |
| 95% Percentile Bootstrap UCL         | 14.9  |
| 95% BCA Bootstrap UCL                | 15.07 |
| 95% Chebyshev(Mean, Sd) UCL          | 16.75 |
| 97.5% Chebyshev(Mean, Sd) UCL        | 18.04 |
| 99% Chebyshev(Mean, Sd) UCL          | 20.58 |
| Data appear Gamma Distributed (0.05) |       |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

Zinc

| Number of Valid Observations     | 83     |
|----------------------------------|--------|
| Number of Distinct Observations  | 81     |
| Minimum                          | 12.3   |
| Maximum                          | 4770   |
| Mean                             | 601.2  |
| Median                           | 455    |
| SD                               | 672.8  |
| Variance                         | 452606 |
| Coefficient of Variation         | 1.119  |
| Skewness                         | 3.386  |
|                                  | 5.837  |
| Mean of log data                 | 1.203  |
| SD of log data                   | 1.203  |
| 95% Useful UCLs                  |        |
|                                  | 7044   |
| Student's-t UCL                  | 724.1  |
| 95% UCLs (Adjusted for Skewness) |        |
| 95% Adjusted-CLT UCL             | 752    |
| 95% Modified-t UCL               | 728.6  |
| 95% Modified-t OCL               | 720.0  |
| Non-Parametric UCLs              |        |
| 95% CLT UCL                      | 722.7  |
| 95% Jackknife UCL                | 724.1  |
| 95% Standard Bootstrap UCL       | 723.1  |
| 95% Bootstrap-t UCL              | 762.3  |
| 95% Hall's Bootstrap UCL         | 818.2  |
| 95% Percentile Bootstrap UCL     | 734.3  |
| 95% BCA Bootstrap UCL            | 771.3  |
| 95% Chebyshev(Mean, Sd) UCL      | 923.1  |
| 97.5% Chebyshev(Mean, Sd) UCL    | 1062   |
| 99% Chebyshev(Mean, Sd) UCL      | 1336   |
| 30 / Onobyshev (Weall, Od) OOL   | ÌOOO   |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

APPENDIX A-2

SOUTH OF MARLIN SOIL

## Nonparametric UCL Statistics for Data Sets with Non-Detects

**User Selected Options** 

From File C:\Users\Micha

C:\Users\Michael\....\Gulfco Superfund Site\revised HHRA\Gulfco Marlin South soil-all data\_ProUCL input.wst

Full Precision

OFF

**Confidence Coefficient** 

95%

**Number of Bootstrap Operations** 

2000

## 1,3,5-Trimethylbenzene

| Total Number of Data      | 83       |
|---------------------------|----------|
| Number of Non-Detect Data | 74       |
| Number of Detected Data   | 9        |
| Minimum Detected          | 2.67E-04 |
| Maximum Detected          | 4.36     |
| Percent Non-Detects       | 89.16%   |
| Minimum Non-detect        | 7.40E-05 |
| Maximum Non-detect        | 0.0101   |
| Mean of Detected Data     | 0.91     |
| Median of Detected Data   | 0.00104  |
| Variance of Detected Data | 3.269    |
| SD of Detected Data       | 1.808    |
| CV of Detected Data       | 1.987    |
| Skewness of Detected Data | 1.644    |
| Mean of Detected log data | -5.26    |
| SD of Detected Log data   | 3.875    |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 81
Number treated as Detected 2
Single DL Percent Detection 97.59%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method     | N/A    |
|--------------------------|--------|
| Kaplan Meier (KM) Method |        |
| Mean                     | 0.0989 |
| SD                       | 0.629  |
| Standard Error of Mean   | 0.0732 |
| 95% KM (t) UCL           | 0.221  |
| 95% KM (z) UCL           | 0.219  |
| 95% KM (BCA) UCL         | 0.243  |

| 95% KM (Percentile Bootstrap) UCL<br>95% KM (Chebyshev) UCL | 0.243<br>0.418 |   |
|-------------------------------------------------------------|----------------|---|
| 97.5% KM (Chebyshev) UCL<br>99% KM (Chebyshev) UCL          | 0.556<br>0.827 |   |
| Potential UCL to Use<br>97:5% KM (Chebyshev) UCL            | 0.556          |   |
| 2-Butanone                                                  |                |   |
| Total Number of Data                                        | 83             |   |
| Number of Non-Detect Data                                   | 42             |   |
| Number of Detected Data                                     | 41             |   |
| Minimum Detected                                            | 9.92E-04       |   |
| Maximum Detected                                            | 0.0226         |   |
| Percent Non-Detects                                         | 50.60%         |   |
| Minimum Non-detect                                          | 1.43E-04       |   |
| Maximum Non-detect                                          | 0.12           |   |
| Mean of Detected Data                                       | 0.00511        |   |
| Median of Detected Data                                     | 0.00314        |   |
| Variance of Detected Data                                   | 2.46E-05       |   |
| SD of Detected Data                                         | 0.00496        |   |
| CV of Detected Data                                         | 0.971          |   |
| Skewness of Detected Data                                   | 1.975          |   |
| Mean of Detected log data                                   | -5.61          |   |
| SD of Detected Log data                                     | 0.774          |   |
| Note: Data have multiple DLs - Use of KM Method             |                |   |
| For all methods (except KM, DL/2, and ROS Method            | s),            |   |
| Observations < Largest DL are treated as NDs                |                |   |
| Number treated as Non-Detect                                | 83             |   |
| Number treated as Detected                                  | 0              |   |
| Single DL Percent Detection                                 | 100.00%        | ÷ |
| Data Dsitribution Test with Detected Values Only            |                |   |
| Data do not follow a Discernable Distribution (0.05)        |                |   |
| Winsorization Method                                        | N/A            |   |
| Kaplan Meier (KM) Method                                    |                |   |
| Mean                                                        | 0.00329        |   |
| SD                                                          | 0.00401        |   |
| Standard Error of Mean                                      | 4.58E-04       |   |
| 95% KM (t) UCL                                              | 0.00405        |   |
| 95% KM (z) UCL                                              | 0.00404        |   |
| 95% KM (BCA) UCL                                            | 0.00425        |   |
| 95% KM (Percentile Bootstrap) UCL                           | 0.00414        |   |
| 95% KM (Chebyshev) UCL                                      | 0.00528        |   |
| 97.5% KM (Chebyshev) UCL                                    | 0.00615        |   |
| 99% KM (Chebyshev) UCL                                      | 0.00785        |   |
| Potential UCL to Use                                        |                |   |
| 95% KM (t) UCL                                              | 0.00405        |   |
| 95% KM (% Bootstrap) UCL                                    | 0.00414        |   |

#### 2-Hexanone

| Total Number of Data                                                                      | 83                                      |
|-------------------------------------------------------------------------------------------|-----------------------------------------|
| Number of Non-Detect Data                                                                 | 75                                      |
| Number of Detected Data                                                                   | 8                                       |
| Minimum Detected                                                                          | 0.00109                                 |
| Maximum Detected                                                                          | 0.0207                                  |
| Percent Non-Detects                                                                       | 90.36%                                  |
| Minimum Non-detect                                                                        | 3.78E-04                                |
| Maximum Non-detect                                                                        | 0.317                                   |
|                                                                                           |                                         |
| Mean of Detected Data                                                                     | 0.00653                                 |
| Mean of Detected Data<br>Median of Detected Data                                          | 0.00653<br>0.00452                      |
|                                                                                           |                                         |
| Median of Detected Data                                                                   | 0.00452                                 |
| Median of Detected Data<br>Variance of Detected Data                                      | 0.00452<br>4.39E-05                     |
| Median of Detected Data Variance of Detected Data SD of Detected Data                     | 0.00452<br>4.39E-05<br>0.00662          |
| Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data | 0.00452<br>4.39E-05<br>0.00662<br>1.015 |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect

Number treated as Detected 0 Single DL Percent Detection 100.00%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

83

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00165  |
| SD                                | 0.0026   |
| Standard Error of Mean            | 3.16E-04 |
| 95% KM (t) UCL                    | 0.00218  |
| 95% KM (z) UCL                    | 0.00218  |
| 95% KM (BCA) UCL                  | 0.00471  |
| 95% KM (Percentile Bootstrap) UCL | 0.00417  |
| 95% KM (Chebyshev) UCL            | 0.00303  |
| 97.5% KM (Chebyshev) UCL          | 0.00363  |
| 99% KM (Chebyshev) UCL            | 0.0048   |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

| 2-Methylnaphthalene                                                                                                                              |         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Total Number of Data                                                                                                                             | 166     |  |
| Number of Non-Detect Data                                                                                                                        | 134     |  |
| Number of Detected Data                                                                                                                          | 32      |  |
| Minimum Detected                                                                                                                                 | 0.0106  |  |
| Maximum Detected                                                                                                                                 | 7.21    |  |
| Percent Non-Detects                                                                                                                              | 80.72%  |  |
| Minimum Non-detect                                                                                                                               | 0.00946 |  |
| Maximum Non-detect                                                                                                                               | 0.205   |  |
| Maximum Port doloot                                                                                                                              | 0.200   |  |
| Mean of Detected Data                                                                                                                            | 0.315   |  |
| Median of Detected Data                                                                                                                          | 0.0469  |  |
| Variance of Detected Data                                                                                                                        | 1.597   |  |
| SD of Detected Data                                                                                                                              | 1.264   |  |
| CV of Detected Data                                                                                                                              | 4.009   |  |
| Skewness of Detected Data                                                                                                                        | 5.582   |  |
| Mean of Detected log data                                                                                                                        | -2.811  |  |
| SD of Detected Log data                                                                                                                          | 1.367   |  |
| ob of bottotica Edg data                                                                                                                         | 1.007   |  |
| Note: Data have multiple DLs - Use of KM Meth<br>For all methods (except KM, DL/2, and ROS Metho<br>Observations < Largest DL are treated as NDs |         |  |
| Number treated as Non-Detect                                                                                                                     | 161     |  |
| Number treated as Detected                                                                                                                       | 5       |  |
| Single DL Percent Detection                                                                                                                      | 96.99%  |  |
| Data Dsitribution Test with Detected Values Only                                                                                                 |         |  |
| Data do not follow a Discernable Distribution (0.05                                                                                              | )       |  |
| Winsorization Method                                                                                                                             | N/A     |  |
| Kaplan Meier (KM) Method                                                                                                                         |         |  |
| Mean                                                                                                                                             | 0.0697  |  |
| SD                                                                                                                                               | 0.559   |  |
| Standard Error of Mean                                                                                                                           | 0.0441  |  |
| 95% KM (t) UCL                                                                                                                                   | 0.143   |  |
| 95% KM (z) UCL                                                                                                                                   | 0.142   |  |
| 95% KM (BCA) UCL                                                                                                                                 | 0.16    |  |
| 95% KM (Percentile Bootstrap) UCL                                                                                                                | 0.155   |  |
| 95% KM (Chebyshev) UCL                                                                                                                           | 0.262   |  |
| 97.5% KM (Chebyshev) UCL                                                                                                                         | 0.345   |  |
| 99% KM (Chebyshev) UCL                                                                                                                           | 0.508   |  |
| constraint (chargement) con                                                                                                                      | 0.000   |  |
| Potential UCL to Use<br>95% KM (BCA) UCL                                                                                                         | 0.16    |  |
| 4,4'-DDD                                                                                                                                         |         |  |
| Total Number of Data                                                                                                                             | 166     |  |
| Number of Non-Detect Data                                                                                                                        | 145     |  |
| Name to a Control Dollar Dollar                                                                                                                  | 04      |  |

21

3.69E-04

Number of Detected Data

Minimum Detected

| Maximum Detected                                     | 1.12        |   |
|------------------------------------------------------|-------------|---|
| Percent Non-Detects                                  | 87.35%      |   |
| Minimum Non-detect                                   | 2.35E-04    |   |
| Maximum Non-detect                                   | 0.0125      |   |
| Mean of Detected Data                                | 0.0588      |   |
| Median of Detected Data                              | 0.00372     |   |
| Variance of Detected Data                            | 0.0592      |   |
| SD of Detected Data                                  | 0.243       |   |
| CV of Detected Data                                  | 4.139       |   |
| Skewness of Detected Data                            | 4.577       |   |
| Mean of Detected log data                            | -5.478      |   |
| SD of Detected Log data                              | 1.706       |   |
| Note: Data have multiple DLs - Use of KM Method is r | recommended |   |
| For all methods (except KM, DL/2, and ROS Methods),  |             |   |
| Observations < Largest DL are treated as NDs         |             |   |
| Number treated as Non-Detect                         | 161         |   |
| Number treated as Detected                           | 5           |   |
| Single DL Percent Detection                          | 96.99%      |   |
|                                                      |             |   |
| Data Dsitribution Test with Detected Values Only     |             |   |
| Data do not follow a Discernable Distribution (0.05) |             |   |
| AAC                                                  | A1/A        |   |
| Winsorization Method                                 | N/A         |   |
| Kaplan Meier (KM) Method                             |             |   |
| Mean                                                 | 0.00776     |   |
| SD                                                   | 0.0866      |   |
| Standard Error of Mean                               | 0.00689     |   |
| 95% KM (t) UCL                                       | 0.0192      |   |
| 95% KM (z) UCL                                       | 0.0191      |   |
| 95% KM (BCA) UCL                                     | 0.0276      |   |
| 95% KM (Percentile Bootstrap) UCL                    | 0.0214      |   |
| 95% KM (Chebyshev) UCL                               | 0.0378      |   |
| 97.5% KM (Chebyshev) UCL                             | 0.0508      | • |
| 99% KM (Chebyshev) UCL                               | 0.0763      |   |
| 33 % (Wi (Offebysfick) OOL                           | 0.0700      |   |
| Potential UCL to Use                                 |             |   |
|                                                      |             |   |
| 4,4'-DDE                                             |             |   |
| 4,4 -DDC                                             |             |   |
| Total Number of Data                                 | 166         |   |
| Number of Non-Detect Data                            | 144         |   |
| Number of Detected Data                              | 22          |   |
| Minimum Detected                                     | 4.28E-04    |   |
| Maximum Detected                                     | 0.0693      |   |
| Percent Non-Detects                                  | 86.75%      |   |
| Minimum Non-detect                                   | 3.26E-04    | • |
| Maximum Non-detect                                   | 0.0373      |   |
|                                                      | _           |   |
| Mean of Detected Data                                | 0.00905     |   |
| Median of Detected Data                              | 0.00197     |   |
| Variance of Detected Data                            | 3.69E-04    |   |
| SD of Detected Data                                  | 0.0192      |   |
|                                                      |             |   |

| CV of Detected Data       | 2.121 |
|---------------------------|-------|
| Skewness of Detected Data | 2.781 |
| Mean of Detected log data | -6    |
| SD of Detected Log data   | 1.459 |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect164Number treated as Detected2Single DL Percent Detection98.80%

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00158  |
| SD                                | 0.00743  |
| Standard Error of Mean            | 5.91E-04 |
| 95% KM (t) UCL                    | 0.00256  |
| 95% KM (z) UCL                    | 0.00256  |
| 95% KM (BCA) UCL                  | 0.00281  |
| 95% KM (Percentile Bootstrap) UCL | 0.00259  |
| 95% KM (Chebyshev) UCL            | 0.00416  |
| 97.5% KM (Chebyshev) UCL          | 0.00527  |
| 99% KM (Chebyshev) UCL            | 0.00746  |
| Potential UCL to Use              |          |
| 95% KM (BCA) UCL                  | 0.00281  |

## 4,4'-DDT

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect | 166<br>98<br>68<br>2.81E-04<br>0.113<br>59.04%<br>1.25E-04<br>0.0143 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data                                                    | 0.0087<br>0.00275<br>2.75E-04<br>0.0166<br>1.905                     |
| Skewness of Detected Data<br>Mean of Detected log data<br>SD of Detected Log data                                                                                  | 4.44<br>-5.829<br>1.491                                              |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

| Number treated as Non-Detect | 154    |
|------------------------------|--------|
| Number treated as Detected   | 12     |
| Single DL Percent Detection  | 92.77% |

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00375  |
| SD                                | 0.0113   |
| Standard Error of Mean            | 8.85E-04 |
| 95% KM (t) UCL                    | 0.00521  |
| 95% KM (z) UCL                    | 0.0052   |
| 95% KM (BCA) UCL                  | 0.00548  |
| 95% KM (Percentile Bootstrap) UCL | 0.00529  |
| 95% KM (Chebyshev) UCL            | 0.0076   |
| 97.5% KM (Chebyshev) UCL          | 0.00927  |
| 99% KM (Chebyshev) UCL            | 0.0125   |

Data appear Lognormal (0.05)

May want to try Lognormal UCLs

## Acenaphthene

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 166<br>131<br><b>35</b><br>0.0113<br>1.69<br><b>78.92%</b><br>0.0087<br>0.189 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.161<br>0.0787<br>0.0894<br>0.299<br>1.852<br>4.309<br>-2.602<br>1.192       |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2; and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 160
Number treated as Detected 6
Single DL Percent Detection 96.39%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| ,                                                                                                                                                         |         |               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|--|
| Winsorization Method                                                                                                                                      | N/A     |               |  |
| Kaplan Meier (KM) Method                                                                                                                                  |         |               |  |
| Mean                                                                                                                                                      | 0.0433  |               |  |
| SD                                                                                                                                                        | 0.149   |               |  |
| Standard Error of Mean                                                                                                                                    | 0.0117  |               |  |
| 95% KM (t) UCL                                                                                                                                            | 0.0627  |               |  |
| 95% KM (z) UCL                                                                                                                                            | 0.0626  |               |  |
| 95% KM (BCA) UCL                                                                                                                                          | 0.0676  |               |  |
| 95% KM (Percentile Bootstrap) UCL                                                                                                                         | 0.0635  |               |  |
| 95% KM (Chebyshev) UCL                                                                                                                                    | 0.0944  |               |  |
| 97.5% KM (Chebyshev) UCL                                                                                                                                  |         |               |  |
| 99% KM (Chebyshev) UCL                                                                                                                                    | 0.16    |               |  |
| Data appear Lognormal (0.05)                                                                                                                              |         |               |  |
| Nay want to try Lognormal UCLs                                                                                                                            |         |               |  |
|                                                                                                                                                           |         | . — . — . — . |  |
| Acenaphthylene                                                                                                                                            |         |               |  |
| Total Number of Data                                                                                                                                      | 166     |               |  |
| Number of Non-Detect Data                                                                                                                                 | 129     |               |  |
| Number of Detected Data                                                                                                                                   | 37      |               |  |
| Minimum Detected                                                                                                                                          | 0.0172  |               |  |
| Maximum Detected                                                                                                                                          | 1.2     |               |  |
| Percent Non-Detects                                                                                                                                       | 77.71%  |               |  |
| Minimum Non-detect                                                                                                                                        | 0.00986 |               |  |
| Maximum Non-detect                                                                                                                                        | 0.128   | -             |  |
| Mean of Detected Data                                                                                                                                     | 0.156   |               |  |
| Median of Detected Data                                                                                                                                   | 0.0517  |               |  |
| Variance of Detected Data                                                                                                                                 | 0.084   |               |  |
| SD of Detected Data                                                                                                                                       | 0.29    |               |  |
| CV of Detected Data                                                                                                                                       | 1.862   |               |  |
| Skewness of Detected Data                                                                                                                                 | 3.012   |               |  |
| Mean of Detected log data                                                                                                                                 | -2.69   |               |  |
| SD of Detected Log data                                                                                                                                   | 1.124   |               |  |
| Note: Data have multiple DLs - Use of KM Method is<br>For all methods (except KM, DL/2, and ROS Methods),<br>Observations < Largest DL are treated as NDs |         | ,             |  |
| Number treated as Non-Detect                                                                                                                              | 156     |               |  |
| Number treated as Detected                                                                                                                                | 10      |               |  |
| Single DL Percent Detection                                                                                                                               | 93.98%  |               |  |
| Data Dsitribution Test with Detected Values Only<br>Data do not follow a Discernable Distribution (0.05)                                                  |         |               |  |
| Winsorization Method                                                                                                                                      | N/A     |               |  |
| Kaplan Meier (KM) Method                                                                                                                                  |         |               |  |
| Mean                                                                                                                                                      | 0.0484  |               |  |
| SD                                                                                                                                                        | 0.147   |               |  |
| Standard Error of Mean                                                                                                                                    | 0.0116  |               |  |
| 95% KM (t) UCL                                                                                                                                            | 0.0675  |               |  |
|                                                                                                                                                           |         |               |  |

|                                                        | •        |
|--------------------------------------------------------|----------|
|                                                        |          |
| 95% KM (z) UCL                                         | 0.0674   |
| 95% KM (BCA) UCL                                       | 0.0719   |
| 95% KM (Percentile Bootstrap) UCL                      | 0.0688   |
| 95% KM (Chebyshev) UCL                                 | 0.0987   |
| 97.5% KM (Chebyshev) UCL                               | 0.12     |
| 99% KM (Chebyshev) UCL                                 | . 0.163  |
| Potential UCL to Use                                   |          |
| 95% KM (BCA) UCL                                       | 0.0719   |
|                                                        |          |
| Acetone                                                |          |
|                                                        |          |
| Total Number of Data                                   | 83       |
| Number of Non-Detect Data                              | 73       |
| Number of Detected Data                                | 10       |
| Minimum Detected                                       | 0.031    |
| Maximum Detected                                       | 0.16     |
| Percent Non-Detects                                    | 87.95%   |
| Minimum Non-detect                                     | 1.71E-04 |
| Maximum Non-detect                                     | 0.144    |
| Mean of Detected Data                                  | 0.08     |
| Median of Detected Data                                | 0.0582   |
| Variance of Detected Data                              | 0.00277  |
| SD of Detected Data                                    | 0.0526   |
| CV of Detected Data                                    | 0.658    |
| Skewness of Detected Data                              | 0.756    |
| Mean of Detected log data                              | -2.72    |
| SD of Detected Log data                                | 0.655    |
| Note: Date have multiple DLo. Llos of KM Method is rec | ommondod |
| Note: Data have multiple DLs - Use of KM Method is red | ommenaea |
| For all methods (except KM, DL/2, and ROS Methods),    |          |
| Observations < Largest DL are treated as NDs           | 0.4      |
| Number treated as Non-Detect                           | 81       |
| Number treated as Detected                             | 2        |
| Single DL Percent Detection                            | 97.59%   |
| Data Dsitribution Test with Detected Values Only       |          |
| Data appear Gamma Distributed at 5% Significance Level |          |
| Winsorization Method                                   | N/A      |
| Kaplan Meier (KM) Method                               |          |
| Mean                                                   | 0.037    |
| SD                                                     | 0.0236   |
| Standard Error of Mean                                 | 0.00274  |
| 95% KM (t) UCL                                         | 0.0415   |
| 95% KM (z) UCL                                         | 0.0415   |
| 95% KM (BCA) UCL                                       | 0.0413   |
|                                                        | 0.0339   |
| 95% KM (Percentile Bootstrap) UCL                      |          |
| 95% KM (Chebyshev) UCL                                 | 0.0489   |
| 97.5% KM (Chebyshev) UCL                               | 0.0541   |
| 99% KM (Chebyshev) UCL                                 | 0.0642   |

Data appear Gamma Distributed (0.05)

| Aluminum                         |          |  |
|----------------------------------|----------|--|
| Number of Valid Observations     | 166      |  |
| Number of Distinct Observations  | 149      |  |
| Minimum                          | 414      |  |
| Maximum                          | 15700    |  |
| Mean                             | 6452     |  |
| Median                           | 6175     |  |
| SD                               | 3601     |  |
| Variance                         | 12965507 |  |
| Coefficient of Variation         | 0.558    |  |
| Skewness                         | 0.362    |  |
| Mean of log data                 | 8.565    |  |
| SD of log data                   | 0.718    |  |
| 95% Useful UCLs                  | 6044     |  |
| Student's-t UCL                  | 6914     |  |
| 95% UCLs (Adjusted for Skewness) |          |  |
| 95% Adjusted-CLT UCL             | 6920     |  |
| 95% Modified-t UCL               | 6916     |  |
| Non-Parametric UCLs              |          |  |
| 95% CLT UCL                      | 6912     |  |
| 95% Jackknife UCL                | 6914     |  |
| 95% Standard Bootstrap UCL       | 6908     |  |
| 95% Bootstrap-t UCL              | 6929     |  |
| 95% Hall's Bootstrap UCL         | 6936     |  |
| 95% Percentile Bootstrap UCL     | 6914     |  |
| 95% BCA Bootstrap UCL            | 6917     |  |
| 95% Chebyshev(Mean, Sd) UCL      | 7670     |  |
| 97.5% Chebyshev(Mean, Sd) UCL    | 8197     |  |
| 99% Chebyshev(Mean, Sd) UCL      | 9233     |  |
| Data appear Normal (0.05)        |          |  |
| May want to try Normal UCLs      |          |  |
|                                  |          |  |
| Anthracene                       |          |  |
| Total Number of Data             | 166      |  |
| Number of Non-Detect Data        | 102      |  |
| Number of Detected Data          | 64       |  |
| Minimum Detected                 | 0.0112   |  |
| Maximum Detected                 | 2.46     |  |
| Percent Non-Detects              | 61.45%   |  |
| Minimum Non-detect               | 0.00982  |  |
| Maximum Non-detect               | 0.207    |  |
| Mean of Detected Data            | 0.212    |  |
| Median of Detected Data          | 0.0936   |  |
| Variance of Detected Data        | 0.142    |  |
|                                  |          |  |

| SD of Detected Data       | 0.377  |
|---------------------------|--------|
| CV of Detected Data       | 1.781  |
| Skewness of Detected Data | 4.103  |
| Mean of Detected log data | -2.472 |
| SD of Detected Log data   | 1.358  |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 150
Number treated as Detected 16
Single DL Percent Detection 90.36%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0889 |
| SD                                | 0.252  |
| Standard Error of Mean            | 0.0197 |
| 95% KM (t) UCL                    | 0.122  |
| 95% KM (z) UCL                    | 0.121  |
| 95% KM (BCA) UCL                  | 0.124  |
| 95% KM (Percentile Bootstrap) UCL | 0.122  |
| 95% KM (Chebyshev) UCL            | 0.175  |
| 97.5% KM (Chebyshev) UCL          | 0.212  |
| 99% KM (Chebyshev) UCL            | 0.285  |

Potential UCL to Use 95% KM (BCA) UCL 0.124

## **Antimony**

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect  | 166<br>101<br><b>65</b><br>0.94<br>5.51<br><b>60.84%</b><br>0.19<br>1.04 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data | 2.249<br>2.13<br>0.816<br>0.903<br>0.402<br>1.372<br>0.739               |
| SD of Detected Log data                                                                                                                                             | 0.379                                                                    |

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),

| Observations < Largest DL are treated as NDs |        |
|----------------------------------------------|--------|
| Number treated as Non-Detect                 | 103    |
| Number treated as Detected                   | 63     |
| Single DL Percent Detection                  | 62.05% |

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 1.452  |
| SD                                | 0.85   |
| Standard Error of Mean            | 0.0665 |
| 95% KM (t) UCL                    | 1.562  |
| 95% KM (z) UCL                    | 1,562  |
| 95% KM (BCA) UCL                  | 1.647  |
| 95% KM (Percentile Bootstrap) UCL | 1.612  |
| 95% KM (Chebyshev) UCL            | 1.742  |
| 97.5% KM (Chebyshev) UCL          | 1.868  |
| 99% KM (Chebyshev) UCL            | 2.114  |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

## Aroclor-1254

| Total Number of Data                                                                                 | 170                     |
|------------------------------------------------------------------------------------------------------|-------------------------|
| Number of Non-Detect Data                                                                            | 145                     |
| Number of Detected Data                                                                              | 25                      |
| Minimum Detected                                                                                     | 0.0109                  |
| Maximum Detected                                                                                     | 11.5                    |
| Percent Non-Detects                                                                                  | 85.29%                  |
| Minimum Non-detect                                                                                   | 0.00325                 |
| Maximum Non-detect                                                                                   | 0.0391                  |
|                                                                                                      |                         |
| Mean of Detected Data                                                                                | 1.407                   |
| Median of Detected Data                                                                              | 0.172                   |
| modian of Botottoa Bata                                                                              |                         |
| Variance of Detected Data                                                                            | 7.459                   |
|                                                                                                      | 7.459<br>2.731          |
| Variance of Detected Data                                                                            | ****                    |
| Variance of Detected Data<br>SD of Detected Data                                                     | 2.731                   |
| Variance of Detected Data<br>SD of Detected Data<br>CV of Detected Data                              | 2.731<br>1.941          |
| Variance of Detected Data<br>SD of Detected Data<br>CV of Detected Data<br>Skewness of Detected Data | 2.731<br>1.941<br>2.874 |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 148 22 Number treated as Detected 87.06% Single DL Percent Detection

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.216  |
| SD                                | 1.139  |
| Standard Error of Mean            | 0.0892 |
| 95% KM (t) UCL                    | 0.364  |
| 95% KM (z) UCL                    | 0.363  |
| 95% KM (BCA) UCL                  | 0.427  |
| 95% KM (Percentile Bootstrap) UCL | 0.376  |
| 95% KM (Chebyshev) UCL            | 0.605  |
| 97.5% KM (Chebyshev) UCL          |        |
| 99% KM (Chebyshev) UCL            | 1.104  |
|                                   |        |

Data appear Lognormal (0.05)

May want to try Lognormal UCLs

#### Arsenic

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 166<br>27<br><b>139</b><br>0.23<br>24.3<br><b>16.27%</b><br>0.17<br>1.44 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 3.918<br>3.09<br>10.64<br>3.261<br>0.832<br>2.783<br>1.079<br>0.803      |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 47
Number treated as Detected 119
Single DL Percent Detection 28.31%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method | 28.31% |
|----------------------|--------|
| Mean                 | 2.696  |
| SD                   | 1.062  |
| 95% Winsor (t) UCL   | 2.834  |

Kaplan Meier (KM) Method

| Mean                                          | 3.331 |
|-----------------------------------------------|-------|
| SD                                            | 3.259 |
| Standard Error of Mean                        | 0.254 |
| 95% KM (t) UCL                                | 3.752 |
|                                               | 3.749 |
| 95% KM (z) UCL                                |       |
| 95% KM (BCA) UCL                              | 3.777 |
| 95% KM (Percentile Bootstrap) UCL             | 3.77  |
| 95% KM (Chebyshev) UCL                        | 4.438 |
| 97.5% KM (Chebyshev) UCL                      | 4.917 |
| 99% KM (Chebyshev) UCL                        | 5.858 |
| ,                                             |       |
| Data follow Appr. Gamma Distribution (0.05)   |       |
| Managed to the Comment IIO                    |       |
| May want to try Gamma UCLs                    |       |
|                                               |       |
| Barium                                        |       |
| Number of Valid Observations                  | 166   |
| Number of Distinct Observations               | 135   |
| Minimum                                       | 18.6  |
| Maximum                                       | 2180  |
| Mean                                          | 237.4 |
| Median                                        | 139.5 |
| SD                                            | 274.8 |
|                                               |       |
| Variance                                      | 75535 |
| Coefficient of Variation                      | 1.158 |
| Skewness                                      | 3.69  |
| Mean of log data                              | 5.104 |
| SD of log data                                | 0.789 |
| Data do not follow a Discernable Distribution |       |
| 95% Useful UCLs                               |       |
| Student's-t UCL                               | 272.7 |
|                                               |       |
| 95% UCLs (Adjusted for Skewness)              |       |
| 95% Adjusted-CLT UCL                          | 279   |
| 95% Modified-t UCL                            | 273.7 |
| Non Boundarie IICI e                          |       |
| Non-Parametric UCLs                           | 070 5 |
| 95% CLT UCL                                   | 272.5 |
| 95% Jackknife UCL                             | 272.7 |
| 95% Standard Bootstrap UCL                    | 273.3 |
| 95% Bootstrap-t UCL                           | 284   |
| 95% Hall's Bootstrap UCL                      | 287.5 |
| 95% Percentile Bootstrap UCL                  | 272.3 |
| 95% BCA Bootstrap UCL                         | 279.3 |
| 95% Chebyshev(Mean, Sd) UCL                   | 330.4 |
| 97.5% Chebyshev(Mean, Sd) UCL                 | 370.6 |
| 99% Chebyshev(Mean, Sd) UCL                   | 449.6 |
|                                               |       |
| Potential UCL to Use                          |       |
| Use 95% Chebyshev (Mean, Sd) UCL              | 330.4 |

#### Benzene

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect | 83<br>11<br><b>72</b><br>3.39E-04<br>0.0221<br><b>13.25%</b><br>9.50E-05<br>0.0399 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Mean of Detected Data  Median of Detected Data                                                                                                                     | 0.00425<br>0.00378                                                                 |
| Variance of Detected Data                                                                                                                                          | 1.01E-05                                                                           |
| SD of Detected Data                                                                                                                                                | 0.00318                                                                            |
| CV of Detected Data                                                                                                                                                | 0.748                                                                              |
| Skewness of Detected Data                                                                                                                                          | 2.653                                                                              |
| Mean of Detected log data                                                                                                                                          | -5.736                                                                             |
| SD of Detected Log data                                                                                                                                            | 0.821                                                                              |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 83
Number treated as Detected 0
Single DL Percent Detection 100.00%

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method N/ | Α |
|-------------------------|---|
|-------------------------|---|

Kaplan Meier (KM) Method

| rapian more (ram) morros          |          |
|-----------------------------------|----------|
| Mean                              | 0.00389  |
| SD                                | 0.00315  |
| Standard Error of Mean            | 3.52E-04 |
| 95% KM (t) UCL                    | 0.00448  |
| 95% KM (z) UCL                    | 0.00447  |
| 95% KM (BCA) UCL                  | 0.00453  |
| 95% KM (Percentile Bootstrap) UCL | 0.0045   |
| 95% KM (Chebyshev) UCL            | 0.00543  |
| 97.5% KM (Chebyshev) UCL          | 0.00609  |
| 99% KM (Chebyshev) UCL            | 0.0074   |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

#### Benzo(a)anthracene

| Total Number of Data      | 166    |
|---------------------------|--------|
| Number of Non-Detect Data | 122    |
| Number of Detected Data   | 44     |
| Minimum Detected          | 0.0118 |
| Maximum Detected          | 5.02   |

| Percent Non-Detects                                                                                                                         | 73.49%  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Minimum Non-detect                                                                                                                          | 0.0089  |  |
| Maximum Non-detect                                                                                                                          | 0.193   |  |
|                                                                                                                                             |         |  |
| Mean of Detected Data                                                                                                                       | 0.98    |  |
| Median of Detected Data                                                                                                                     | 0.516   |  |
| Variance of Detected Data                                                                                                                   | 1.538   |  |
| SD of Detected Data                                                                                                                         | 1.24    |  |
| CV of Detected Data                                                                                                                         | 1.265   |  |
| Skewness of Detected Data                                                                                                                   | 1.955   |  |
| Mean of Detected log data                                                                                                                   | -0.967  |  |
| SD of Detected Log data                                                                                                                     | 1.624   |  |
| Note: Data have multiple DLs - Use of KM Me<br>For all methods (except KM, DL/2, and ROS Me<br>Observations < Largest DL are treated as NDs |         |  |
| Number treated as Non-Detect                                                                                                                | 135     |  |
| Number treated as Detected                                                                                                                  | 31      |  |
| Single DL Percent Detection                                                                                                                 | 81.33%  |  |
| Data Dsitribution Test with Detected Values Only<br>Data appear Gamma Distributed at 5% Significa                                           |         |  |
| Winsorization Method                                                                                                                        | . N/A   |  |
| Kaplan Meier (KM) Method                                                                                                                    |         |  |
| Mean                                                                                                                                        | 0.269   |  |
| SD                                                                                                                                          | 0.762   |  |
| Standard Error of Mean                                                                                                                      | 0.0598  |  |
| 95% KM (t) UCL                                                                                                                              | 0.368   |  |
| 95% KM (z) UCL                                                                                                                              | 0.367   |  |
| 95% KM (BCA) UCL                                                                                                                            | 0.39    |  |
| 95% KM (Percentile Bootstrap) UCL                                                                                                           | 0.378   |  |
| 95% KM (Chebyshev) UCL                                                                                                                      | 0.53    |  |
| 97.5% KM (Chebyshev) UCL                                                                                                                    | 0.643   |  |
| 99% KM (Chebyshev) UCL                                                                                                                      | 0.864   |  |
| Data appear Gamma Distributed (0.05)<br>May want to try Gamma UCLs                                                                          |         |  |
|                                                                                                                                             |         |  |
| Benzo(a)pyrene                                                                                                                              |         |  |
| Total Number of Data                                                                                                                        | 166     |  |
| Number of Non-Detect Data                                                                                                                   | 53      |  |
| Number of Detected Data                                                                                                                     | 113     |  |
| Minimum Detected                                                                                                                            | 0.00999 |  |
| Maximum Detected                                                                                                                            | 4.88    |  |
| Percent Non-Detects                                                                                                                         | 31.93%  |  |
| Minimum Non-detect                                                                                                                          | 0.00886 |  |

0.506

0.0666 0.998

0.999

Maximum Non-detect

Mean of Detected Data Median of Detected Data

SD of Detected Data

Variance of Detected Data

| CV of Detected Data       | 1.973  |
|---------------------------|--------|
| Skewness of Detected Data | 2.807  |
| Mean of Detected log data | -2.255 |
| SD of Detected Log data   | 1.801  |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 115
Number treated as Detected 51
Single DL Percent Detection 69.28%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.348  |
| SD                                | 0.853  |
| Standard Error of Mean            | 0.0665 |
| 95% KM (t) UCL                    | 0.458  |
| 95% KM (z) UCL                    | 0.457  |
| 95% KM (BCA) UCL                  | 0.458  |
| 95% KM (Percentile Bootstrap) UCL | 0.464  |
| 95% KM (Chebyshev) UCL            | 0.638  |
| 97.5% KM (Chebyshev) UCL          | 0.763  |
| 99% KM (Chebyshev) UCL            | 1.009  |

### **Potential UCL to Use**

#### Benzo(b)fluoranthene

| Total Number of Data                                                                      | 166                             |
|-------------------------------------------------------------------------------------------|---------------------------------|
| Number of Non-Detect Data                                                                 | 64                              |
| Number of Detected Data                                                                   | 102                             |
| Minimum Detected                                                                          | 0.0408                          |
| Maximum Detected                                                                          | 5.97                            |
| Percent Non-Detects                                                                       | 38.55%                          |
| Minimum Non-detect                                                                        | 0.00677                         |
| Maximum Non-detect                                                                        | 0.167                           |
|                                                                                           |                                 |
| Mean of Detected Data                                                                     | 0.75                            |
| Mean of Detected Data<br>Median of Detected Data                                          | 0.75<br>0.206                   |
|                                                                                           |                                 |
| Median of Detected Data                                                                   | 0.206                           |
| Median of Detected Data<br>Variance of Detected Data                                      | 0.206<br>1.497                  |
| Median of Detected Data Variance of Detected Data SD of Detected Data                     | 0.206<br>1.497<br>1.223         |
| Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data | 0.206<br>1.497<br>1.223<br>1.63 |

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect

| Number treated as Detected                                                                            | 57     |
|-------------------------------------------------------------------------------------------------------|--------|
| Single DL Percent Detection                                                                           | 65.66% |
| Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) |        |
| Winsorization Method                                                                                  | N/A    |
| Kaplan Meier (KM) Method                                                                              |        |
| Mean                                                                                                  | 0.477  |
| SD                                                                                                    | 1.015  |
| Standard Error of Mean                                                                                | 0.0791 |
| 95% KM (t) UCL                                                                                        | 0.608  |
| 95% KM (z) UCL                                                                                        | 0.608  |
| 95% KM (BCA) UCL                                                                                      | 0.622  |
| 95% KM (Percentile Bootstrap) UCL                                                                     | 0.611  |
| 95% KM (Chebyshev) UCL                                                                                | 0.822  |
| 97.5% KM (Chebyshev) UCL                                                                              | 0.972  |
| 99% KM (Chebyshev) ÚCL                                                                                | 1.265  |

Potential UCL to Use 95% KM (Chebyshev) UCL 0.822

#### Benzo(g,h,i)perylene

| Total Number of Data      | 166     |
|---------------------------|---------|
| Number of Non-Detect Data | 91      |
| Number of Detected Data   | 75      |
| Minimum Detected          | 0.00989 |
| Maximum Detected          | 4.24    |
| Percent Non-Detects       | 54.82%  |
| Minimum Non-detect        | 0.00887 |
| Maximum Non-detect        | 2.9     |
| Mean of Detected Data     | 0.46    |
| Median of Detected Data   | 0.105   |
| Variance of Detected Data | 0.603   |
| SD of Detected Data       | 0.776   |
| CV of Detected Data       | 1.688   |
| Skewness of Detected Data | 2.724   |
| Mean of Detected log data | -1.908  |
| SD of Detected Log data   | 1.53    |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect165Number treated as Detected1Single DL Percent Detection99.40%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method N/A

| Kaplan Meier (KM) Method          |        |
|-----------------------------------|--------|
| Mean                              | 0.217  |
| SD                                | 0.565  |
| Standard Error of Mean            | 0.0443 |
| 95% KM (t) UCL                    | 0.291  |
| 95% KM (z) UCL                    | 0.29   |
| 95% KM (BCA) UCL                  | 0.294  |
| 95% KM (Percentile Bootstrap) UCL | 0.296  |
| 95% KM (Chebyshev) UCL            | 0.41   |
| 97.5% KM (Chebyshev) UCL          | 0.494  |
| 99% KM (Chebyshev) UCL            | 0.658  |

#### Potential UCL to Use

| Benzo(k)fluoranthene | e |
|----------------------|---|
|----------------------|---|

| Total Number of Data                                                                      | 166                             |
|-------------------------------------------------------------------------------------------|---------------------------------|
| Number of Non-Detect Data                                                                 | 121                             |
| Number of Detected Data                                                                   | 45                              |
| Minimum Detected                                                                          | 0.0158                          |
| Maximum Detected                                                                          | 4.25                            |
| Percent Non-Detects                                                                       | 72.89%                          |
| Minimum Non-detect                                                                        | 0.0137                          |
| Maximum Non-detect                                                                        | 0.296                           |
|                                                                                           |                                 |
| Mean of Detected Data                                                                     | 0.537                           |
| Mean of Detected Data<br>Median of Detected Data                                          | 0.537<br>0.228                  |
|                                                                                           |                                 |
| Median of Detected Data                                                                   | 0.228                           |
| Median of Detected Data Variance of Detected Data                                         | 0.228<br>0.578                  |
| Median of Detected Data Variance of Detected Data SD of Detected Data                     | 0.228<br>0.578<br>0.76          |
| Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data | 0.228<br>0.578<br>0.76<br>1.415 |

# Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 149 Number treated as Detected 17 89.76% Single DL Percent Detection

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.158  |
| SD ·                              | 0.455  |
| Standard Error of Mean            | 0.0357 |
| 95% KM (t) UCL                    | 0.217  |
| 95% KM (z) UCL                    | 0.216  |
| 95% KM (BCA) UCL                  | 0.228  |
| 95% KM (Percentile Bootstrap) UCL | 0.223  |
| 95% KM (Chebyshev) UCL            | 0.313  |

| 97.5% KM (Chebyshev) UCL<br>99% KM (Chebyshev) UCL                                                 | <b>0.381</b><br>0.513 |   |
|----------------------------------------------------------------------------------------------------|-----------------------|---|
| Data appear Lognormal (0.05)                                                                       | 0.0.0                 |   |
| May want to try Lognormal UCLs                                                                     |                       |   |
| wan to try Logitomia occs                                                                          |                       |   |
| Damillions                                                                                         |                       |   |
| Beryllium                                                                                          |                       |   |
| Total Number of Data                                                                               | 166                   |   |
| Number of Non-Detect Data                                                                          | 1                     |   |
| Number of Detected Data                                                                            | 165                   |   |
| Minimum Detected                                                                                   | 0.014                 |   |
| Maximum Detected                                                                                   | 4.6                   |   |
| Percent Non-Detects                                                                                | 0.60%                 |   |
| Minimum Non-detect                                                                                 | 0.0031                |   |
| Maximum Non-detect                                                                                 | 0.0031                |   |
| Mean of Detected Data                                                                              | 0.468                 |   |
| Median of Detected Data                                                                            | 0.42                  |   |
| Variance of Detected Data                                                                          | 0.176                 |   |
| SD of Detected Data                                                                                | 0.419                 |   |
| CV of Detected Data                                                                                | 0.897                 |   |
| Skewness of Detected Data                                                                          | 5.967                 |   |
| Mean of Detected log data                                                                          | -1.079                |   |
| SD of Detected Log data                                                                            | 0.914                 |   |
| Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0. | 05)                   |   |
| Winsorization Method                                                                               | 0.914                 |   |
| Mean                                                                                               | 0.446                 |   |
| SD                                                                                                 | 0.281                 |   |
| 95% Winsor (t) UCL                                                                                 | 0.482                 |   |
| Kaplan Meier (KM) Method                                                                           |                       |   |
| Mean                                                                                               | 0.465                 |   |
| SD                                                                                                 | 0.418                 |   |
| Standard Error of Mean                                                                             | 0.0326                |   |
| 95% KM (t) UCL                                                                                     | 0.519                 |   |
| 95% KM (z) UCL                                                                                     | 0.518                 |   |
| 95% KM (BCA) UCL                                                                                   | 0.525                 |   |
| 95% KM (Percentile Bootstrap) UCL                                                                  | 0.521                 |   |
| 95% KM (Chebyshev) UCL                                                                             | 0.607                 |   |
| 97.5% KM (Chebyshev) UCL                                                                           | 0.668                 |   |
| 99% KM (Chebyshev) UCL                                                                             | 0.789                 | • |
| Potential UCL to Use<br>95% KM (BCA) UCL                                                           | 0.525                 | • |
|                                                                                                    |                       |   |
| Boron                                                                                              |                       |   |
| Total Number of Data                                                                               | 166                   |   |

95

Number of Non-Detect Data

| Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                                                                                                                                                                                  | <b>71</b> 2.43 54.4 <b>57.23%</b> 0.95 15.3                                           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data                                                                                                                                  | 9.924<br>9.39<br>43.63<br>6.605<br>0.666<br>4.557<br>2.158                            |  |
| SD of Detected Log data  Note: Data have multiple DLs - Use of KM Metho For all methods (except KM, DL/2, and ROS Met Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection                                               |                                                                                       |  |
| Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0                                                                                                                                                                                                  |                                                                                       |  |
| Winsorization Method                                                                                                                                                                                                                                                                                 | N/A                                                                                   |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL  Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL | 5.675<br>5.667<br>0.444<br>6.41<br>6.406<br>6.674<br>6.505<br>7.611<br>8.449<br>10.09 |  |
| Butyl benzyl phthalate                                                                                                                                                                                                                                                                               |                                                                                       |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                                                                                                                                   | 166<br>156<br><b>10</b><br>0.0129<br>0.617<br><b>93.98</b> %<br>0.0109<br>0.237       |  |

| Note: Data have multiple DLs - Use of KM M | lathad is recommended |
|--------------------------------------------|-----------------------|
| SD of Detected Log data                    | 1.268                 |
| Mean of Detected log data                  | -2.847                |
| Skewness of Detected Data                  | 2.178                 |
| CV of Detected Data                        | 1.489                 |
| SD of Detected Data                        | 0.193                 |
| Variance of Detected Data                  | 0.0374                |
| Median of Detected Data                    | 0.04                  |
| Mean of Detected Data                      | 0.13                  |
|                                            |                       |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

164 Number treated as Non-Detect Number treated as Detected 2 98.80% Single DL Percent Detection

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0201  |
| SD                                | 0.0529  |
| Standard Error of Mean            | 0.00433 |
| 95% KM (t) UCL                    | 0.0273  |
| 95% KM (z) UCL                    | 0.0272  |
| 95% KM (BCA) UCL                  | 0.0439  |
| 95% KM (Percentile Bootstrap) UCL | 0.0353  |
| 95% KM (Chebyshev) UCL            | 0.039   |
| 97.5% KM (Chebyshev) UCL          | 0.0472  |
| 99% KM (Chebyshev) UCL            | 0.0632  |

Data appear Lognormal (0.05)

May want to try Lognormal UCLs

#### Cadmium

| Total Number of Data      | 166    |
|---------------------------|--------|
| Number of Non-Detect Data | 73     |
| Number of Detected Data   | 93     |
| Minimum Detected          | 0.023  |
| Maximum Detected          | 9.71   |
| Percent Non-Detects       | 43.98% |
| Minimum Non-detect        | 0.017  |
| Maximum Non-detect        | 0.087  |
|                           | 0.500  |
| Mean of Detected Data     | 0.589  |
| Median of Detected Data   | 0.33   |
| Variance of Detected Data | 1.174  |
| SD of Detected Data       | 1.084  |
| CV of Detected Data       | 1.838  |
| Skewness of Detected Data | 6.915  |
| Mean of Detected log data | -1.032 |

| Note: Data have multiple DLs - Use of KM Method is referred methods (except KM, DL/2, and ROS Methods), | ecommended |
|---------------------------------------------------------------------------------------------------------|------------|
| Observations < Largest DL are treated as NDs                                                            |            |
| Number treated as Non-Detect                                                                            | 80         |
| Number treated as Detected                                                                              | 86         |
| Single DL Percent Detection                                                                             | 48.19%     |
| Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)   |            |
| Winsorization Method                                                                                    | 48.19%     |
| Mean                                                                                                    | 0.126      |
| SD                                                                                                      | 0.0338     |
| 95% Winsor (t) UCL                                                                                      | 0.131      |
| Kaplan Meier (KM) Method                                                                                |            |
| Mean                                                                                                    | 0.34       |
| SD                                                                                                      | 0.854      |
| Standard Error of Mean                                                                                  | 0.0667     |
| 95% KM (t) UCL                                                                                          | 0.451      |
| 95% KM (z) UCL                                                                                          | 0.45       |
| 95% KM (BCA) UCL                                                                                        | 0.505      |
| 95% KM (Percentile Bootstrap) UCL                                                                       | 0.467      |
| 95% KM (Chebyshev) UCL                                                                                  | 0.631      |
| 97.5% KM (Chebyshev) UCL                                                                                | 0.757      |
| 99% KM (Chebyshev) UCL                                                                                  | 1.004      |
| Potential UCL to Use                                                                                    |            |
| 95% KM (t) UCL                                                                                          | 0.451      |
| 95% KM (% Bootstrap) UCL                                                                                | 0.467      |

### Carbazole

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 166<br>124<br><b>42</b><br>0.0104<br>1.54<br><b>74.70%</b><br>0.00864<br>0.187 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.151<br>0.0857<br>0.0723<br>0.269<br>1.777<br>3.938<br>-2.746<br>1.291        |

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),

| Observations < Largest DL are treated as NDs |        |
|----------------------------------------------|--------|
| Number treated as Non-Detect                 | 158    |
| Number treated as Detected                   | 8      |
| Single DL Percent Detection                  | 95.18% |

Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0464 |
| SD                                | 0.147  |
| Standard Error of Mean            | 0.0116 |
| 95% KM (t) UCL                    | 0.0656 |
| 95% KM (z) UCL                    | 0.0654 |
| 95% KM (BCA) UCL                  | 0.0705 |
| 95% KM (Percentile Bootstrap) UCL | 0.067  |
| 95% KM (Chebyshev) UCL            | 0.0968 |
| 97.5% KM (Chebyshev) UCL          | 0.119  |
| 99% KM (Chebyshev) UCL            | 0.161  |
|                                   |        |

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

#### Carbon disulfide

| Mean of Detected Data0.00521Median of Detected Data0.00299Variance of Detected Data5.05E-05SD of Detected Data0.00711CV of Detected Data1.364Skewness of Detected Data3.177 | Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect | 83<br>70<br><b>13</b><br>9.87E-04<br>0.028<br><b>84.34%</b><br>5.00E-05<br>0.0419 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| SD of Detected Log data -5.765  0.881                                                                                                                                       | Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data                      | 0.00299<br>5.05E-05<br>0.00711<br>1.364<br>3.177<br>-5.705                        |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 83
Number treated as Detected 0
Single DL Percent Detection 100.00%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00167  |
| SD                                | 0.00313  |
| Standard Error of Mean            | 3.60E-04 |
| 95% KM (t) UCL                    | 0.00227  |
| 95% KM (z) UCL                    | 0.00226  |
| 95% KM (BCA) UCL                  | 0.00339  |
| 95% KM (Percentile Bootstrap) UCL | 0.00269  |
| 95% KM (Chebyshev) UCL            | 0.00324  |
| 97.5% KM (Chebyshev) UCL          | 0.00392  |
| 99% KM (Chebyshev) UCL            | 0.00525  |
|                                   |          |

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

\_\_\_\_\_\_\_

|  |  |  | m |
|--|--|--|---|
|  |  |  |   |
|  |  |  |   |

| 44 |
|----|
|    |
| 03 |
| 36 |
| 53 |
| 55 |
| 49 |
| 56 |
| 23 |
| 46 |
| 41 |
| 82 |
|    |

#### Data do not follow a Discernable Distribution

| 95% Useful UCLs<br>Student's-t UCL | 15.13 |
|------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)   |       |
| 95% Adjusted-CLT UCL               | 15.63 |
| 95% Modified-t UCL                 | 15.21 |
| Non-Parametric UCLs                |       |
| 95% CLT UCL                        | 15.12 |

| Non-Parametric UCLs           |       |
|-------------------------------|-------|
| 95% CLT UCL                   | 15.12 |
| 95% Jackknife UCL             | 15.13 |
| 95% Standard Bootstrap UCL    | 15.14 |
| 95% Bootstrap-t UCL           | 16.04 |
| 95% Hall's Bootstrap UCL      | 22.48 |
| 95% Percentile Bootstrap UCL  | 15.23 |
| 95% BCA Bootstrap UCL         | 15.68 |
| 95% Chebyshev(Mean, Sd) UCL   | 17.75 |
| 97.5% Chebyshev(Mean, Sd) UCL | 19.58 |
| 99% Chebyshev(Mean, Sd) UCL   | 23.17 |
|                               |       |

# Potential UCL to Use

| Use 95% Chebyshev (Mean, Sd) UCL |
|----------------------------------|
|----------------------------------|

| Chrysene |
|----------|
|----------|

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 166<br>73<br><b>93</b><br>0.00901<br>4.87<br><b>43.98%</b><br>0.00842<br>0.169 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.577<br>0.139<br>0.978<br>0.989<br>1.714<br>2.465<br>-1.859<br>1.688          |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect125Number treated as Detected41Single DL Percent Detection75.30%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method | N/A |
|----------------------|-----|

Kaplan Meier (KM) Method

| Mean                              | 0.328  |
|-----------------------------------|--------|
| SD                                | 0.788  |
| Standard Error of Mean            | 0.0615 |
| 95% KM (t) UCL                    | 0.429  |
| 95% KM (z) UCL                    | 0.429  |
| 95% KM (BCA) UCL                  | 0.434  |
| 95% KM (Percentile Bootstrap) UCL | 0.432  |
| 95% KM (Chebyshev) UCL            | 0.596  |
| 97.5% KM (Chebyshev) UCL          | 0.712  |
| 99% KM (Chebyshev) UCL            | 0.939  |

#### Potential UCL to Use

Cobalt

| Total Number of Data      | 166   |
|---------------------------|-------|
| Number of Non-Detect Data | 1     |
| Number of Detected Data   | 165   |
| Minimum Detected          | 0.049 |

| Maximum Detected Percent Non-Detects Minimum Non-detect                                   | 16<br><b>0.60%</b><br>0.025 |   |
|-------------------------------------------------------------------------------------------|-----------------------------|---|
| Maximum Non-detect                                                                        | 0.025                       |   |
| Mean of Detected Data                                                                     | 4.169                       |   |
| Median of Detected Data                                                                   | 3.99                        |   |
| Variance of Detected Data                                                                 | 4.113                       |   |
| SD of Detected Data                                                                       | 2.028                       |   |
|                                                                                           |                             |   |
| CV of Detected Data                                                                       | 0.486                       | 4 |
| Skewness of Detected Data                                                                 | 1.409                       |   |
| Mean of Detected log data                                                                 | 1.289                       |   |
| SD of Detected Log data                                                                   | 0.615                       |   |
| Data Dsitribution Test with Detected Values On Data appear Normal at 5% Significance Leve | •                           |   |
| Winsorization Method                                                                      | 0.615                       |   |
| Mean                                                                                      | 4.109                       |   |
| SD                                                                                        | 1.885                       |   |
| 95% Winsor (t) UCL                                                                        | 4.351                       | • |
|                                                                                           |                             |   |
| Kaplan Meier (KM) Method                                                                  | 4.4.4                       |   |
| Mean                                                                                      | 4.144                       |   |
| SD                                                                                        | 2.041                       |   |
| Standard Error of Mean                                                                    | 0.159                       |   |
| 95% KM (t) UCL                                                                            | 4.407                       |   |
| 95% KM (z) UCL                                                                            | 4.406                       |   |
| 95% KM (BCA) UCL                                                                          | 4.408                       |   |
| 95% KM (Percentile Bootstrap) UCL                                                         | 4.417                       |   |
| 95% KM (Chebyshev) UCL                                                                    | 4.837                       |   |
| 97.5% KM (Chebyshev) UCL                                                                  | 5.137                       |   |
| 99% KM (Chebyshev) UCL                                                                    | 5.725                       |   |
| Data appear Normal (0.05)                                                                 |                             |   |
| May want to try Normal UCLs                                                               |                             | • |
|                                                                                           |                             |   |
| Copper                                                                                    |                             |   |
| Total Number of Data                                                                      | 166                         |   |
| Number of Non-Detect Data                                                                 | 2                           |   |
| Number of Detected Data                                                                   | 164                         |   |
| Minimum Detected                                                                          | 0.13                        |   |
| Maximum Detected                                                                          | 487                         |   |
| Percent Non-Detects                                                                       | 1.20%                       |   |
| Minimum Non-detect                                                                        | 0.066                       |   |
| Maximum Non-detect                                                                        | 0.3                         |   |
| Many of D. Larta I Dat                                                                    | 04.55                       |   |
| Mean of Detected Data                                                                     | 24.55                       |   |
| Median of Detected Data                                                                   | 12                          |   |
| Variance of Detected Data                                                                 | 2206                        |   |
| SD of Detected Data                                                                       | 46.97                       | • |
| CV of Detected Data                                                                       | 1.913                       |   |
| Skownood of Detected Data                                                                 | 6 000                       |   |

Skewness of Detected Data

| Mean of Detected log data                                                                                                                          | 2.587    |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
| SD of Detected Log data                                                                                                                            | 1.065    |   |
|                                                                                                                                                    |          |   |
| Note: Data have multiple DLs - Use of KM Methor<br>For all methods (except KM, DL/2, and ROS Metho<br>Observations < Largest DL are treated as NDs | ds),     |   |
| Number treated as Non-Detect                                                                                                                       | 3        |   |
| Number treated as Detected                                                                                                                         | 163      |   |
| Single DL Percent Detection                                                                                                                        | 1.81%    |   |
| Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                              |          |   |
| Winsorization Method                                                                                                                               | 1.81%    |   |
| Mean                                                                                                                                               | 21.1     |   |
| SD                                                                                                                                                 | 25.47    |   |
| 95% Winsor (t) UCL                                                                                                                                 | 24.37    |   |
| <b>、</b>                                                                                                                                           |          |   |
| Kaplan Meier (KM) Method                                                                                                                           |          |   |
| Mean                                                                                                                                               | . 24.26  |   |
| SD                                                                                                                                                 | 46.62    |   |
| Standard Error of Mean                                                                                                                             | 3.63     |   |
| 95% KM (t) UCL                                                                                                                                     | 30.26    |   |
| 95% KM (z) UCL                                                                                                                                     | 30.23    |   |
| 95% KM (BCA) UCL                                                                                                                                   | 31.03    |   |
| 95% KM (Percentile Bootstrap) UCL                                                                                                                  | 30.9     | • |
| 95% KM (Chebyshev) UCL                                                                                                                             | 40.08    |   |
| 97.5% KM (Chebyshev) UCL                                                                                                                           | 46.92    |   |
| 99% KM (Chebyshev) UCL                                                                                                                             | 60.37    |   |
| Potential UCL to Use<br>95% KM (Chebyshev) UCL                                                                                                     | 40.08    |   |
| Cyclohexane                                                                                                                                        |          |   |
| Total Number of Data                                                                                                                               | 83       |   |
| Number of Non-Detect Data                                                                                                                          | 36       |   |
| Number of Detected Data                                                                                                                            | 47       |   |
| Minimum Detected                                                                                                                                   | 6.26E-04 |   |
| Maximum Detected                                                                                                                                   | 21.7     |   |
| Percent Non-Detects                                                                                                                                | 43.37%   |   |
| Minimum Non-detect                                                                                                                                 | 8.87E-04 |   |
|                                                                                                                                                    |          |   |

0.467

0.00177

Variance of Detected Data 10.01
SD of Detected Data 3.165
CV of Detected Data 6.783
Skewness of Detected Data 6.855
Mean of Detected log data -5.92
SD of Detected Log data 1.616

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Maximum Non-detect

Mean of Detected Data

Median of Detected Data

| Observations < Largest DL are treated as NDs |        |
|----------------------------------------------|--------|
| Number treated as Non-Detect                 | 81     |
| Number treated as Detected                   | 2      |
| Single DL Percent Detection                  | 97 59% |

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 0.265 |
| SD                                | 2.367 |
| Standard Error of Mean            | 0.263 |
| 95% KM (t) UCL                    | 0.702 |
| 95% KM (z) UCL                    | 0.697 |
| 95% KM (BCA) UCL                  | 0.787 |
| 95% KM (Percentile Bootstrap) UCL | 0.787 |
| 95% KM (Chebyshev) UCL            | 1.409 |
| 97.5% KM (Chebyshev) UCL          | 1.905 |
| 99% KM (Chebyshev) UCL            | 2.878 |

#### Potential UCL to Use

166

### Dibenz(a,h)anthracene

Total Number of Data

| Number of Non-Detect Data | 110     |
|---------------------------|---------|
| Number of Detected Data   | . 56    |
| Minimum Detected          | 0.0619  |
| Maximum Detected          | 1.64    |
| Percent Non-Detects       | 66.27%  |
| Minimum Non-detect        | 0.00846 |
| Maximum Non-detect        | 0.183   |
| Mean of Detected Data     | 0.317   |
| Median of Detected Data   | 0.145   |
| Variance of Detected Data | 0.127   |
| SD of Detected Data       | 0.356   |
| CV of Detected Data       | 1.122   |
| Skewness of Detected Data | 2.024   |
| Mean of Detected log data | -1.608  |
| SD of Detected Log data   | 0.914   |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect143Number treated as Detected23Single DL Percent Detection86.14%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method N/A

| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL                                                                   | 0.148<br>0.238<br>0.0186<br>0.179<br>0.179<br>0.186<br>0.18<br>0.229           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| 97.5% KM (Chebyshev) UCL                                                                                                                                                                                                          | 0.264<br>0.333                                                                 |  |
| 99% KM (Chebyshev) UCL  Potential UCL to Use 95% KM (t) UCL 95% KM (% Bootstrap) UCL  Dibenzofuran                                                                                                                                | 0.179                                                                          |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                                                                | 166<br>143<br><b>23</b><br>0.0167<br>0.821<br><b>86.14%</b><br>0.0124<br>0.268 |  |
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data                                       | 0.133<br>0.0604<br>0.0357<br>0.189<br>1.415<br>2.831<br>-2.559<br>0.963        |  |
| Note: Data have multiple DLs - Use of KM Methor For all methods (except KM, DL/2, and ROS Methor Observations < Largest DL are treated as NDs Number treated as Non-Detect Number treated as Detected Single DL Percent Detection |                                                                                |  |
| Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level                                                                                                                                   |                                                                                |  |
| Winsorization Method                                                                                                                                                                                                              | N/A                                                                            |  |
| Kaplan Meier (KM) Method<br>Mean<br>SD<br>Standard Error of Mean<br>95% KM (t) UCL<br>95% KM (z) UCL                                                                                                                              | 0.0334<br>0.0798<br>0.00635<br>0.0439<br>0.0439                                |  |

| 95% KM (BCA) UCL                  | 0.0541 |
|-----------------------------------|--------|
| 95% KM (Percentile Bootstrap) UCL | 0.05   |
| 95% KM (Chebyshev) UCL            | 0.0611 |
| 97.5% KM (Chebyshev) UCL          | 0.0731 |
| 99% KM (Chebyshev) UCL            | 0.0966 |

Data appear Lognormal (0.05)

May want to try Lognormal UCLs

#### Dieldrin

| Total Number of Data                                                                      | 166                                     |
|-------------------------------------------------------------------------------------------|-----------------------------------------|
| Number of Non-Detect Data                                                                 | 133                                     |
| Number of Detected Data                                                                   | 33                                      |
| Minimum Detected                                                                          | 2.43E-04                                |
| Maximum Detected                                                                          | 0.0205                                  |
| Percent Non-Detects                                                                       | 80.12%                                  |
| Minimum Non-detect                                                                        | 1.40E-04                                |
| Maximum Non-detect                                                                        | 0.0161                                  |
|                                                                                           |                                         |
| Mean of Detected Data                                                                     | 0.00344                                 |
| Mean of Detected Data<br>Median of Detected Data                                          | 0.00344<br>0.00172                      |
|                                                                                           | 0.000.                                  |
| Median of Detected Data                                                                   | 0.00172                                 |
| Median of Detected Data<br>Variance of Detected Data                                      | 0.00172<br>2.32E-05                     |
| Median of Detected Data Variance of Detected Data SD of Detected Data                     | 0.00172<br>2.32E-05<br>0.00481          |
| Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data | 0.00172<br>2.32E-05<br>0.00481<br>1.398 |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect164Number treated as Detected2Single DL Percent Detection98.80%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 8.89E-04 |
| SD                                | 0.00247  |
| Standard Error of Mean            | 1.95E-04 |
| 95% KM (t) UCL                    | 0.00121  |
| 95% KM (z) UCL                    | 0.00121  |
| 95% KM (BCA) UCL                  | 0.00137  |
| 95% KM (Percentile Bootstrap) UCL | 0.00125  |
| 95% KM (Chebyshev) UCL            | 0.00174  |
| 97.5% KM (Chebyshev) UCL          | 0.00211  |
| 99% KM (Chebyshev) UCL            | 0.00283  |

Data follow Appr. Gamma Distribution (0.05)

| Di-n-butyl phthalate                                                                                                                                      | ·           |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|
| Total Number of Data                                                                                                                                      | 166         |   |
| Number of Non-Detect Data                                                                                                                                 | 155         |   |
| Number of Detected Data                                                                                                                                   | 11          |   |
| Minimum Detected                                                                                                                                          | 0.0311      |   |
| Maximum Detected                                                                                                                                          | 0.753       |   |
| Percent Non-Detects                                                                                                                                       | 93.37%      |   |
| Minimum Non-detect                                                                                                                                        | 0.0251      |   |
| Maximum Non-detect                                                                                                                                        | 0.542       |   |
|                                                                                                                                                           | 0.400       |   |
| Mean of Detected Data                                                                                                                                     | 0.188       |   |
| Median of Detected Data                                                                                                                                   | 0.0819      |   |
| Variance of Detected Data                                                                                                                                 | 0.0511      |   |
| SD of Detected Data                                                                                                                                       | 0.226       |   |
| CV of Detected Data                                                                                                                                       | 1.201       |   |
| Skewness of Detected Data                                                                                                                                 | 1.85        |   |
| Mean of Detected log data                                                                                                                                 | -2.241      |   |
| SD of Detected Log data                                                                                                                                   | 1.087       |   |
| Note: Data have multiple DLs - Use of KM Method is<br>For all methods (except KM, DL/2, and ROS Methods),<br>Observations < Largest DL are treated as NDs | recommended |   |
| Number treated as Non-Detect                                                                                                                              | 165         |   |
| Number treated as Detected                                                                                                                                | 1           |   |
| Single DL Percent Detection                                                                                                                               | 99.40%      |   |
| Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significan                                                    | ce Level    |   |
| Winsorization Method                                                                                                                                      | N/A         |   |
| Kaplan Meier (KM) Method                                                                                                                                  |             |   |
| Mean                                                                                                                                                      | 0.0418      |   |
| SD                                                                                                                                                        | 0.068       |   |
| Standard Error of Mean                                                                                                                                    | 0.00556     |   |
| 95% KM (t) UCL                                                                                                                                            | 0.051       |   |
| 95% KM (z) UCL                                                                                                                                            | 0.0509      |   |
| 95% KM (BCA) UCL                                                                                                                                          | 0.0679      |   |
| 95% KM (Percentile Bootstrap) UCL                                                                                                                         | 0.0598      |   |
| 95% KM (Chebyshev) UCL                                                                                                                                    | 0.066       |   |
| 97.5% KM (Chebyshev) UCL                                                                                                                                  | 0.0765      |   |
| 99% KM (Chebyshev) UCL                                                                                                                                    | 0.097       |   |
| Data follow Appr. Gamma Distribution (0.05)                                                                                                               |             |   |
| May want to try Gamma UCLs                                                                                                                                |             | , |
|                                                                                                                                                           |             |   |
| Endosulfan sulfate                                                                                                                                        |             |   |
|                                                                                                                                                           |             |   |

166

Total Number of Data

| Number of Non-Detect Data                                                                                                                                                                                                                                                                                                                                                                                | 145                                                                                                                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| Number of Detected Data                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                          | <del></del>                                                                                                        |  |
| Minimum Detected                                                                                                                                                                                                                                                                                                                                                                                         | 4.22E-04                                                                                                           |  |
| Maximum Detected                                                                                                                                                                                                                                                                                                                                                                                         | 0.0713                                                                                                             |  |
| Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                                      | 87.35%                                                                                                             |  |
| Minimum Non-detect                                                                                                                                                                                                                                                                                                                                                                                       | 2.65E-04                                                                                                           |  |
| Maximum Non-detect                                                                                                                                                                                                                                                                                                                                                                                       | 0.0304                                                                                                             |  |
| Maximam Non detect                                                                                                                                                                                                                                                                                                                                                                                       | 0.0001                                                                                                             |  |
| Many of Datastard Data                                                                                                                                                                                                                                                                                                                                                                                   | 0.00305                                                                                                            |  |
| Mean of Detected Data                                                                                                                                                                                                                                                                                                                                                                                    | 0.00705                                                                                                            |  |
| Median of Detected Data                                                                                                                                                                                                                                                                                                                                                                                  | 0.00154                                                                                                            |  |
| Variance of Detected Data                                                                                                                                                                                                                                                                                                                                                                                | 2.55E-04                                                                                                           |  |
| SD of Detected Data                                                                                                                                                                                                                                                                                                                                                                                      | 0.016                                                                                                              |  |
| CV of Detected Data                                                                                                                                                                                                                                                                                                                                                                                      | 2.263                                                                                                              |  |
| Skewness of Detected Data                                                                                                                                                                                                                                                                                                                                                                                | 3.667                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                          | -6.164                                                                                                             |  |
| Mean of Detected log data                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |  |
| SD of Detected Log data                                                                                                                                                                                                                                                                                                                                                                                  | 1.391                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |  |
| Note: Data have multiple DLs - Use of KM Method is                                                                                                                                                                                                                                                                                                                                                       | recommended                                                                                                        |  |
| For all methods (except KM, DL/2, and ROS Methods),                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |  |
| Observations < Largest DL are treated as NDs                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                          | 405                                                                                                                |  |
| Number treated as Non-Detect                                                                                                                                                                                                                                                                                                                                                                             | 165                                                                                                                |  |
| Number treated as Detected                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                  |  |
| Single DL Percent Detection                                                                                                                                                                                                                                                                                                                                                                              | 99.40%                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |  |
| Data Dsitribution Test with Detected Values Only                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |  |
| Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                    |  |
| Data do flot follow a Discernable Distribution (0.50)                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |  |
| AAC                                                                                                                                                                                                                                                                                                                                                                                                      | N1/A                                                                                                               |  |
| Winsorization Method                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                |  |
| Winsorization Method                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                |  |
| Winsorization Method  Kaplan Meier (KM) Method                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>0.00127                                                                                                     |  |
| Kaplan Meier (KM) Method<br>Mean                                                                                                                                                                                                                                                                                                                                                                         | 0.00127                                                                                                            |  |
| Kaplan Meier (KM) Method<br>Mean<br>SD                                                                                                                                                                                                                                                                                                                                                                   | 0.00127<br>0.00597                                                                                                 |  |
| Kaplan Meier (KM) Method<br>Mean<br>SD<br>Standard Error of Mean                                                                                                                                                                                                                                                                                                                                         | 0.00127<br>0.00597<br>4.75E-04                                                                                     |  |
| Kaplan Meier (KM) Method<br>Mean<br>SD<br>Standard Error of Mean<br>95% KM (t) UCL                                                                                                                                                                                                                                                                                                                       | 0.00127<br>0.00597<br>4.75E-04<br>0.00206                                                                          |  |
| Kaplan Meier (KM) Method<br>Mean<br>SD<br>Standard Error of Mean<br>95% KM (t) UCL<br>95% KM (z) UCL                                                                                                                                                                                                                                                                                                     | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205                                                               |  |
| Kaplan Meier (KM) Method<br>Mean<br>SD<br>Standard Error of Mean<br>95% KM (t) UCL                                                                                                                                                                                                                                                                                                                       | 0.00127<br>0.00597<br>4.75E-04<br>0.00206                                                                          |  |
| Kaplan Meier (KM) Method<br>Mean<br>SD<br>Standard Error of Mean<br>95% KM (t) UCL<br>95% KM (z) UCL                                                                                                                                                                                                                                                                                                     | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205                                                               |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                 | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023                                                     |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL                                                                                                                                                                                                                                          | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334                               |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL                                                                                                                                                                                                                                          | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424                    |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL                                                                                                                                                                                                                                          | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334                               |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                                          | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                                          | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                                          | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                                          | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                                          | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                   | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL                                                                                                                                                                                          | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL  Endrin aldehyde                                                                                                                                   | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL  Endrin aldehyde  Total Number of Data                                                                                                           | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL  Endrin aldehyde  Total Number of Data Number of Non-Detect Data                                                                                   | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL  Endrin aldehyde  Total Number of Data                                                                                                           | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCL to Use 95% KM (BCA) UCL  Endrin aldehyde  Total Number of Data Number of Non-Detect Data                                                                                   | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006           |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL  Potential UCL to Use 95% KM (BCA) UCL  Endrin aldehyde  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected                  | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006<br>0.0023 |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL  Potential UCL to Use 95% KM (BCA) UCL  Endrin aldehyde  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006<br>0.0023 |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL  Potential UCL to Use 95% KM (BCA) UCL  Endrin aldehyde  Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected                  | 0.00127<br>0.00597<br>4.75E-04<br>0.00206<br>0.00205<br>0.0023<br>0.00215<br>0.00334<br>0.00424<br>0.006<br>0.0023 |  |

Maximum Non-detect

| Mean of Detected Data                              | 0.00852             |  |
|----------------------------------------------------|---------------------|--|
| Median of Detected Data                            | 0.00247             |  |
| Variance of Detected Data                          | 2.29E-04            |  |
| SD of Detected Data                                | 0.0151              |  |
| CV of Detected Data                                | 1.779               |  |
| Skewness of Detected Data                          | 3.24                |  |
| Mean of Detected log data                          | -5.658              |  |
| SD of Detected Log data                            | 1.245               |  |
| ob of bolooida rog data                            | 1.210               |  |
| Note: Data have multiple DLs - Use of KM Met       |                     |  |
| For all methods (except KM, DL/2, and ROS Met      | hods),              |  |
| Observations < Largest DL are treated as NDs       |                     |  |
| Number treated as Non-Detect                       | 164                 |  |
| Number treated as Detected                         | 2                   |  |
| Single DL Percent Detection                        | 98.80%              |  |
| Data Dsitribution Test with Detected Values Only   |                     |  |
| Data do not follow a Discernable Distribution (0.0 |                     |  |
| · ·                                                | •                   |  |
| Winsorization Method                               | N/A                 |  |
| Kaplan Meier (KM) Method                           |                     |  |
| Mean                                               | 0.00201             |  |
| SD                                                 | 0.00716             |  |
| Standard Error of Mean                             | 5.66E-04            |  |
| 95% KM (t) UCL                                     | 0.00295             |  |
| 95% KM (z) UCL                                     | 0.00294             |  |
| 95% KM (BCA) UCL                                   | 0.00354             |  |
| 95% KM (Percentile Bootstrap) UCL                  | 0.0032              |  |
| 95% KM (Chebyshev) UCL                             | 0.00448             |  |
| 97.5% KM (Chebyshev) UCL                           | 0.00554             |  |
| 99% KM (Chebyshev) UCL                             | 0.00764             |  |
| 5570 KW (Onebyshev) CCL                            | 0.00101             |  |
| Potential UCL to Use                               |                     |  |
| 95% KM (BCA) UCL                                   | 0.00354             |  |
|                                                    |                     |  |
| Endrin ketone                                      |                     |  |
| Total Number of Data                               | 166                 |  |
| Number of Non-Detect Data                          | 142                 |  |
| Number of Detected Data                            | 24                  |  |
| Minimum Detected                                   | 7.03E-04            |  |
| Maximum Detected                                   | 0.02                |  |
| Percent Non-Detects                                | 85.54%              |  |
| Minimum Non-detect                                 | 4.26E-04            |  |
| Maximum Non-detect                                 | 0.0482              |  |
| Mean of Detected Data                              | 0.00502             |  |
| Median of Detected Data                            | 0.00291             |  |
|                                                    | 2.23E-05            |  |
| Variance of Detected Data                          | 2.23E-05<br>0.00473 |  |
| SD of Detected Data                                |                     |  |
| CV of Detected Data                                | 0.942               |  |
| Skewness of Detected Data                          | 1.696               |  |
| Mean of Detected log data                          | -5.673              |  |
| SD of Detected Log data                            | 0.886               |  |

SD of Detected Log data

| Note: Data | have multiple DI  | e - lisa of KM   | Method is | recommended |
|------------|-------------------|------------------|-----------|-------------|
| NOLE. Dala | Have municiple Di | L5 - U5E UI KIYI | Method 15 | CCOMMENIACA |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 166
Number treated as Detected 0

Single DL Percent Detection 100.00%

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00135  |
| SD                                | 0.00235  |
| Standard Error of Mean            | 1.88E-04 |
| 95% KM (t) UCL                    | 0.00166  |
| 95% KM (z) UCL                    | 0.00166  |
| 95% KM (BCA) UCL                  | 0.00212  |
| 95% KM (Percentile Bootstrap) UCL | 0.00201  |
| 95% KM (Chebyshev) UCL            | 0.00217  |
| 97.5% KM (Chebyshev) UCL          | 0.00253  |
| 99% KM (Chebyshev) UCL            | 0.00322  |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

## Ethylbenzene

| Total Number of Data      | 83       |
|---------------------------|----------|
| Number of Non-Detect Data | 36       |
| Number of Detected Data   | 47       |
| Minimum Detected          | 6.54E-04 |
| Maximum Detected          | 0.105    |
| Percent Non-Detects       | 43.37%   |
| Minimum Non-detect        | 1.54E-04 |
| Maximum Non-detect        | 0.0795   |
|                           |          |
| Mean of Detected Data     | 0.00536  |
| Median of Detected Data   | 0.00206  |
| Variance of Detected Data | 2.57E-04 |
| SD of Detected Data       | 0.016    |
| CV of Detected Data       | 2.992    |
| Skewness of Detected Data | 5.73     |
| Mean of Detected log data | -6.04    |
| SD of Detected Log data   | 0.853    |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 82
Number treated as Detected 1
Single DL Percent Detection 98.80%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0034  |
| SD -                              | 0.0122  |
| Standard Error of Mean            | 0.00135 |
| 95% KM (t) UCL                    | 0.00564 |
| 95% KM (z) UCL                    | 0.00562 |
| 95% KM (BCA) UCL                  | 0.00624 |
| 95% KM (Percentile Bootstrap) UCL | 0.00591 |
| 95% KM (Chebyshev) UCL            | 0.00929 |
| 97.5% KM (Chebyshev) UCL          | 0.0118  |
| 99% KM (Chebyshev) UCL            | 0.0168  |
| Potential UCL to Use              |         |
| 95% KM (t) UCL                    | 0.00564 |
| 95% KM (% Bootstrap) UCL          | 0.00591 |

#### **Fluoranthene**

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 166<br>70<br><b>96</b><br>0.0133<br>14.2<br><b>42.17%</b><br>0.0107<br>0.213 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 1.017<br>0.179<br>4.437<br>2.106<br>2.071<br>3.808<br>-1.503<br>1.799        |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect119Number treated as Detected47Single DL Percent Detection71.69%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method N/A

Kaplan Meier (KM) Method

| Mean                              | 0.595 |
|-----------------------------------|-------|
| SD                                | 1.669 |
| Standard Error of Mean            | 0.13  |
| 95% KM (t) UCL                    | 0.81  |
| 95% KM (z) UCL                    | 0.809 |
| 95% KM (BCA) UCL                  | 0.825 |
| 95% KM (Percentile Bootstrap) UCL | 0.819 |
| 95% KM (Chebyshev) UCL            | 1.162 |
| 97.5% KM (Chebyshev) UCL          | 1.408 |
| 99% KM (Chebyshev) UCL            | 1.89  |

### Potential UCL to Use

Fluorene

| Total Number of Data      | 166     |
|---------------------------|---------|
| Number of Non-Detect Data | 125     |
| Number of Detected Data   | 41      |
| Minimum Detected          | 0.00945 |
| Maximum Detected          | 1.11    |
| Percent Non-Detects       | 75.30%  |
| Minimum Non-detect        | 0.0086  |
| Maximum Non-detect        | 0.186   |
| Mean of Detected Data     | 0.149   |
| Median of Detected Data   | 0.0805  |
| Variance of Detected Data | 0.053   |
| SD of Detected Data       | 0.23    |
| CV of Detected Data       | 1.543   |
| Skewness of Detected Data | 2.813   |
| Mean of Detected log data | -2.681  |
| SD of Detected Log data   | 1.232   |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 158
Number treated as Detected 8
Single DL Percent Detection 95.18%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0444 |
| SD                                | 0.128  |
| Standard Error of Mean            | 0.0101 |
| 95% KM (t) UCL                    | 0.0611 |
| 95% KM (z) UCL                    | 0.061  |
| 95% KM (BCA) UCL                  | 0.0666 |
| 95% KM (Percentile Bootstrap) UCL | 0.0624 |
| 95% KM (Chebyshev) UCL            | 0.0883 |
| 97.5% KM (Chebyshev) UCL          | 0.107  |

| 99% KM       | (Chebyshev) UCL   |
|--------------|-------------------|
| 00 /0   (141 | (Olicofolica) COL |

Data appear Lognormal (0.05)

May want to try Lognormal UCLs

| Total Number of Data      | 166      |
|---------------------------|----------|
| Number of Non-Detect Data | 154      |
| Number of Detected Data   | 12       |
| Minimum Detected          | 7.10E-04 |
| Maximum Detected          | 0.0156   |
| Percent Non-Detects       | 92.77%   |
| Minimum Non-detect        | 2.20E-04 |
| Maximum Non-detect        | 0.0253   |
| Mean of Detected Data     | 0.00463  |
| Median of Detected Data   | 0.00344  |
| Variance of Detected Data | 2.56E-05 |
| SD of Detected Data       | 0.00506  |
| CV of Detected Data       | 1.093    |
| Skewness of Detected Data | 1.624    |
| Mean of Detected log data | -5.882   |
| SD of Detected Log data   | 1.058    |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect166Number treated as Detected0Single DL Percent Detection100.00%

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

| 147           |        | A 1 / |   |
|---------------|--------|-------|---|
| Winsorization | Method | N/    | А |

#### Kaplan Meier (KM) Method

| Mean                              | 9.98E-04 |
|-----------------------------------|----------|
| SD                                | 0.00166  |
| Standard Error of Mean            | 1.35E-04 |
| 95% KM (t) UCL                    | 0.00122  |
| 95% KM (z) UCL                    | 0.00122  |
| 95% KM (BCA) UCL                  | 0.00173  |
| 95% KM (Percentile Bootstrap) UCL | 0.00144  |
| 95% KM (Chebyshev) UCL            | 0.00159  |
| 97.5% KM (Chebyshev) UCL          | 0.00184  |
| 99% KM (Chebyshev) UCL            | 0.00234  |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

# Indeno(1,2,3-cd)pyrene

| Total Number of Data                                                                                 | 166    |
|------------------------------------------------------------------------------------------------------|--------|
| Number of Non-Detect Data                                                                            | 62     |
| Number of Detected Data                                                                              | 104    |
| Minimum Detected `                                                                                   | 0.0574 |
| Maximum Detected                                                                                     | 6.49   |
| Percent Non-Detects                                                                                  | 37.35% |
| Minimum Non-detect                                                                                   | 0.0142 |
| Maximum Non-detect                                                                                   | 0.158  |
| Mean of Detected Data                                                                                | 0.58   |
| Median of Detected Data                                                                              | 0.145  |
| Variance of Detected Data                                                                            | 0.934  |
| SD of Detected Data                                                                                  | 0.967  |
| CV of Detected Data                                                                                  | 1.665  |
| Skewness of Detected Data                                                                            | 3.417  |
| Mean of Detected log data                                                                            | -1.406 |
| SD of Detected Log data                                                                              | 1.225  |
| Note: Data have multiple DLs - Use of KM Method<br>For all methods (except KM, DL/2, and ROS Methods |        |
| Observations < Largest DL are treated as NDs                                                         | /1     |
| Number treated as Non-Detect                                                                         | 115    |

Number treated as Non-Detect 115 Number treated as Detected 51 Single DL Percent Detection 69.28%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kaplan Meier (KM) Method                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mean                                    | 0.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SD                                      | 0.802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Standard Error of Mean                  | 0.0626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 95% KM (t) UCL                          | 0.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 95% KM (z) UCL                          | 0.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 95% KM (BCA) UCL                        | 0.495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 95% KM (Percentile Bootstrap) UCL       | 0.495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 95% KM (Chebyshev) UCL                  | 0.658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 97.5% KM (Chebyshev) UCL                | 0.776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 99% KM (Chebyshev) UCL                  | 1.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| الله الله الله الله الله الله الله الله | Market and the second of the s |

Potential UCL to Use 95% KM (Chebyshev) UCL 0.658

#### Iron

| Number of Valid Observations    | 166   |
|---------------------------------|-------|
| Number of Distinct Observations | 125   |
| Minimum                         | 2410  |
| Maximum                         | 77100 |
| Mean                            | 14277 |
| Median                          | 12400 |

| SD                                                 | 9389                                                                     |  |
|----------------------------------------------------|--------------------------------------------------------------------------|--|
| Variance                                           | 88155411                                                                 |  |
| Coefficient of Variation                           | 0.658                                                                    |  |
| Skewness                                           | 3.268                                                                    |  |
| Mean of log data                                   | 9.418                                                                    |  |
| SD of log data                                     | 0.533                                                                    |  |
|                                                    |                                                                          |  |
| Data do not follow a Discernable Distribution      |                                                                          |  |
|                                                    |                                                                          |  |
| 95% Useful UCLs                                    |                                                                          |  |
| Student's-t UCL                                    | 15482                                                                    |  |
| 050( 1101 - (A II - ( 15 - 01)                     |                                                                          |  |
| 95% UCLs (Adjusted for Skewness)                   | 45072                                                                    |  |
| 95% Adjusted-CLT UCL                               | 15673                                                                    |  |
| 95% Modified-t UCL                                 | 15513                                                                    |  |
| Non-Parametric UCLs                                |                                                                          |  |
| 95% CLT UCL                                        | 15475                                                                    |  |
| 95% Jackknife UCL                                  | 15482                                                                    |  |
| 95% Standard Bootstrap UCL                         | 15450                                                                    |  |
| 95% Bootstrap-t UCL                                | 15739                                                                    |  |
| 95% Hall's Bootstrap UCL                           | 15921                                                                    |  |
| 95% Percentile Bootstrap UCL                       | 15429                                                                    |  |
| 95% BCA Bootstrap UCL                              | 15603                                                                    |  |
| 95% Chebyshev(Mean, Sd) UCL                        | 17453                                                                    |  |
| 97.5% Chebyshev(Mean, Sd) UCL                      | 18828                                                                    |  |
| 99% Chebyshev(Mean, Sd) UCL                        | 21528                                                                    |  |
| 9970 Chebyshev (Mean, Od) OCL                      | 21320                                                                    |  |
| Potential UCL to Use                               |                                                                          |  |
| Use 95% Chebyshev (Mean, Sd) UCL                   | 17453                                                                    |  |
|                                                    | epidekik dalam dan dan dan dalam dan |  |
|                                                    |                                                                          |  |
| Isopropylbenzene (Cumene)                          |                                                                          |  |
|                                                    | 20                                                                       |  |
| Total Number of Data                               | 83                                                                       |  |
| Number of Non-Detect Data                          | 67                                                                       |  |
| Number of Detected Data                            | 16                                                                       |  |
| Minimum Detected                                   | 3.18E-04                                                                 |  |
| Maximum Detected                                   | 64.9                                                                     |  |
| Percent Non-Detects                                | 80.72%                                                                   |  |
| Minimum Non-detect Maximum Non-detect              | 7.00E-05<br>0.00948                                                      |  |
| waximum ivon-detect                                | 0.00946                                                                  |  |
| Mean of Detected Data                              | 4.309                                                                    |  |
| Median of Detected Data                            | 0.00233                                                                  |  |
| Variance of Detected Data                          | 262                                                                      |  |
| SD of Detected Data                                | 16.18                                                                    |  |
| CV of Detected Data                                | 3.756                                                                    |  |
| Skewness of Detected Data                          | 3.978                                                                    |  |
| Mean of Detected log data                          | -4.744                                                                   |  |
| SD of Detected Log data                            | 3.489                                                                    |  |
|                                                    |                                                                          |  |
| Note: Data have multiple DLs - Use of KM Meth      | od is recommended                                                        |  |
| For all methods (except KM, DL/2, and ROS Methods) |                                                                          |  |
| Observations < Largest DL are treated as NDs       | -                                                                        |  |
|                                                    |                                                                          |  |

77

Number treated as Non-Detect

| Number treated as Detected                                                                           | 6<br>92.77%    |   |
|------------------------------------------------------------------------------------------------------|----------------|---|
| Single DL Percent Detection                                                                          |                |   |
| Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.0) |                |   |
| Winsorization Method                                                                                 | N/A            |   |
| Kaplan Meier (KM) Method                                                                             |                |   |
| Mean                                                                                                 | 0.831          |   |
| SD                                                                                                   | 7.087          | • |
| Standard Error of Mean                                                                               | 0.803          |   |
| 95% KM (t) UCL                                                                                       | 2.167<br>2.152 |   |
| 95% KM (z) UCL                                                                                       | 2.132          |   |
| 95% KM (BCA) UCL                                                                                     | 2.394          |   |
| 95% KM (Percentile Bootstrap) UCL<br>95% KM (Chebyshev) UCL                                          | 4.333          |   |
| 97.5% KM (Chebyshev) UCL                                                                             | 5.848          |   |
| 99% KM (Chebyshev) UCL                                                                               | 8.825          |   |
|                                                                                                      |                |   |
| Potential UCL to Use<br>97.5% KM (Chebyshev) UCL                                                     | 5,848          |   |
| Lead                                                                                                 |                |   |
| Number of Valid Observations                                                                         | 166            |   |
| Number of Distinct Observations                                                                      | 145            |   |
| Minimum                                                                                              | 2.48           |   |
| Maximum                                                                                              | 702            |   |
| Mean                                                                                                 | 53.52          |   |
| Median                                                                                               | 17.1           |   |
| SD                                                                                                   | 104.2          |   |
| Variance                                                                                             | 10860          |   |
| Coefficient of Variation                                                                             | 1.947          |   |
| Skewness                                                                                             | 4.276          |   |
| Mean of log data                                                                                     | 3.186          |   |
| SD of log data                                                                                       | 1.12           |   |
| Data do not follow a Discernable Distribution                                                        |                |   |
| 95% Useful UCLs                                                                                      | 20.0           |   |
| Student's-t UCL                                                                                      | 66.9           |   |
| 95% UCLs (Adjusted for Skewness)                                                                     |                |   |
| 95% Adjusted-CLT UCL                                                                                 | 69.69          |   |
| 95% Modified-t UCL                                                                                   | 67.35          |   |
| Non-Parametric UCLs                                                                                  |                |   |
| 95% CLT UCL                                                                                          | 66.82          |   |
| 95% Jackknife UCL                                                                                    | 66.9           |   |
| 95% Standard Bootstrap UCL                                                                           | 66.77          |   |
| 95% Bootstrap-t UCL                                                                                  | 70.85          |   |
| 95% Hall's Bootstrap UCL                                                                             | 69.86          |   |
| 95% Percentile Bootstrap UCL                                                                         | 67.01          |   |
| 95% BCA Bootstrap UCL                                                                                | 68.96          |   |
|                                                                                                      |                |   |

| . 059/ Chahyahay/Maan Sd) LICI                               | 88.78                 |  |
|--------------------------------------------------------------|-----------------------|--|
| 95% Chebyshev(Mean, Sd) UCL<br>97.5% Chebyshev(Mean, Sd) UCL | 104                   |  |
| 99% Chebyshev(Mean, Sd) UCL                                  | 134                   |  |
| oo /o onobyonov(wodn, od) ool                                | 101                   |  |
| Potential UCL to Use                                         |                       |  |
| Use 97.5% Chebyshev (Mean, Sd) UCL                           | 104                   |  |
|                                                              |                       |  |
| Lithium                                                      |                       |  |
| Number of Valid Observations                                 | 166                   |  |
| Number of Distinct Observations                              | 145                   |  |
| Minimum                                                      | 0.65                  |  |
| Maximum                                                      | 28.6                  |  |
| Mean                                                         | 10.03                 |  |
| Median                                                       | 9.02                  |  |
| SD                                                           | 6.299                 |  |
| Variance                                                     | 39.67                 |  |
| Coefficient of Variation                                     | 0.628                 |  |
| Skewness                                                     | 0.63                  |  |
| Mean of log data                                             | 2.054                 |  |
| SD of log data                                               | 0.791                 |  |
| Data do not follow a Discernable Distribution                |                       |  |
| 95% Useful UCLs                                              |                       |  |
| Student's-t UCL                                              | 10.84                 |  |
|                                                              |                       |  |
| 95% UCLs (Adjusted for Skewness)                             |                       |  |
| 95% Adjusted-CLT UCL                                         | 10.86                 |  |
| 95% Modified-t UCL                                           | 10.85                 |  |
| Non-Parametric UCLs                                          |                       |  |
| 95% CLT UCL                                                  | 10.84                 |  |
| 95% Jackknife UCL                                            | 10.84                 |  |
| 95% Standard Bootstrap UCL                                   | 10.85                 |  |
| 95% Bootstrap-t UCL                                          | 10.85                 |  |
| 95% Hall's Bootstrap UCL                                     | 10.89                 |  |
| 95% Percentile Bootstrap UCL                                 | 10.84                 |  |
| 95% BCA Bootstrap UCL                                        | 10.86                 |  |
| 95% Chebyshev(Mean, Sd) UCL                                  | 12.17                 |  |
| 97.5% Chebyshev(Mean, Sd) UCL                                | 13.09                 |  |
| 99% Chebyshev(Mean, Sd) UCL                                  | 14.9                  |  |
| Potential UCL to Use<br>Use 95% Chebyshev (Mean, Sd) UCL     | 12:17                 |  |
| m,p-Xylene                                                   | ···                   |  |
| Total Number of Date                                         | 02                    |  |
| Total Number of Data                                         | 83                    |  |
| Number of Non-Detect Data  Number of Detected Data           | 30<br><b>53</b>       |  |
| Minimum Detected Data                                        | 5.58E-04              |  |
| Maximum Detected                                             | 2.56                  |  |
| Percent Non-Detects                                          | 2.50<br><b>36.14%</b> |  |
| reident Mon-Detects                                          | JU. 14 /0             |  |

| Minimum Non-detect<br>Maximum Non-detect                                                                                                                                                    | 1.82E-04<br>0.0247                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.0533<br>0.00141<br>0.123<br>0.351<br>6.594<br>7.251<br>-6.235 |
| SD of Detected Log data                                                                                                                                                                     | 1.391                                                           |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect80Number treated as Detected3Single DL Percent Detection96.39%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0343 |
| SD                                | 0.279  |
| Standard Error of Mean            | 0.031  |
| 95% KM (t) UCL                    | 0.0858 |
| 95% KM (z) UCL                    | 0.0852 |
| 95% KM (BCA) UCL                  | 0.0945 |
| 95% KM (Percentile Bootstrap) UCL | 0.0955 |
| 95% KM (Chebyshev) UCL            | 0.169  |
| 97.5% KM (Chebyshev) UCL          | 0.228  |
| 99% KM (Chebyshev) UCL            | 0.342  |
| Potential UCL to Use              |        |
| 95% KM (Chebyshev) UCL            | 0.169  |

# Manganese

| Number of Valid Observations    | 166   |
|---------------------------------|-------|
| Number of Distinct Observations | 133   |
| Minimum                         | 59.3  |
| Maximum                         | 892   |
| Mean                            | 261.2 |
| Median                          | 224.5 |
| SD                              | 127.4 |
| Variance                        | 16239 |
| Coefficient of Variation        | 0.488 |
| Skewness                        | 2.072 |
| Mean of log data                | 5.47  |
| SD of log data                  | 0.429 |

#### Data do not follow a Discernable Distribution

| Student's+ UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95% Useful UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 98'% Adjusted-CLT UCL 95'% Modified-t UCL 277.8  Non-Parametric UCLs 95% LCT UCL 277.5 95% Jackknife UCL 277.4 95% Standard Bootstrap UCL 277.4 95% Standard Bootstrap UCL 279.2 95% Hall's Bootstrap UCL 279.2 95% Hall's Bootstrap UCL 279.2 95% Hall's Bootstrap UCL 279.9 95% Chebyshev(Mean, Sd) UCL 279.9 95% Chebyshev(Mean, Sd) UCL 323 99% Chebyshev(Mean, Sd) UCL 323 99% Chebyshev(Mean, Sd) UCL 327.8  Potential UCL-to-Use Use 95% Student's-t UCL 277.8  Potential UCL-to-Use Use 95% Student's-t UCL 277.8  Potential UCL-to-Use Use 95% Modified-t UCL 277.8  Mercury  Total Number of Data 166 Number of Non-Detect Data 93 Number of Non-Detect Data Minimum Detected 0.0026 Maximum Detected 0.056 Percent Non-Detects 56.02% Minimum Non-detect 0.002 Maximum Non-detect 0.048  Mean of Detected Data 0.012 Variance of Detected Data 0.013 Median of Detected Data 0.013 Median of Detected Data 0.013 Variance of Detected Data 0.013 CV of Detected Data 0.0138 CV of Detected Data 0.0138 CV of Detected Data 0.0138 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 154 Number treated as Non-Detected 12 Single DL Percent Detection 92.77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 98'% Adjusted-CLT UCL 95'% Modified-t UCL 277.8  Non-Parametric UCLs 95% LCT UCL 277.5 95% Jackknife UCL 277.4 95% Standard Bootstrap UCL 277.4 95% Standard Bootstrap UCL 279.2 95% Hall's Bootstrap UCL 279.2 95% Hall's Bootstrap UCL 279.2 95% Hall's Bootstrap UCL 279.9 95% Chebyshev(Mean, Sd) UCL 279.9 95% Chebyshev(Mean, Sd) UCL 323 99% Chebyshev(Mean, Sd) UCL 323 99% Chebyshev(Mean, Sd) UCL 327.8  Potential UCL-to-Use Use 95% Student's-t UCL 277.8  Potential UCL-to-Use Use 95% Student's-t UCL 277.8  Potential UCL-to-Use Use 95% Modified-t UCL 277.8  Mercury  Total Number of Data 166 Number of Non-Detect Data 93 Number of Non-Detect Data Minimum Detected 0.0026 Maximum Detected 0.056 Percent Non-Detects 56.02% Minimum Non-detect 0.002 Maximum Non-detect 0.048  Mean of Detected Data 0.012 Variance of Detected Data 0.013 Median of Detected Data 0.013 Median of Detected Data 0.013 Variance of Detected Data 0.013 CV of Detected Data 0.0138 CV of Detected Data 0.0138 CV of Detected Data 0.0138 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 154 Number treated as Non-Detected 12 Single DL Percent Detection 92.77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95% LICL's (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Non-Parametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 279.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Non-Parametric UCLs   95% CLT UCL   277.5   95% Jackknife UCL   277.5   95% Standard Bootstrap UCL   277.4   95% Bootstrap-t UCL   279.2   95% Hall's Bootstrap UCL   280.3   95% Percentile Bootstrap UCL   279.8   95% Percentile Bootstrap UCL   277.8   95% BCA Bootstrap UCL   279.9   95% Chebyshev(Mean, Sd) UCL   304.3   97.5% Chebyshev(Mean, Sd) UCL   323   99% Chebyshev(Mean, Sd) UCL   359.6   95% Chebyshev(Mean, Sd) UCL   359.6   96% Chebyshev(Mean, Sd) UCL   277.8   95% Modified-t UCL   277.8   95%    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 95% CLT UCL 95% Slandard Bootstrap UCL 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 95% Chebyshev(Mean, Sd) UCL 304.3 97.5% Chebyshev(Mean, Sd) UCL 305.6  Potential UCL to Use Use 95% Student's-t UCL 07.95% Modified-t UCL 277.5  Or 95% Modified-t UCL  277.8  Mercury  Total Number of Data Number of Non-Detect Data 93 Number of Non-Detect Data 93 Number of Detected Data Namimum Detected 0.0026 Maximum Detected 0.0026 Maximum Non-detect Maximum Non-detect 0.002 Maximum Non-detect 0.048  Mean of Detected Data 0.048  Mean of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.0189 SD of Detected Data 4.518 Mean of Detected Log data 2.552 Skewness of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDS Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 95% CLT UCL 95% Slandard Bootstrap UCL 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 95% Chebyshev(Mean, Sd) UCL 304.3 97.5% Chebyshev(Mean, Sd) UCL 305.6  Potential UCL to Use Use 95% Student's-t UCL 07.95% Modified-t UCL 277.5  Or 95% Modified-t UCL  277.8  Mercury  Total Number of Data Number of Non-Detect Data 93 Number of Non-Detect Data 93 Number of Detected Data Namimum Detected 0.0026 Maximum Detected 0.0026 Maximum Non-detect Maximum Non-detect 0.002 Maximum Non-detect 0.048  Mean of Detected Data 0.048  Mean of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.0189 SD of Detected Data 4.518 Mean of Detected Log data 2.552 Skewness of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDS Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non-Parametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 95% Standard Bootstrap UCL 277.4 95% Bootstrap UCL 279.2 95% Heris Bootstrap UCL 280.3 95% Percentile Bootstrap UCL 277.8 95% Chebyshev(Mean, Sd) UCL 304.3 97.5% Chebyshev(Mean, Sd) UCL 304.3 97.5% Chebyshev(Mean, Sd) UCL 323 99% Chebyshev(Mean, Sd) UCL 359.6  Potential UCL to Use Use 95% Student's-t UCL 277.8  Wercury  Total Number of Data 166 Number of Non-Detect Data 93 Number of Potected Data 93 Number of Detected Data 173 Minimum Detected 0.0026 Maximum Detected 0.085 Percent Non-Detect 56,02% Minimum Non-detect 0.002 Maximum Non-detect 0.002 Maximum Non-detect 0.004 Mean of Detected Data 0.0533 Median of Detected Data 0.0138 CV of Detected Data 0.0189 SD of Detected Data 0.138 CV of Detected Data 0.138 CV of Detected Data 1.269 Skewness of Detected Data 4.518 Mean of Detected Log data 1.269 Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDS Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 277.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 304.3 97.5% Chebyshev(Mean, Sd) UCL 323 99% Chebyshev(Mean, Sd) UCL 359.6  Potential UCL to Use Use 95% Student's-t UCL 07.95% Modified-t UCL 277.8  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected Data 73 Minimum Detected 0.0026 Maximum Detected 0.85 Percent Non-Detects 56,02% Minimum Non-detect 0.048  Mean of Detected Data Median of Detected Data 0.012 Variance of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.0189 SD of Detected Data 0.0189 SD of Detected Data 4.518 Mean of Detected Data 4.518 Mean of Detected Log data 9.0 beta data 4.518 Mean of Detected Log data 4.518 Mean of Detected Log data 4.518 Mean of Detected Log data 4.518 Mean of Detected Data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDS Number treated as Detected 12 Single DL Percent Detection 92.77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 277.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 95% Hall's Bootstrap UCL 277.8 95% Percentile Bootstrap UCL 277.8 95% BCA Bootstrap UCL 279.9 95% Chebyshev(Mean, Sd) UCL 304.3 97.5% Chebyshev(Mean, Sd) UCL 323 99% Chebyshev(Mean, Sd) UCL 359.6  Potential UCL to Use Use 95% Student's-t UCL 277.5 Or 95% Modified-t UCL 277.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 277.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 95% Percentile Bootstrap UCL 97.8 95% BCA Bootstrap UCL 277.8 95% Chebyshev(Mean, Sd) UCL 304.3 97.5% Chebyshev(Mean, Sd) UCL 323 99% Chebyshev(Mean, Sd) UCL 359.6 95% Student's-t UCL 277.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 279.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 304.3 97.5% Chebyshev(Mean, Sd) UCL 323 99% Chebyshev(Mean, Sd) UCL 359.6  Potential UCL to Use Use 95% Student's-t UCL 07.95% Modified-t UCL 277.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 280.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 95% Chebyshev(Mean, Sd) UCL 323 97.5% Chebyshev(Mean, Sd) UCL 323 99% Chebyshev(Mean, Sd) UCL 359.6  Potential UCL to Use Use 95% Student's-t UCL 277.5 Or 95% Modified-t UCL 277.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 97.5% Chebyshev(Mean, Sd) UCL 323 99% Chebyshev(Mean, Sd) UCL 359.6  Potential UCL to Use Use 95% Student's-t UCL 277.5 Or 95% Modified-t UCL 277.8  Mercury  Total Number of Data 166 Number of Non-Detect Data 93 Number of Detected Data 73 Minimum Detected 0.0026 Maximum Detected 0.85 Percent Non-Detect 56.02% Minimum Non-detect 0.002 Maximum Non-detect 0.008  Mean of Detected Data 0.0533 Median of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.138 CV of Detected Data 0.138 CV of Detected Data 1.518 Mean of Detected Index 1.529  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data Do Index Index 1.529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| 99% Chebyshev(Mean, Sd) ÜCL  Potential UCL to Use Use 95% Student's-t UCL Or 95% Modified-t ÜCL  277.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Potential UCL to Use Use 95% Student's-t UCL Or 95% Modified-t UCL 277.8  Mercury  Total Number of Data Number of Non-Detect Data Number of Detected 0.0026 Maximum Detectes 56.02% Minimum Non-detect 0.002 Maximum Non-detect 0.004  Mean of Detected Data 0.0533 Median of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.0189 SD of Detected Data 2.582 Skewness of Detected Data 4.518 Mean of Detected log data 4.069 SD of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 154 Number treated as Detected 12 Single DL Percent Detection 92.77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Mercury  Total Number of Data 166 Number of Non-Detect Data 93 Number of Detected Data 73 Minimum Detected 0.0026 Maximum Detected 0.056 Percent Non-Detect 0.002 Maximum Non-detect 0.0048  Mean of Detected Data 0.012 Variance of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.138 CV of Detected Data 1.2582 Skewness of Detected Data 4.518 Mean of Detected log data 4.518 Mean of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 359.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Mercury  Total Number of Data 166 Number of Non-Detect Data 93 Number of Detected Data 73 Minimum Detected 0.0026 Maximum Detected 0.056 Percent Non-Detect 0.002 Maximum Non-detect 0.0048  Mean of Detected Data 0.012 Variance of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.138 CV of Detected Data 1.2582 Skewness of Detected Data 4.518 Mean of Detected log data 4.518 Mean of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Mercury  Total Number of Data 166 Number of Non-Detect Data 93 Number of Detected Data 73 Minimum Detected 0.0026 Maximum Detected 0.85 Percent Non-Detects 56,02% Minimum Non-detect 0.002 Maximum Non-detect 0.002 Maximum Non-detect 0.0048  Mean of Detected Data 0.0533 Median of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.138 CV of Detected Data 2.582 Skewness of Detected Data 4.518 Mean of Detected Log data 4.069 SD of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/Z, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 12 Single DL Percent Detection 92.77%  Data Dstiribution Test with Detected Values Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ASTELL AND THE COLOR OF THE WAR AND ADMINISTRATION OF THE ASSESSMENT OF THE PROPERTY OF THE ASSESSMENT | 277 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Mercury  Total Number of Data 166 Number of Non-Detect Data 93 Number of Detected Data 73 Minimum Detected 0.0026 Maximum Detected 0.85 Percent Non-Detects 56.02% Minimum Non-detect 0.002 Maximum Non-detect 0.002 Maximum Non-detect 0.004 Mean of Detected Data 0.0533 Median of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.138 CV of Detected Data 2.582 Skewness of Detected Data 4.518 Mean of Detected Log data 4.518 Mean of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e la colonia de |   |
| Total Number of Data Number of Non-Detect Data Number of Detected Data 93 Number of Detected Data 73 Minimum Detected 0.0026 Maximum Detected 0.85 Percent Non-Detects 56.02% Minimum Non-detect 0.002 Maximum Non-detect 0.002 Maximum Non-detect 0.0048  Mean of Detected Data 0.0533 Median of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.138 CV of Detected Data 2.582 Skewness of Detected Data 4.518 Mean of Detected Data 4.518 Mean of Detected Log data 4.69 SD of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDS Number treated as Non-Detect 154 Number treated as Detected 12 Single DL Percent Detection 92.77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ol 35/0 Mouniau-Look                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Total Number of Data Number of Non-Detect Data Number of Detected Data 93 Number of Detected Data 73 Minimum Detected 0.0026 Maximum Detected 0.85 Percent Non-Detects 56.02% Minimum Non-detect 0.002 Maximum Non-detect 0.002 Maximum Non-detect 0.0048  Mean of Detected Data 0.0533 Median of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.138 CV of Detected Data 2.582 Skewness of Detected Data 4.518 Mean of Detected Data 4.518 Mean of Detected Log data 4.69 SD of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDS Number treated as Non-Detect 154 Number treated as Detected 12 Single DL Percent Detection 92.77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Number of Non-Detect Data Number of Detected Data Number of Detected Data Ninimum Detected Maximum Detected Maximum Detected Mon-Detects Sology Minimum Non-detect Minimum Non-detect Mean of Detected Data Median of Detected Data Notected Data Solof Detected Data Variance of Detected Data Solof Detected Data Variance of Detected Data Variance of Detected Data Solof Detected Data Variance of Data Variance of Detected Data Variance of Data Varian | Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Number of Non-Detect Data Number of Detected Data Number of Detected Data Ninimum Detected Maximum Detected Maximum Detected Mon-Detects Sology Minimum Non-detect Minimum Non-detect Mean of Detected Data Median of Detected Data Notected Data Solof Detected Data Variance of Detected Data Solof Detected Data Variance of Detected Data Variance of Detected Data Solof Detected Data Variance of Data Variance of Detected Data Variance of Data Varian |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · |
| Number of Detected Data Minimum Detected Maximum Detected Maximum Detected Maximum Non-Detects Fercent Non-Detects Minimum Non-detect Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Median of Detected Data Modian of Detected Log data Modian of Detect |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Minimum Detected Maximum Detected Maximum Detected Maximum Detected  Percent Non-Detects 56.02% Minimum Non-detect 0.002 Maximum Non-detect 0.048  Mean of Detected Data 0.0533 Median of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.138 CV of Detected Data 2.582 Skewness of Detected Data 4.518 Mean of Detected log data 4.518 Mean of Detected Log data 4.69 SD of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 154 Number treated as Detected Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Maximum Detected Percent Non-Detects S6.02% Minimum Non-detect 0.002 Maximum Non-detect 0.048  Mean of Detected Data 0.0533 Median of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.138 CV of Detected Data 2.582 Skewness of Detected Data 4.518 Mean of Detected log data 4.518 Mean of Detected Log data 4.699 SD of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 154 Number treated as Detected Values Only Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • |
| Percent Non-Detects Minimum Non-detect 0.002 Maximum Non-detect 0.0048  Mean of Detected Data 0.0533 Median of Detected Data 0.012 Variance of Detected Data 0.0189 SD of Detected Data 0.138 CV of Detected Data 2.582 Skewness of Detected Data 4.518 Mean of Detected log data 4.518 Mean of Detected Log data 4.069 SD of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 154 Number treated as Detected 25 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Minimum Non-detect  Maximum Non-detect  0.002  Maximum Non-detect  0.048  Median of Detected Data  0.012  Variance of Detected Data  0.018  SD of Detected Data  0.018  CV of Detected Data  0.138  CV of Detected Data  2.582  Skewness of Detected Data  4.518  Mean of Detected log data  4.069  SD of Detected Log data  5D of Detected Log data  4.069  Note: Data have multiple DLs - Use of KM Method is recommended  For all methods (except KM, DL/2, and ROS Methods),  Observations < Largest DL are treated as NDs  Number treated as Non-Detect  154  Number treated as Detected  12  Single DL Percent Detection  92.77%  Data Dsitribution Test with Detected Values Only  Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Mean of Detected Data  Median of Detected Data  Median of Detected Data  O.012  Variance of Detected Data  O.0189  SD of Detected Data  CV of Detected Data  O.0188  SD of Detected Data  O.0188  SD of Detected Data  CV of Detected Data  O.0188  SE Skewness of Detected Data  Se Skewness of Detected Data  Mean of Detected Iog data  O.0188  SD of Detected Data  O.0189  SD of Detected Data  O.0189  SE S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Mean of Detected Data  Median of Detected Data  O.012  Variance of Detected Data  O.0189  SD of Detected Data  O.138  CV of Detected Data  O.138  CV of Detected Data  Skewness of Detected Data  A.518  Mean of Detected log data  Mean of Detected Log data  SD of Detected Log data  Note: Data have multiple DLs - Use of KM Method is recommended  For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs  Number treated as Non-Detect  Number treated as Detected  12  Single DL Percent Detection  Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Median of Detected Data  Variance of Detected Data  O.0189 SD of Detected Data  CV of Detected Data  CV of Detected Data  Skewness of Detected Data  Mean of Detected log data  SD of Detected Log data  Most Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect  Number treated as Detected Single DL Percent Detection  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Waxiittatii Noti-detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Median of Detected Data  Variance of Detected Data  O.0189 SD of Detected Data  CV of Detected Data  CV of Detected Data  Skewness of Detected Data  Mean of Detected log data  SD of Detected Log data  Most Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect  Number treated as Detected Single DL Percent Detection  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Variance of Detected Data  SD of Detected Data  CV of Detected Data  CV of Detected Data  Skewness of Detected Data  Skewness of Detected Data  Mean of Detected log data  SD of Detected Log data  Note: Data have multiple DLs - Use of KM Method is recommended  For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs  Number treated as Non-Detect  Number treated as Detected  Single DL Percent Detection  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| CV of Detected Data  Skewness of Detected Data  Mean of Detected log data  SD of Detected Log data  Note: Data have multiple DLs - Use of KM Method is recommended  For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs  Number treated as Non-Detect  Number treated as Detected Single DL Percent Detection  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Variance of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| CV of Detected Data  Skewness of Detected Data  Mean of Detected log data  SD of Detected Log data  Note: Data have multiple DLs - Use of KM Method is recommended  For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs  Number treated as Non-Detect  Number treated as Detected Single DL Percent Detection  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Mean of Detected log data SD of Detected Log data 1.269  Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 154 Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CV of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 154 Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Note: Data have multiple DLs - Use of KM Method is recommended  For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 154 Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs Number treated as Non-Detect 154 Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SD of Detected Log data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Observations < Largest DL are treated as NDs Number treated as Non-Detect 154 Number treated as Detected 12 Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , |
| Number treated as Non-Detect  Number treated as Detected  Single DL Percent Detection  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| Single DL Percent Detection 92.77%  Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number treated as Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| Data do not follow a Discernable Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Single DL Percent Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92.77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Winsorization Method N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>▼</del> ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Winsorization Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |

| Kaplan Meier (KM) Method          |         |
|-----------------------------------|---------|
| Mean                              | 0.0256  |
| Standard Error of Mean            | 0.00734 |
| 95% KM (t) UCL                    | 0.0377  |
| 95% KM (z) UCL                    | 0.0376  |
| 95% KM (BCA) UCL                  | 0.04    |
| 95% KM (Percentile Bootstrap) UCL | 0.0388  |
| 95% KM (Chebyshev) UCL            | 0.0576  |
| 97.5% KM (Chebyshev) UCL          | 0.0714  |
| 99% KM (Chebyshev) UCL            | 0.0986  |
|                                   |         |

| DATE OF THE PROPERTY OF THE PARTY OF THE PAR |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Potential UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>Builth secretaristism that all that the work of the large to the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONTROL OF RECEIPT AND THE DESIGNATIONS                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 95% KM (BCA) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATTRACTOR OF THE ACTIONS OF                                                                                    | AND A STATE OF THE |
| 30 /0 INIVI (DUA) UUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| the service of the se | Tarana da Para a katangan da katangan bangan ba | ing ny na katana ana arang ang ang ang ang ang ang ang ang ang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### Methylcyclohexane

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 83<br>26<br><b>57</b><br>6.65E-04<br>2.73<br><b>31.33%</b><br>2.75E-04<br>0.0229 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.0528<br>0.00224<br>0.13<br>0.361<br>6.838<br>7.532<br>-5.932<br>1.234          |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect80Number treated as Detected3Single DL Percent Detection96.39%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0366 |
| SD .                              | 0.298  |
| Standard Error of Mean            | 0.033  |
| 95% KM (t) UCL                    | 0.0914 |
| 95% KM (z) UCL                    | 0.0908 |
| 95% KM (BCA) UCL                  | 0.102  |
| 95% KM (Percentile Bootstrap) UCL | 0.102  |

|                                               | •                     |
|-----------------------------------------------|-----------------------|
| 95% KM (Chebyshev) UCL                        | 0.18                  |
| 97.5% KM (Chebyshev) UCL                      | 0.242                 |
| 99% KM (Chebyshev) UCL                        | 0.365                 |
| Potential UCL to Use                          |                       |
| 95% KM (Chebyshev) UCL                        | 0:18                  |
|                                               |                       |
| Molybdenum                                    |                       |
| Total Number of Data                          | 166                   |
| Number of Non-Detect Data                     | 48                    |
| Number of Detected Data                       | 118                   |
| Minimum Detected                              | 0.088                 |
| Maximum Detected                              | 10.4                  |
| Percent Non-Detects                           | 28.92%                |
| Minimum Non-detect                            | 0.068                 |
| Maximum Non-detect                            | 0.33                  |
| WIGARITHUTT TUCKECE                           | 0.55                  |
| Mean of Detected Data                         | 1.236                 |
| Median of Detected Data                       | 0.615                 |
| Variance of Detected Data                     | 2.704                 |
| SD of Detected Data                           | 1.644                 |
| CV of Detected Data                           | 1.33                  |
| Skewness of Detected Data                     | 2.955                 |
| Mean of Detected log data                     | -0.402                |
| SD of Detected Log data                       | 1.095                 |
|                                               |                       |
| Note: Data have multiple DLs - Use of KM N    | lethod is recommended |
| For all methods (except KM, DL/2, and ROS M   | lethods),             |
| Observations < Largest DL are treated as NDs  |                       |
| Number treated as Non-Detect                  | 84                    |
| Number treated as Detected                    | 82                    |
| Single DL Percent Detection                   | 50.60%                |
| Data Dsitribution Test with Detected Values O | nlv                   |
| Data appear Lognormal at 5% Significance Le   |                       |
|                                               |                       |
| Winsorization Method                          | N/A                   |
| Kaplan Meier (KM) Method                      |                       |
| Mean                                          | 0.905                 |
| SD                                            | 1.475                 |
| Standard Error of Mean                        | 0.115                 |
| 95% KM (t) UCL                                | 1.095                 |
| 95% KM (z) UCL                                | 1.094                 |
| 95% KM (BCA) UCL                              | 1.099                 |
| 95% KM (Percentile Bootstrap) UCL             | 1.101                 |
| 95% KM (Chebyshev) UCL                        | 1.406                 |
| 97.5% KM (Chébyshev) UCL                      | 1.623                 |
| 99% KM (Chebyshev) UCL                        | 2.049                 |
|                                               |                       |
| Data appear Lognormal (0.05)                  |                       |

May want to try Lognormal UCLs

#### Naphthalene

| Total Number of Data                                                                      | 83                               |
|-------------------------------------------------------------------------------------------|----------------------------------|
| Number of Non-Detect Data                                                                 | 76                               |
| Number of Detected Data                                                                   | 7                                |
| Minimum Detected                                                                          | 0.00482                          |
| Maximum Detected                                                                          | 19.2                             |
| Percent Non-Detects                                                                       | 91.57%                           |
| Minimum Non-detect                                                                        | 2.72E-04                         |
| Maximum Non-detect                                                                        | 0.0233                           |
|                                                                                           |                                  |
| Mean of Detected Data                                                                     | 3.817                            |
| Mean of Detected Data  Median of Detected Data                                            | 3.817<br>0.0762                  |
|                                                                                           |                                  |
| Median of Detected Data                                                                   | 0.0762                           |
| Median of Detected Data Variance of Detected Data                                         | 0.0762<br>53.3                   |
| Median of Detected Data Variance of Detected Data SD of Detected Data                     | 0.0762<br>53.3<br>7.301          |
| Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data | 0.0762<br>53.3<br>7.301<br>1.913 |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs

Number treated as Non-Detect 79
Number treated as Detected 4
Single DL Percent Detection 95.18%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 0.326 |
| SD .                              | 2.231 |
| Standard Error of Mean            | 0.264 |
| 95% KM (t) UCL                    | 0.766 |
| 95% KM (z) UCL                    | 0.761 |
| 95% KM (BCA) UCL                  | 0.888 |
| 95% KM (Percentile Bootstrap) UCL | 0.792 |
| 95% KM (Chebyshev) UCL            | 1.479 |
| 97.5% KM (Chebyshev) UCL          | 1.978 |
| 99% KM (Chebyshev) ÚCL            | 2.958 |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

| ** Instead of UCL, EPC is selected to be med<br>[per recommendation in ProUCL User G | Guide]   |     |
|--------------------------------------------------------------------------------------|----------|-----|
| Nickel                                                                               |          | - — |
| Mickel                                                                               |          |     |
| Number of Valid Observations                                                         | 166      |     |
| Number of Distinct Observations                                                      | 120      |     |
| Minimum                                                                              | 2.7      |     |
| Maximum                                                                              | 36.7     |     |
| Mean                                                                                 | 11.74    |     |
| Median                                                                               | 11.65    |     |
| SD                                                                                   | 4.874    |     |
| Variance                                                                             | 23.76    |     |
| Coefficient of Variation                                                             | 0.415    |     |
| Skewness                                                                             | 1.176    |     |
| Mean of log data                                                                     | 2.374    |     |
| SD of log data                                                                       | 0.441    |     |
| Data do not follow a Discernable Distribution                                        | n        |     |
| 95% Useful UCLs                                                                      |          |     |
| Student's-t UCL                                                                      | 12.37    |     |
| 95% UCLs (Adjusted for Skewness)                                                     |          |     |
| 95% Adjusted-CLT UCL                                                                 | 12.4     |     |
| 95% Modified-t UCL                                                                   | 12.37    |     |
| Non-Parametric UCLs                                                                  |          |     |
| 95% CLT UCL                                                                          | 12.36    |     |
| 95% Jackknife UCL                                                                    | 12.37    |     |
| 95% Standard Bootstrap UCL                                                           | 12.38    |     |
| 95% Bootstrap-t UCL                                                                  | 12.43    |     |
| 95% Hall's Bootstrap UCL                                                             | 12.45    |     |
| 95% Percentile Bootstrap UCL                                                         | 12.39    |     |
| 95% BCA Bootstrap UCL                                                                | 12.35    |     |
| 95% Chebyshev(Mean, Sd) UCL                                                          | 13.39    |     |
| 97.5% Chebyshev(Mean, Sd) UCL                                                        | 14.1     |     |
| 99% Chebyshev(Mean, Sd) UCL                                                          | 15.5     |     |
| Potential UCL to Use                                                                 | ,        |     |
| Use 95% Student's-t UCL                                                              | 12.37    |     |
| Or 95% Modified-t UCL                                                                | 12.37    |     |
|                                                                                      |          |     |
| n-Propylbenzene                                                                      |          |     |
| Total Number of Data                                                                 | 83       |     |
| Number of Non-Detect Data                                                            | 69       |     |
| Number of Detected Data                                                              | 14       |     |
| Minimum Detected                                                                     | 2.30E-04 |     |
| Maximum Detected                                                                     | 1.8      |     |
| Percent Non-Detects                                                                  | 83.13%   |     |
| Minimum Non-detect                                                                   | 6.40E-05 |     |
| Maximum Non-detect                                                                   | 0.00868  |     |

| Mean of Detected Data                                                                                          | 0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Median of Detected Data                                                                                        | 4.49E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Variance of Detected Data                                                                                      | 0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| SD of Detected Data                                                                                            | 0.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| CV of Detected Data                                                                                            | 3.441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| •                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Skewness of Detected Data                                                                                      | 3.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Mean of Detected log data                                                                                      | -6.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| SD of Detected Log data                                                                                        | 2.756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Note: Data have worlded by Direction of Manager and                                                            | l to man a manual and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Note: Data have multiple DLs - Use of KM Method                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| For all methods (except KM, DL/2, and ROS Methods                                                              | s),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Observations < Largest DL are treated as NDs                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Number treated as Non-Detect                                                                                   | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Number treated as Detected                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Single DL Percent Detection                                                                                    | 96.39%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Data Dsitribution Test with Detected Values Only                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Data do not follow a Discernable Distribution (0.05)                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Winsorization Method                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Kaplan Meier (KM) Method                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Mean                                                                                                           | 0.0237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| SD                                                                                                             | 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Standard Error of Mean                                                                                         | 0.0224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 95% KM (t) UCL                                                                                                 | 0.0609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 95% KM (z) UCL                                                                                                 | 0.0605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 95% KM (BCA) UCL                                                                                               | 0.0684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 95% KM (Percentile Bootstrap) UCL                                                                              | 0.0671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 95% KM (Chebyshev) UCL                                                                                         | 0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 97.5% KM (Chebyshev) UCL                                                                                       | 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 99% KM (Chebyshev) UCL                                                                                         | 0.246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 99 % Kivi (Chebyshev) OCL                                                                                      | 0.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Potential UCL to Use                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 97.5% KM (Chebyshev) UCL                                                                                       | 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| ENDING BETT BETT TO THE TENER OF | TO SECURITY OF THE SECURITY OF |  |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| o-Xylene                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Total Number of Data                                                                                           | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Total Number of Data                                                                                           | 83<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Number of Non-Detect Data                                                                                      | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Number of Detected Data                                                                                        | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Minimum Detected                                                                                               | 2.23E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Maximum Detected                                                                                               | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Percent Non-Detects                                                                                            | 61.45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Minimum Non-detect                                                                                             | 8.00E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Maximum Non-detect                                                                                             | 0.0108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Mean of Detected Data                                                                                          | 0.0334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Median of Detected Data                                                                                        | 6.15E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Variance of Detected Data                                                                                      | 0.0222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| SD of Detected Data                                                                                            | 0.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| CV of Detected Data                                                                                            | 4.456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| O V OI Delected Data                                                                                           | 4,430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                | 5.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Skewness of Detected Data                                                                                      | 5.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 79
Number treated as Detected 4
Single DL Percent Detection 95.18%

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Kaplan Meier (KM) Method          |        |
|-----------------------------------|--------|
| Mean                              | 0.013  |
| SD                                | 0.0925 |
| Standard Error of Mean            | 0.0103 |
| 95% KM (t) UCL                    | 0.0302 |
| 95% KM (z) UCL                    | 0.03   |
| 95% KM (BCA) UCL                  | 0.0338 |
| 95% KM (Percentile Bootstrap) UCL | 0.0322 |
| 95% KM (Chebyshev) UCL            | 0.058  |
| 97.5% KM (Chebyshev) UCL          | 0.0775 |
| 99% KM (Chebyshev) UCL            | 0.116  |

#### Potential UCL to Use

Winsorization Method

\_\_\_\_\_\_

N/A

## Phenanthrene

| Total Number of Data      | 166    |
|---------------------------|--------|
| Number of Non-Detect Data | 71     |
| Number of Detected Data   | 95     |
| Minimum Detected          | 0.0138 |
| Maximum Detected          | 12.6   |
| Percent Non-Detects       | 42.77% |
| Minimum Non-detect        | 0.0115 |
| Maximum Non-detect        | 0.235  |
| Mean of Detected Data     | 0.691  |
| Median of Detected Data   | 0.142  |
| Variance of Detected Data | 2.449  |
| SD of Detected Data       | 1.565  |
| CV of Detected Data       | 2.264  |
| Skewness of Detected Data | 5.422  |
| Mean of Detected log data | -1.663 |
| SD of Detected Log data   | 1.597  |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect129Number treated as Detected37Single DL Percent Detection77.71%

Data Dsitribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                                | N/A            |
|-----------------------------------------------------|----------------|
| Kaplan Meier (KM) Method                            |                |
| Mean                                                | 0.402          |
| SD                                                  | 1.224          |
| Standard Error of Mean                              | 0.0955         |
| 95% KM (t) UCL                                      | 0.56           |
| 95% KM (z) UCL                                      | 0.559          |
| 95% KM (BCA) UCL                                    | 0.593          |
| 95% KM (Percentile Bootstrap) UCL                   | 0.572          |
| 95% KM (Chebyshev) UCL<br>97.5% KM (Chebyshev) UCL  | 0.819<br>0.999 |
| 99% KM (Chebyshev) UCL                              | 1.353          |
| • •                                                 | 1.000          |
| Potential UCL to Use                                |                |
|                                                     |                |
| Pyrene                                              |                |
| Total Number of Data                                | 166            |
| Number of Non-Detect Data                           | 68             |
| Number of Detected Data                             | 98             |
| Minimum Detected                                    | 0.0121         |
| Maximum Detected                                    | 8.47           |
| Percent Non-Detects                                 | 40.96%         |
| Minimum Non-detect                                  | 0.0111         |
| Maximum Non-detect                                  | 0.3            |
| Mean of Detected Data                               | 0.721          |
| Median of Detected Data                             | 0.164          |
| Variance of Detected Data                           | 1.891          |
| SD of Detected Data                                 | 1.375          |
| CV of Detected Data                                 | 1.908          |
| Skewness of Detected Data                           | 3.327          |
| Mean of Detected log data                           | -1.67          |
| SD of Detected Log data                             | 1.681          |
| Note: Data have multiple DLs - Use of KM Method is  | s recommended  |
| For all methods (except KM, DL/2, and ROS Methods), | •              |
| Observations < Largest DL are treated as NDs        |                |
| Number treated as Non-Detect                        | 131            |
| Number treated as Detected                          | 35             |
| Single DL Percent Detection                         | 78.92%         |
| Data Dsitribution Test with Detected Values Only    |                |
| Data appear Lognormal at 5% Significance Level      |                |
| Winsorization Method                                | N/A            |
| Kaplan Meier (KM) Method                            |                |
| Mean                                                | 0.432          |
| SD                                                  | 1.107          |
| Standard Error of Mean                              | 0.0864         |
| 95% KM (t) UCL                                      | 0.575          |
|                                                     |                |

| 95% KM (z) UCL<br>95% KM (BCA) UCL<br>95% KM (Percentile Bootstrap) UCL<br>95% KM (Chebyshev) UCL<br>97.5% KM (Chebyshev) UCL<br>99% KM (Chebyshev) UCL                      | 0.574<br>0.58<br>0.572<br>0.808<br>0.971<br>1.291           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Data appear Lognormal (0.05) May want to try Lognormal UCLs                                                                                                                  |                                                             |
| Strontium                                                                                                                                                                    |                                                             |
| Number of Valid Observations<br>Number of Distinct Observations<br>Minimum<br>Maximum<br>Mean                                                                                | 166<br>151<br>16.5<br>591<br>75.61                          |
| Median SD Variance Coefficient of Variation Skewness                                                                                                                         | 58.1<br>73.75<br>5439<br>0.975<br>4.41                      |
| Mean of log data<br>SD of log data                                                                                                                                           | 4.107<br>0.59                                               |
| Data do not follow a Discernable Distributio                                                                                                                                 | n                                                           |
| 95% Useful UCLs<br>Student's-t UCL                                                                                                                                           | 85.08                                                       |
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL<br>95% Modified-t UCL                                                                                               | 87.12<br>85.41                                              |
| Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL | 85.03<br>85.08<br>85.02<br>87.86<br>88.32<br>85.49<br>86.55 |
| 97.5% Chebyshev(Mean, Sd) UCL<br>99% Chebyshev(Mean, Sd) UCL                                                                                                                 | 111.4<br>132.6                                              |
| Potential UCL to Use<br>Use 95% Chebyshev (Mean, Sd) UCL                                                                                                                     | 100.6                                                       |
| Tin                                                                                                                                                                          |                                                             |
| Total Number of Data Number of Non-Detect Data Number of Detected Data                                                                                                       | 166<br>134<br><b>32</b>                                     |

| Minimum Detected                                                                                                                              | 0.55   |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
| Maximum Detected                                                                                                                              | 6.48   |   |
| Percent Non-Detects                                                                                                                           | 80.72% | • |
| Minimum Non-detect                                                                                                                            | 0.46   |   |
| Maximum Non-detect                                                                                                                            | 2.4    |   |
| Mean of Detected Data                                                                                                                         | 1.896  |   |
| Median of Detected Data                                                                                                                       | 1.695  |   |
| Variance of Detected Data                                                                                                                     | 1.825  |   |
| SD of Detected Data                                                                                                                           | 1.351  |   |
| CV of Detected Data                                                                                                                           | 0.713  | • |
| Skewness of Detected Data                                                                                                                     | 1.594  |   |
| Mean of Detected log data                                                                                                                     | 0.413  |   |
| SD of Detected Log data                                                                                                                       | 0.692  |   |
| Note: Data have multiple DLs - Use of KM Mer<br>For all methods (except KM, DL/2, and ROS Mer<br>Observations < Largest DL are treated as NDs |        |   |
| Number treated as Non-Detect                                                                                                                  | 156    |   |
| Number treated as Detected                                                                                                                    | 10     |   |
| Single DL Percent Detection                                                                                                                   | 93.98% |   |
| Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significant Winsorization Method                         |        |   |
| VVIIISONZATION METHOD                                                                                                                         | IN/A   |   |
| Kaplan Meier (KM) Method                                                                                                                      |        |   |
| Mean                                                                                                                                          | 0.811  |   |
| SD                                                                                                                                            | 0.789  |   |
| Standard Error of Mean                                                                                                                        | 0.0623 |   |
| 95% KM (t) UCL                                                                                                                                | 0.914  |   |
| 95% KM (z) UCL                                                                                                                                | 0.914  |   |
| 95% KM (BCA) UCL                                                                                                                              | 0.929  |   |
| 95% KM (Percentile Bootstrap) UCL                                                                                                             | 0.924  |   |
| 95% KM (Chebyshev) UCL                                                                                                                        | 1.083  |   |
| 97.5% KM (Chebyshev) UCL                                                                                                                      | 1,2    |   |
| 99% KM (Chebyshev) UCL                                                                                                                        | 1.431  |   |
| Data appear Gamma Distributed (0.05)                                                                                                          |        |   |
| May want to try Gamma UCLs                                                                                                                    |        |   |
|                                                                                                                                               |        |   |
| Titanium                                                                                                                                      |        |   |
| Number of Valid Observations                                                                                                                  | 166    |   |
| Number of Distinct Observations                                                                                                               | 114    |   |
| Minimum                                                                                                                                       | 4.02   |   |
| Maximum                                                                                                                                       | 645    |   |
| Mean                                                                                                                                          | 25.77  |   |
| ·                                                                                                                                             | 40     |   |

19 50.15

2515

1.946 11.61

Mean Median

Skewness

Coefficient of Variation

SD Variance

| Mean of log data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.014                                                                                                                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SD of log data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.484                                                                                                                                                                    |  |
| Data do not follow a Discernable Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                          |  |
| 95% Useful UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          |  |
| Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.21                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          |  |
| 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          |  |
| 95% Adjusted-CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35.92                                                                                                                                                                    |  |
| 95% Modified-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32.8                                                                                                                                                                     |  |
| Non-Parametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                        |  |
| 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.17                                                                                                                                                                    |  |
| 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.21                                                                                                                                                                    |  |
| 95% Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.16                                                                                                                                                                    |  |
| 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49.28                                                                                                                                                                    |  |
| 95% Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.9                                                                                                                                                                     |  |
| 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.18                                                                                                                                                                    |  |
| 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38.2                                                                                                                                                                     |  |
| 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42.74                                                                                                                                                                    |  |
| 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.08                                                                                                                                                                    |  |
| 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64.5                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          |  |
| Potential UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00.04                                                                                                                                                                    |  |
| Use 95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>32.21</b>                                                                                                                                                             |  |
| Or 95% Modified-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.8                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                          |  |
| Toluene Total Number of Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83<br>14                                                                                                                                                                 |  |
| Total Number of Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                          |  |
| Total Number of Data<br>Number of Non-Detect Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                                                                                                                                                       |  |
| Total Number of Data<br>Number of Non-Detect Data<br><b>Number of Detected Data</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14<br><b>69</b>                                                                                                                                                          |  |
| Total Number of Data<br>Number of Non-Detect Data<br><b>Number of Detected Data</b><br>Minimum Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14<br><b>69</b><br>7.21E-04                                                                                                                                              |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14<br><b>69</b><br>7.21E-04<br>0.0192                                                                                                                                    |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14<br><b>69</b><br>7.21E-04<br>0.0192<br><b>16.87%</b>                                                                                                                   |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211                                                                                                            |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211                                                                                                            |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382                                                                                      |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382<br>7.80E-06                                                                          |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                                          | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382<br>7.80E-06<br>0.00279                                                               |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                      | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382<br>7.80E-06<br>0.00279<br>0.639                                                      |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data                                                                                                                                                                                                                                                                                                                                                                            | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382<br>7.80E-06<br>0.00279<br>0.639<br>2.436                                             |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data                                                                                                                                                                                                                                                                                                                                                                                                      | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382<br>7.80E-06<br>0.00279<br>0.639                                                      |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data                                                                                                                                                                                                                                                                                                       | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382<br>7.80E-06<br>0.00279<br>0.639<br>2.436<br>-5.612<br>0.626                          |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method                                                                                                                                                                                                                               | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382<br>7.80E-06<br>0.00279<br>0.639<br>2.436<br>-5.612<br>0.626<br>is recommended        |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Methods                                                                                                                                                                        | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382<br>7.80E-06<br>0.00279<br>0.639<br>2.436<br>-5.612<br>0.626<br>is recommended        |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Methods Observations < Largest DL are treated as NDs | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382<br>7.80E-06<br>0.00279<br>0.639<br>2.436<br>-5.612<br>0.626<br>is recommended<br>s), |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Methods Observations < Largest DL are treated as NDs Number treated as Non-Detect                                            | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382<br>7.80E-06<br>0.00279<br>0.639<br>2.436<br>-5.612<br>0.626<br>is recommended<br>s), |  |
| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Skewness of Detected Data Mean of Detected Log data SD of Detected Log data Note: Data have multiple DLs - Use of KM Method For all methods (except KM, DL/2, and ROS Methods Observations < Largest DL are treated as NDs | 14<br>69<br>7.21E-04<br>0.0192<br>16.87%<br>5.22E-04<br>0.211<br>0.00437<br>0.00382<br>7.80E-06<br>0.00279<br>0.639<br>2.436<br>-5.612<br>0.626<br>is recommended<br>s), |  |

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00399  |
| SD                                | 0.00285  |
| Standard Error of Mean            | 3.27E-04 |
| 95% KM (t) UCL                    | 0.00454  |
| 95% KM (z) UCL                    | 0.00453  |
| 95% KM (BCA) UCL                  | 0.00463  |
| 95% KM (Percentile Bootstrap) UCL | 0.00453  |
| 95% KM (Chebyshev) UCL            | 0.00542  |
| 97.5% KM (Chebyshev) UCL          | 0.00604  |
| 99% KM (Chebyshev) UCL            | 0.00725  |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

.

| ١. |     | _ | _ | _ | : |   |   |   |  |
|----|-----|---|---|---|---|---|---|---|--|
| v  | ı a | n | а | а | 1 | I | ı | m |  |

| Number of Valid Observations                             | 166   |
|----------------------------------------------------------|-------|
| Number of Distinct Observations                          | 117   |
| Minimum                                                  | 4.73  |
| Maximum                                                  | 45.6  |
| Mean                                                     | 14.4  |
| Median                                                   | 13.75 |
| SD                                                       | 5.905 |
| Variance                                                 | 34.87 |
| Coefficient of Variation                                 | 0.41  |
| Skewness                                                 | 1.359 |
| Mean of log data                                         | 2.588 |
| SD of log data                                           | 0.406 |
|                                                          |       |
| 95% Useful UCLs                                          |       |
| Student's-t UCL                                          | 15.16 |
| 059/ LICL a (Adjusted for Skaumage)                      |       |
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL | 15.21 |
| 95% Modified-t UCL                                       | 15.17 |
| 95% Modified-t OCL                                       | 15.17 |
| Non-Parametric UCLs                                      |       |
| 95% CLT UCL                                              | 15.16 |
| 95% Jackknife UCL                                        | 15.16 |
| 95% Standard Bootstrap UCL                               | 15.16 |
| 95% Bootstrap-t UCL                                      | 15.23 |
| 95% Hall's Bootstrap UCL                                 | 15.21 |
| 95% Percentile Bootstrap UCL                             | 15.15 |
| 95% BCA Bootstrap UCL                                    | 15.21 |
| 95% Chebyshev(Mean, Sd) UCL                              | 16.4  |
| 97.5% Chebyshev(Mean, Sd) UCL                            | 17.27 |
| 99% Chebyshev(Mean, Sd) UCL                              | 18.96 |

| may mank to my camma cozo                            |                   |   |
|------------------------------------------------------|-------------------|---|
|                                                      |                   |   |
| Xylene (total)                                       |                   |   |
| Total Number of Data                                 | 83                |   |
| Number of Non-Detect Data                            | 30                |   |
| Number of Detected Data                              |                   |   |
|                                                      | 53<br>7.775.04    |   |
| Minimum Detected                                     | 7.77E-04          |   |
| Maximum Detected                                     | 3.4               |   |
| Percent Non-Detects                                  | 36.14%            |   |
| Minimum Non-detect                                   | 2.61E-04          | • |
| Maximum Non-detect                                   | 0.0355            |   |
| Mean of Detected Data                                | 0.0735            |   |
| Median of Detected Data                              | 0.00187           |   |
| Variance of Detected Data                            | 0.218             |   |
| SD of Detected Data                                  | 0.467             |   |
| CV of Detected Data                                  | 6.356             |   |
| Skewness of Detected Data                            | 7.213             |   |
| Mean of Detected log data                            | -5.976            |   |
| SD of Detected Log data                              | 1.506             |   |
| Note: Data have multiple DLs - Use of KM Metho       | od is recommended |   |
| For all methods (except KM, DL/2, and ROS Metho      | ds),              |   |
| Observations < Largest DL are treated as NDs         | •                 |   |
| Number treated as Non-Detect                         | 79                |   |
| Number treated as Detected                           | 4                 |   |
| Single DL Percent Detection                          | 95.18%            |   |
| Data Dsitribution Test with Detected Values Only     |                   |   |
| Data do not follow a Discernable Distribution (0.05) |                   |   |
| Winsorization Method                                 | N/A               |   |
| Kaplan Meier (KM) Method                             |                   |   |
| Mean                                                 | 0.0473            |   |
| SD                                                   | 0.371             | - |
| Standard Error of Mean                               | 0.0412            |   |
| 95% KM (t) UCL                                       | 0.116             |   |
| 95% KM (z) UCL                                       | 0.115             |   |
| 95% KM (BCA) UCL                                     | 0.129             |   |
| 95% KM (Percentile Bootstrap) UCL                    | 0.129             |   |
| 95% KM (Chebyshev) UCL                               | 0.227             |   |
| 97.5% KM (Chebyshev) UCL                             |                   |   |
| 99% KM (Chebyshev) UCL                               | 0.457             |   |
| Potential UCL to Use                                 | . <u>—</u>        |   |
|                                                      |                   |   |
| Zinc                                                 |                   |   |
| Number of Valid Observations                         | 166               |   |
| Number of Distinct Observations                      | 159               |   |
| Tambel of Distiller Observations                     | 100               |   |

| Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                                                | 6.17<br>7650<br>433.8<br>192.5<br>786.8<br>619126<br>1.814<br>5.977<br>5.141<br>1.438 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| Data do not follow a Discernable Distribution                                                                                                                                                            |                                                                                       |  |
| 95% Useful UCLs<br>Student's-t UCL                                                                                                                                                                       | 534.8                                                                                 |  |
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL<br>95% Modified-t UCL                                                                                                                           | 564.5<br>539.6                                                                        |  |
| Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL | 534.3<br>534.8<br>534.4<br>604.2<br>971.8<br>543.4<br>581.3<br>700                    |  |
| 97.5% Chebyshev(Mean, Sd) UCL<br>99% Chebyshev(Mean, Sd) UCL                                                                                                                                             | 815.2<br>1041                                                                         |  |
| Potential UCL to Use<br>Use 97.5% Chebyshev (Mean, Sd) UCL 815.2                                                                                                                                         |                                                                                       |  |

# APPENDIX A-3

NORTH OF MARLIN SURFACE SOIL

#### Nonparametric UCL Statistics for Data Sets with Non-Detects

**User Selected Options** 

From File

C:\Users\Michael\....\North of Marlin Soil Boring\N of Marlin Soil - surface\North of Marlin Soil - surface\_ProUCL input.wst

**Full Precision** 

OFF

Confidence Coefficient

95%

Number of Bootstrap Operations

2000

1,1-Dichloroethane

**Total Number of Data** 

Insufficent Number of Observations to produce Meaningful Statistics.

Instead, EPC is single value (nondetect) = <0.00671

1,1-Dichloroethene

**Total Number of Data** 

Insufficent Number of Observations to produce Meaningful Statistics.

Instead, EPC is single value (nondetect) = <0.015

1,2-Dichloroethane

Total Number of Data

Insufficent Number of Observations to produce Meaningful Statistics.

Instead, EPC is single value (detect) = 0.177

2-Butanone

Total Number of Data

Insufficent Number of Observations to produce Meaningful Statistics.

Instead, EPC is single value (nondetect) = \$\leq 0.013

0.0362

# 2-Methylnaphthalene

Mean of Detected Data

| Total Number of Data      | 18     |
|---------------------------|--------|
| Number of Non-Detect Data | . 15   |
| Number of Detected Data   | 3      |
| Minimum Detected          | 0.01   |
| Maximum Detected          | 0.053  |
| Percent Non-Detects       | 83.33% |
| Minimum Non-detect        | 0.01   |
| Maximum Non-detect        | 0.0634 |
|                           |        |

| Median of Detected Data   | 0.0456   |
|---------------------------|----------|
| Variance of Detected Data | 5.29E-04 |
| SD of Detected Data       | 0.023    |
| CV of Detected Data       | 0.635    |
| Skewness of Detected Data | -1.532   |
| Mean of Detected log data | -3.543   |
| SD of Detected Log data   | 0.923    |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect18Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0146  |
| SD                                | 0.0127  |
| Standard Error of Mean            | 0.00378 |
| 95% KM (t) UCL                    | 0.0212  |
| 95% KM (z) UCL                    | 0.0208  |
| 95% KM (BCA) UCL                  | N/A     |
| 95% KM (Percentile Bootstrap) UCL | 0.053   |
| 95% KM (Chebyshev) UCL            | 0.0311  |
| 97.5% KM (Chebyshev) UCL          | 0.0382  |
| 99% KM (Chebyshev) UCL            | 0.0522  |
|                                   |         |

Data appear Normal (0,05)
May want to try Normal UCLs

| ** Instead of UCL, EPC is selected to be median =            | < 0.0118                   | 3 |
|--------------------------------------------------------------|----------------------------|---|
| 그러면 대통령적 전문 중에 어머니는 이번도 살아 보는 하고 되었다. 그는 그는 그 하고 없이 걸었습니 중요한 | 최 당하 하다하다 등 회사 나는 그렇지만 되다. | - |
| [per recommendation in ProUCL User Guide]                    | 이렇게 하다 들다는 어떤 사람들이다.       |   |

#### 4,4'-DDE

Total Number of Data 18
Number of Non-Detect Data 16

| Number of Detected Data   | 2        |
|---------------------------|----------|
| Minimum Detected          | 0.00216  |
| Maximum Detected          | 0.0149   |
| Percent Non-Detects       | 88.89%   |
| Minimum Non-detect        | 3.83E-04 |
| Maximum Non-detect        | 0.00252  |
| Mean of Detected Data     | 0.00853  |
| Median of Detected Data   | 0.00853  |
| Variance of Detected Data | 8.12E-05 |
| SD of Detected Data       | 0.00901  |
| CV of Detected Data       | 1.056    |
| Skewness of Detected Data | N/A      |
| Mean of Detected log data | -5.172   |
| SD of Detected Log data   | 1.366    |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17
Number treated as Detected 1
Single DL Percent Detection 94.44%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00287  |
| SD                                | 0.00292  |
| Standard Error of Mean            | 9.73E-04 |
| 95% KM (t) UCL                    | 0.00456  |
| 95% KM (z) UCL                    | 0.00447  |
| 95% KM (BCA) UCL                  | 0.0149   |
| 95% KM (Percentile Bootstrap) UCL | 0.0149   |
| 95% KM (Chebyshev) UCL            | 0.00711  |
| 97.5% KM (Chebyshev) UCL          | 0.00894  |

| 2270 KIVI (CITCD V3) ICV / OC | 99% KM | (Cheb | vshev) | ) UCL |
|-------------------------------|--------|-------|--------|-------|
|-------------------------------|--------|-------|--------|-------|

0.0125

Potential UCL to Use

95% KM (BCA) UCL

0.0149

\*\* Instead of UCL, EPC is selected to be median =
[per recommendation in ProUCL User Guide]

< 0.000424

#### 4,4'-DDT

| Total Number of Data      | 18       |
|---------------------------|----------|
| Number of Non-Detect Data | 11       |
| Number of Detected Data   | 7        |
| Minimum Detected          | 0.000597 |
| Maximum Detected          | 0.0108   |
| Percent Non-Detects       | 61.11%   |
| Minimum Non-detect        | 1.48E-04 |
| Maximum Non-detect        | 0.00282  |
| Mean of Detected Data     | 0.0029   |
| Median of Detected Data   | 0.00122  |
| Variance of Detected Data | 1.38E-05 |
| SD of Detected Data       | 0.00372  |
| CV of Detected Data       | 1.282    |
| Skewness of Detected Data | 2.085    |
| Mean of Detected log data | -6.377   |
| SD of Detected Log data   | 1.031    |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 16
Number treated as Detected 2
Single DL Percent Detection 88.89%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method     | N/A      |  |
|--------------------------|----------|--|
| Kaplan Meier (KM) Method |          |  |
| Mean                     | 0.0015   |  |
| SD                       | 0.00242  |  |
| Standard Error of Mean   | 6.17E-04 |  |
| 95% KM (t) UCL           | 0.00257  |  |
| 95% KM (z) UCI           | 0.00252  |  |

| 95% KM (BCA) UCL                  | 0.0031  |
|-----------------------------------|---------|
| 95% KM (Percentile Bootstrap) UCL | 0.00269 |
| 95% KM (Chebyshev) UCL            | 0.00419 |
| 97.5% KM (Chebyshev) UCL          | 0.00535 |
| 99% KM (Chebyshev) UCL            | 0.00764 |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

\*\* Instead of UCL, EPC is selected to be median = < <0.000545 [per recommendation in ProUCL User Guide]

#### Acenaphthene

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 16      |
| Number of Detected Data   | 2       |
| Minimum Detected          | 0.021   |
| Maximum Detected          | 0.157   |
| Percent Non-Detects       | 88.89%  |
| Minimum Non-detect        | 0.01    |
| Maximum Non-detect        | 0.0583  |
| Mean of Detected Data     | 0.089   |
| Median of Detected Data   | 0.089   |
| Variance of Detected Data | 0.00925 |
| SD of Detected Data       | 0.0962  |
| CV of Detected Data       | 1.081   |
| Skewness of Detected Data | N/A     |
| Mean of Detected log data | -2.857  |
| SD of Detected Log data   | 1.423   |
|                           |         |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17 Number treated as Detected 94.44% Single DL Percent Detection

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                              | N/A     |
|---------------------------------------------------|---------|
| Kaplan Meier (KM) Method                          |         |
| Mean                                              | 0.0286  |
| SD                                                | 0.0312  |
| Standard Error of Mean                            | 0.0104  |
| 95% KM (t) UCL                                    | 0.0466  |
| 95% KM (z) UCL                                    | 0.0456  |
| 95% KM (BCA) UCL                                  | 0.157   |
| 95% KM (Percentile Bootstrap) UCL                 | 0.157   |
| 95% KM (Chebyshev) UCL                            | 0.0738  |
| 97.5% KM (Chebyshev) UCL                          | 0.0934  |
| 99% KM (Chebyshev) UCL                            | 0.132   |
| ** Instead of UCL, EPC is selected to be median = | <0.0110 |
| [per recommendation in ProUCL User Guide]         |         |

## Acenaphthylene

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 17      |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.0555  |
| Maximum Detected          | 0.0555  |
| Percent Non-Detects       | 94.44%  |
| Minimum Non-detect        | 0.00768 |
| Maximum Non-detect        | 0.0661  |

Data set has all detected values equal to = 0.0555, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0555

#### **Aluminum**

| Number of Valid Observations    | 18                      |
|---------------------------------|-------------------------|
| Number of Distinct Observations | 17                      |
| Minimum                         | 1810                    |
| Maximum                         | 16800                   |
| Mean                            | 10673                   |
| Median                          | 10300                   |
| SD                              | 3687                    |
| Maximum<br>Mean<br>Median       | 16800<br>10673<br>10300 |

| Variance                 | 13591176 |
|--------------------------|----------|
| Coefficient of Variation | 0.345    |
| Skewness                 | -0.368   |
| Mean of log data         | 9.189    |
| SD of log data           | 0.496    |
| OFO TESTINICE            |          |

| 95% Useful UCLs<br>Student's-t UCL | 12185 |
|------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)   |       |
| 95% Adjusted-CLT UCL               | 12022 |
| 95% Modified-t UCL                 | 12172 |
| Non-Parametric UCLs                |       |
| 95% CLT UCL                        | 12103 |
| 95% Jackknife UCL                  | 12185 |
| 95% Standard Bootstrap UCL         | 12058 |
| 95% Bootstrap-t UCL                | 12081 |
| 95% Hall's Bootstrap UCL           | 12129 |
| 95% Percentile Bootstrap UCL       | 12001 |
| 95% BCA Bootstrap UCL              | 12048 |
| 95% Chebyshev(Mean, Sd) UCL        | 14461 |
| 97.5% Chebyshev(Mean, Sd) UCL      | 16100 |
| 99% Chebyshev(Mean, Sd) UCL        | 19319 |

# Data appear Normal (0.05)

May want to try Normal UCLs

# Anthracene

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 14      |
| Number of Detected Data   | 4       |
| Minimum Detected          | 0.00887 |
| Maximum Detected          | 0.264   |
| Percent Non-Detects       | 77.78%  |
| Minimum Non-detect        | 0.00744 |
| Maximum Non-detect        | 0.0641  |
|                           |         |
| Mean of Detected Data     | 0.089   |
| Median of Detected Data   | 0.0415  |
| Variance of Detected Data | 0.0139  |
| SD of Detected Data       | 0.118   |
| CV of Detected Data       | 1.326   |
| Skewness of Detected Data | 1.872   |
| Mean of Detected log data | -3.119  |
| SD of Detected Log data   | 1.402   |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs

| Number treated as Non-Detect | 17     |
|------------------------------|--------|
| Number treated as Detected   | 1      |
| Single DL Percent Detection  | 94.44% |

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0269 |
| SD                                | 0.0585 |
| Standard Error of Mean            | 0.016  |
| 95% KM (t) UCL                    | 0.0546 |
| 95% KM (z) UCL                    | 0.0531 |
| 95% KM (BCA) UCL                  | 0.264  |
| 95% KM (Percentile Bootstrap) UCL | 0.0836 |
| 95% KM (Chebyshev) UCL            | 0.0964 |
| 97.5% KM (Chebyshev) UCL          | 0.127  |
| 99% KM (Chebyshev) UCL            | 0.186  |
| •                                 |        |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.0121 [per recommendation in ProUCL User Guide]

## Antimony

| Total Number of Data      | 18     |
|---------------------------|--------|
| Number of Non-Detect Data | 9      |
| Number of Detected Data   | 9      |
| Minimum Detected          | 1.66   |
| Maximum Detected          | 8.09   |
| Percent Non-Detects       | 50.00% |
| Minimum Non-detect        | 0.19   |
| Maximum Non-detect        | 0.25   |
| Mean of Detected Data     | 3.373  |
| Median of Detected Data   | 2.62   |
| Variance of Detected Data | 3.814  |
| SD of Detected Data       | 1.953  |
| CV of Detected Data       | 0.579  |
| Skewness of Detected Data | 2.131  |
| Mean of Detected log data | 1.107  |
| SD of Detected Log data   | 0.461  |

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 2.517 |
| SD                                | 1.559 |
| Standard Error of Mean            | 0.39  |
| 95% KM (t) UCL                    | 3.194 |
| 95% KM (z) UCL                    | 3.158 |
| 95% KM (BCA) UCL                  | 3.612 |
| 95% KM (Percentile Bootstrap) UCL | 3.351 |
| 95% KM (Chebyshev) UCL            | 4.215 |
| 97.5% KM (Chebyshev) UCL          | 4.95  |
| 99% KM (Chebyshev) UCL            | 6.394 |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

#### Aroclor-1254

| TILL CO.                  | 40      |
|---------------------------|---------|
| Total Number of Data      | 18      |
| Number of Non-Detect Data | 17      |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.0122  |
| Maximum Detected          | 0.0122  |
| Percent Non-Detects       | 94.44%  |
| Minimum Non-detect        | 0.00383 |
| Maximum Non-detect        | 0.031   |

Data set has all detected values equal to = 0.0122, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0122

| ** Instead of UCL, EPC is selected to be median = | <0.00429 |
|---------------------------------------------------|----------|
| [per recommendation in ProUCL User Guide]         |          |

#### Arsenic

| Total Number of Data                               | 18          |   |  |
|----------------------------------------------------|-------------|---|--|
| Number of Non-Detect Data                          | 1           |   |  |
| Number of Detected Data                            | 17          |   |  |
| Minimum Detected                                   | 0.54        |   |  |
| Maximum Detected                                   | 5.69        |   |  |
|                                                    |             |   |  |
| Percent Non-Detects                                | 5.56%       |   |  |
| Minimum Non-detect                                 | 0.68        |   |  |
| Maximum Non-detect                                 | 0.68        |   |  |
|                                                    |             |   |  |
| Mean of Detected Data                              | 2.651       |   |  |
| Median of Detected Data                            | 2.55        |   |  |
| Variance of Detected Data                          | 1.123       |   |  |
| SD of Detected Data                                | 1.06        |   |  |
| CV of Detected Data                                | 0.4         |   |  |
| Skewness of Detected Data                          | 1.143       |   |  |
| Mean of Detected log data                          | 0.887       |   |  |
| SD of Detected Log data                            | 0.476       |   |  |
| 3D of Detected tog data                            | 0.470       |   |  |
| Data Data the star Task with Data at advictor Code |             |   |  |
| Data Dsitribution Test with Detected Values Only   |             |   |  |
| Data Follow Appr. Gamma Distribution at 5% Signifi | cance Level |   |  |
|                                                    |             |   |  |
| Winsorization Method                               | 0.476       |   |  |
| Mean                                               | 2.526       |   |  |
| SD                                                 | 0.59        |   |  |
| 95% Winsor (t) UCL                                 | 2.772       |   |  |
| ••                                                 |             |   |  |
| Kaplan Meier (KM) Method                           |             |   |  |
| Mean                                               | 2.533       |   |  |
| SD                                                 | 1.11        |   |  |
| <del>9-</del>                                      | 0.27        |   |  |
| Standard Error of Mean                             |             |   |  |
| 95% KM (t) UCL                                     | 3.002       |   |  |
| 95% KM (z) UCL                                     | 2.977       |   |  |
| 95% KM (BCA) UCL                                   | 3.069       |   |  |
| 95% KM (Percentile Bootstrap) UCL                  | 3.002       |   |  |
| 95% KM (Chebyshev) UCL                             | 3.709       |   |  |
| 97.5% KM (Chebyshev) UCL                           | 4.218       |   |  |
| 99% KM (Chebyshev) UCL                             | 5.217       |   |  |
|                                                    | •           |   |  |
| Data follow Appr. Gamma Distribution (0.05)        |             |   |  |
| May want to try Gamma UCLs                         |             |   |  |
|                                                    |             |   |  |
|                                                    |             |   |  |
| Barium                                             |             |   |  |
| Darium                                             |             |   |  |
| Number of Volid Observations                       | 40          |   |  |
| Number of Valid Observations                       | 18          |   |  |
| Number of Distinct Observations                    | 18          |   |  |
| Minimum                                            | 46.1        |   |  |
| Maximum                                            | 476         |   |  |
| Mean                                               | 145.2       |   |  |
| Median                                             | 114         |   |  |
| SD                                                 | 115.8       | - |  |
|                                                    |             |   |  |

| Coefficient of Variation Skewness                        | 13417<br>0.798<br>2.357<br>4.783 |
|----------------------------------------------------------|----------------------------------|
| Mean of log data SD of log data                          | 0.59                             |
| ·                                                        |                                  |
| Data do not follow a Discernable Distribution            |                                  |
| 95% Useful UCLs                                          |                                  |
| Student's-t UCL                                          | 192.6                            |
| 95% UCLs (Adjusted for Skewness)                         |                                  |
| 95% Adjusted-CLT UCL                                     | 206.3                            |
| 95% Modified-t UCL                                       | 195.2                            |
| Non-Parametric UCLs                                      |                                  |
| 95% CLT UCL                                              | 190.1                            |
| 95% Jackknife UCL                                        | 192.6                            |
| 95% Standard Bootstrap UCL                               | 189.6                            |
| 95% Bootstrap-t UCL                                      | 287.9                            |
| 95% Hall's Bootstrap UCL                                 | 491.4                            |
| 95% Percentile Bootstrap UCL                             | 196.4                            |
| 95% BCA Bootstrap UCL                                    | 207.9                            |
| 95% Chebyshev(Mean, Sd) UCL                              | 264.2                            |
| 97.5% Chebyshev(Mean, Sd) UCL                            | 315.6                            |
| 99% Chebyshev(Mean, Sd) UCL                              | 416.8                            |
| Potential UCL to Use<br>Use 95% Chebyshev (Mean, Sd) UCL | 264.2                            |

# Benzo(a)anthracene

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 17      |
| Number of Detected Data   | 1       |
| Minimum Detected          | 1.18    |
| Maximum Detected          | 1.18    |
| Percent Non-Detects       | 94.44%  |
| Minimum Non-detect        | 0.00503 |
| Maximum Non-detect        | 1.18    |
|                           |         |

Data set has all detected values equal to = 1.18, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 1.18

specifically, or is, octs, or is are all less than the maximum detection limit - i

| ** Instead of UCL, EPC is selected to be median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = <0.0110     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| instead of OCL, EPC is selected to be inedian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| The contract of the contract o |               |
| [per recommendation in ProUCL User Guiden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 취임 보이방생물은 화지를 |

# Benzo(a)pyrene

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 11      |
| Number of Detected Data   | 7       |
| Minimum Detected          | 0.0135  |
| Maximum Detected          | 1.42    |
| Percent Non-Detects       | 61.11%  |
| Minimum Non-detect        | 0.00901 |
| Maximum Non-detect        | 0.0117  |
| Mean of Detected Data     | 0.284   |
| Median of Detected Data   | 0.103   |
| Variance of Detected Data | 0.253   |
| SD of Detected Data       | 0.503   |
| CV of Detected Data       | 1.773   |
| Skewness of Detected Data | 2.591   |
| Mean of Detected log data | -2.178  |
| SD of Detected Log data   | 1.387   |

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.119  |
| SD                                | 0.319  |
| Standard Error of Mean            | 0.0813 |
| 95% KM (t) UCL                    | 0.26   |
| 95% KM (z) UCL                    | 0.252  |
| 95% KM (BCA) UCL                  | 0.305  |
| 95% KM (Percentile Bootstrap) UCL | 0.273  |
| 95% KM (Chebyshev) UCL            | 0.473  |
| 97.5% KM (Chebyshev) UCL          | 0.626  |
| 99% KM (Chebyshev) UCL            | 0.927  |

Data appear Lognormal (0.05)
May want to try Lognormal UCLs

Page 12 of 45

<sup>\*\*</sup> Instead of UCL, EPC is selected to be median = <0.0116
[per recommendation in ProUCL User Guide]

#### Benzo(b)fluoranthene

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 10      |
| Number of Detected Data   | 8       |
| Minimum Detected          | 0.0487  |
| Maximum Detected          | 1.62    |
| Percent Non-Detects       | 55.56%  |
| Minimum Non-detect        | 0.00721 |
| Maximum Non-detect        | 0.0497  |
|                           |         |
| Mean of Detected Data     | 0.318   |
| Median of Detected Data   | 0.13    |
| Variance of Detected Data | 0.279   |
| SD of Detected Data       | 0.528   |
| CV of Detected Data       | 1.659   |
| Skewness of Detected Data | 2.777   |
| Mean of Detected log data | -1.785  |
| SD of Detected Log data   | 1.019   |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 11
Number treated as Detected 7
Single DL Percent Detection 61.11%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.169  |
| SD                                | 0.356  |
| Standard Error of Mean            | 0.0896 |
| 95% KM (t) UCL                    | 0.325  |
| 95% KM (z) UCL                    | 0.316  |
| 95% KM (BCA) UCL                  | 0.373  |
| 95% KM (Percentile Bootstrap) UCL | 0.339  |
| 95% KM (Chebyshev) UCL            | 0.559  |
| 97.5% KM (Chebyshev) UCL          | 0.728  |
| 99% KM (Chebyshev) UCL            | 1.06   |
| Potential UCL to Use              |        |
| 95% KM (BCA) UCL                  | 0.373  |

# Benzo(g,h,i)perylene

| Total Number of Data      | 18     |
|---------------------------|--------|
| Number of Non-Detect Data | 8      |
| Number of Detected Data   | 10     |
| Minimum Detected          | 0.0237 |
| Maximum Detected          | 1.28   |
| Percent Non-Detects       | 44.44% |
| Minimum Non-detect        | 0.0103 |
| Maximum Non-detect        | 0.0116 |
| Mean of Detected Data     | 0.234  |
| Median of Detected Data   | 0.0895 |
| Variance of Detected Data | 0.147  |
| SD of Detected Data       | 0.384  |
| CV of Detected Data       | 1.642  |
| Skewness of Detected Data | 2.721  |
| Mean of Detected log data | -2.257 |
| SD of Detected Log data   | 1.245  |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method | N/A |
|----------------------|-----|

# Kaplan Meier (KM) Method

| Mean                              | 0.14   |
|-----------------------------------|--------|
| SD                                | 0.291  |
| Standard Error of Mean            | 0.0723 |
| 95% KM (t) UCL                    | 0.266  |
| 95% KM (z) UCL                    | 0.259  |
| 95% KM (BCA) UCL                  | 0.288  |
| 95% KM (Percentile Bootstrap) UCL | 0.277  |
| 95% KM (Chebyshev) UCL            | 0.455  |
| 97.5% KM (Chebyshev) UCL          | 0.592  |
| 99% KM (Chebyshev) UCL            | 0.859  |

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

# Benzo(k)fluoranthene

| Total Number of Data      |   | 18    |
|---------------------------|---|-------|
| Number of Non-Detect Data | - | 14    |
| Number of Detected Data   |   | 4     |
| Minimum Detected          |   | 0.068 |

| Maximum Detected          | 0.799  |
|---------------------------|--------|
| Percent Non-Detects       | 77.78% |
| Minimum Non-detect        | 0.011  |
| Maximum Non-detect        | 0.0916 |
|                           |        |
| Mean of Detected Data     | 0.272  |
| Median of Detected Data   | 0.111  |
| Variance of Detected Data | 0.124  |
| SD of Detected Data       | 0.353  |
| CV of Detected Data       | 1.296  |
| Skewness of Detected Data | 1.949  |
| Mean of Detected log data | -1.849 |
| SD of Detected Log data   | 1.13   |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 16
Number treated as Detected 2
Single DL Percent Detection 88.89%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.113    |
| SD                                | 0.167    |
| Standard Error of Mean            | . 0.0455 |
| 95% KM (t) UCL                    | 0.193    |
| 95% KM (z) UCL                    | 0.188    |
| 95% KM (BCA) UCL                  | 0.799    |
| 95% KM (Percentile Bootstrap) UCL | 0.252    |
| 95% KM (Chebyshev) UCL            | 0.312    |
| 97.5% KM (Chebyshev) UCL          | 0.398    |
| 99% KM (Chebyshev) UCL            | 0.566    |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

| ** Instead of UCL,                           | EPC is selected to  | be median =  | <0.0175      |
|----------------------------------------------|---------------------|--------------|--------------|
| Tall tyle of all the britished with the fill | 化氯化铁矿 化氯酸甲酰基甲磺基磺酰硫酸 |              |              |
| [per recomme                                 | endation in ProUC   | L User Guide | lythidanteti |

Beryllium

| Total Number of Data                               | 18              |  |
|----------------------------------------------------|-----------------|--|
| Number of Non-Detect Data                          | 1               |  |
| Number of Detected Data                            | 17              |  |
| Minimum Detected                                   | 0.066           |  |
| Maximum Detected                                   | 2.88            |  |
| Percent Non-Detects                                | 5.56%           |  |
| Minimum Non-detect                                 | 0.026           |  |
| Maximum Non-detect                                 | 0.026           |  |
|                                                    |                 |  |
| Mean of Detected Data                              | 0.749           |  |
| Median of Detected Data                            | 0.66            |  |
| Variance of Detected Data                          | 0.356           |  |
| SD of Detected Data                                | 0.597           |  |
| CV of Detected Data                                | 0.797           |  |
| Skewness of Detected Data                          | 3.046           |  |
| Mean of Detected log data                          | -0.528          |  |
| SD of Detected Log data                            | 0.774           |  |
| Data Dsitribution Test with Detected Values Only   |                 |  |
| Data Follow Appr. Gamma Distribution at 5% Sign    | nificance Level |  |
| Data Follow Appr. Gamma Distribution at 376 Sign   | incance Level   |  |
| Winsorization Method                               | 0.774           |  |
| Mean                                               | 0.605           |  |
| SD                                                 | 0.277           |  |
| 95% Winsor (t) UCL                                 | 0.72            |  |
| Mandau Maria (MAN) Nambard                         |                 |  |
| Kaplan Meier (KM) Method                           | 0.711           |  |
| Mean                                               | 0.711           |  |
| SD<br>Standard Fuser of Manage                     | 0.584           |  |
| Standard Error of Mean                             | 0.142<br>0.958  |  |
| 95% KM (t) UCL                                     |                 |  |
| 95% KM (z) UCL                                     | 0.944           |  |
| 95% KM (BCA) UCL                                   | 0.995<br>0.959  |  |
| 95% KM (Percentile Bootstrap) UCL                  | 1.329           |  |
| 95% KM (Chebyshev) UCL<br>97.5% KM (Chebyshev) UCL | 1.529<br>1.597  |  |
| 99% KM (Chebyshev) UCL                             | 2.123           |  |
| 99% KIVI (CHEDYSHEV) OCL                           | 2.125           |  |
| Data follow Appr. Gamma Distribution (0.05)        |                 |  |
| May want to try Gamma UCLs                         |                 |  |
|                                                    |                 |  |
| Bis(2-Ethylhexyl)phthalate                         |                 |  |
| Total Number of Data                               | 40              |  |
| Total Number of Data                               | 18<br>11        |  |
|                                                    |                 |  |

| Total Number of Data      | 18     |
|---------------------------|--------|
| Number of Non-Detect Data | 11     |
| Number of Detected Data   | . 7    |
| Minimum Detected          | 0.0122 |
| Maximum Detected          | 0.239  |
| Percent Non-Detects       | 61.11% |
| Minimum Non-detect        | 0.046  |
| Maximum Non-detect        | 0.105  |

| Mean of Detected Data     | 0.0693  |
|---------------------------|---------|
| Median of Detected Data   | 0.0532  |
| Variance of Detected Data | 0.00595 |
| SD of Detected Data       | 0.0771  |
| CV of Detected Data       | 1.113   |
| Skewness of Detected Data | 2.321   |
| Mean of Detected log data | -3.069  |
| SD of Detected Log data   | 0.937   |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17
Number treated as Detected 1
Single DL Percent Detection 94.44%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

N1 / A

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0445 |
| SD                                | 0.0502 |
| Standard Error of Mean            | 0.0138 |
| 95% KM (t) UCL                    | 0.0685 |
| 95% KM (z) UCL                    | 0.0672 |
| 95% KM (BCA) UCL                  | 0.076  |
| 95% KM (Percentile Bootstrap) UCL | 0.0695 |
| 95% KM (Chebyshev) UCL            | 0.105  |
| 97.5% KM (Chebyshev) UCL          | 0.131  |
| 99% KM (Chebyshev) UCL            | 0.182  |
|                                   |        |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

| ** Instead of UCL, EPC is selected to be median =              | <0.0546 |
|----------------------------------------------------------------|---------|
| 그리아는 마양하는 어린 이름과 마음과 하는 이 사람들은 마음이 마음과 보다서 가득하는 모든 아이를 모르는 생각이 |         |
| [per recommendation in ProUCL User Guide]                      |         |

#### Boron

| Total Number of Data      | 18   |
|---------------------------|------|
| Number of Non-Detect Data | 5    |
| Number of Detected Data   | 13   |
| Minimum Detected          | 3.15 |

| Maximum Detected          | 39.2   |
|---------------------------|--------|
| Percent Non-Detects       | 27.78% |
| Minimum Non-detect        | 1.11   |
| Maximum Non-detect        | 1.25   |
|                           |        |
| Mean of Detected Data     | 10.89  |
| Median of Detected Data   | 9      |
| Variance of Detected Data | 95.21  |
| SD of Detected Data       | 9.757  |
| CV of Detected Data       | 0.896  |
| Skewness of Detected Data | 2.309  |
| Mean of Detected log data | 2.125  |
| SD of Detected Log data   | 0.713  |

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method<br>Mean<br>SD<br>95% Winsor (t) UCL | 0.713<br>5.999<br>2.737<br>7.221 |
|----------------------------------------------------------|----------------------------------|
| Kaplan Meier (KM) Method                                 |                                  |
| Mean                                                     | 8.743                            |
| SD                                                       | 8.689                            |
| Standard Error of Mean                                   | 2.132                            |
| 95% KM (t) UCL                                           | 12.45                            |
| 95% KM (z) UCL                                           | 12.25                            |
| 95% KM (BCA) UCL                                         | 12.91                            |
| 95% KM (Percentile Bootstrap) UCL                        | 12.43                            |
| 95% KM (Chebyshev) UCL                                   | 18.03                            |
| 97.5% KM (Chebyshev) UCL                                 | 22.06                            |
| 99% KM (Chebyshev) UCL                                   | 29.95                            |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

# **Butyl benzyl phthalate**

| Total Number of Data      | 18              |
|---------------------------|-----------------|
| Number of Non-Detect Data | <sup>-</sup> 17 |
| Number of Detected Data   | 1               |
| Minimum Detected          | 0.151           |
| Maximum Detected          | 0.151           |
| Percent Non-Detects       | 94.44%          |
| Minimum Non-detect        | 0.00913         |
| Maximum Non-detect        | 0.0733          |

Data set has all detected values equal to = 0.151, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.151

| ** Instead o |  |                    | <0.0136 |
|--------------|--|--------------------|---------|
|              |  |                    |         |
|              |  |                    |         |
|              |  |                    |         |
|              |  |                    |         |
|              |  |                    |         |
|              |  |                    |         |
|              |  |                    |         |
|              |  |                    |         |
|              |  |                    |         |
|              |  |                    |         |
|              |  |                    |         |
|              |  |                    |         |
|              |  | <b>UCL User Gu</b> |         |
|              |  |                    |         |
|              |  |                    |         |

| Cadmium                   |        |
|---------------------------|--------|
| Total Number of Data      | 18     |
| Number of Non-Detect Data | 10     |
| Number of Detected Data   | 8      |
| Minimum Detected          | 0.28   |
| Maximum Detected          | 0.8    |
| Percent Non-Detects       | 55.56% |
| Minimum Non-detect        | 0.006  |
| Maximum Non-detect        | 0.033  |
| Mean of Detected Data     | 0.455  |
| Median of Detected Data   | 0.385  |
| Variance of Detected Data | 0.028  |
| SD of Detected Data       | 0.167  |
| CV of Detected Data       | 0.368  |
| Skewness of Detected Data | 1.539  |
| Mean of Detected log data | -0.838 |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

SD of Detected Log data

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

0.327

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A ·  |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.358  |
| SD                                | 0.136  |
| Standard Error of Mean            | 0.0342 |
| 95% KM (t) UCL                    | 0.417  |
| 95% KM (z) UCL                    | 0.414  |
| 95% KM (BCA) UCL                  | 0.467  |
| 95% KM (Percentile Bootstrap) UCL | 0.45   |

| 95% KM (Chebyshev) UCL   | 0.507 |
|--------------------------|-------|
| 97.5% KM (Chebyshev) UCL | 0.572 |
| 99% KM (Chebyshev) UCL   | 0.698 |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

· ·

#### Carbazole

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 14      |
| Number of Detected Data   | 4       |
| Minimum Detected          | 0.013   |
| Maximum Detected          | 0.128   |
| Percent Non-Detects       | 77.78%  |
| Minimum Non-detect        | 0.00965 |
| Maximum Non-detect        | 0.0578  |
| Mean of Detected Data     | 0.0445  |
| Median of Detected Data   | 0.0185  |
| Variance of Detected Data | 0.00311 |
| SD of Detected Data       | 0.0557  |
| CV of Detected Data       | 1.252   |
| Skewness of Detected Data | 1.987   |
| Mean of Detected log data | -3.595  |
| SD of Detected Log data   | 1.04    |
|                           |         |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17
Number treated as Detected 1
Single DL Percent Detection 94.44%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Distribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

| Winsorization Method     | N/A     |  |
|--------------------------|---------|--|
| Kaplan Meier (KM) Method |         |  |
| Mean                     | 0.02    |  |
| SD                       | 0.0262  |  |
| Standard Error of Mean   | 0.00714 |  |
| 95% KM (t) UCL           | 0.0325  |  |
| 95% KM (z) UCL           | 0.0318  |  |
| 95% KM (BCA) UCI         | 0.128   |  |

| 95% KM (Percentile Bootstrap) UCL | 0.0388 |
|-----------------------------------|--------|
| 95% KM (Chebyshev) UCL            | 0.0512 |
| 97.5% KM (Chebyshev) UCL          | 0.0647 |
| 99% KM (Chebyshev) UCL            | 0.0911 |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

| ** Instead of UCL, EPC | is selected to be mo | edian = <0.0111 |
|------------------------|----------------------|-----------------|
| [per recommenda        |                      |                 |

| Chromium                                                       |       |   |
|----------------------------------------------------------------|-------|---|
| Number of Valid Observations                                   | 18    |   |
| Number of Distinct Observations                                | 18    |   |
| Minimum                                                        | 7.9   |   |
| Maximum                                                        | 128   |   |
| Mean                                                           | 20.26 |   |
| Median                                                         | 11.6  |   |
| SD                                                             | 27.58 |   |
| Variance                                                       | 760.5 |   |
| Coefficient of Variation                                       | 1.361 |   |
| Skewness                                                       | 3.912 |   |
| Mean of log data                                               | 2.683 |   |
| SD of log data                                                 | 0.658 |   |
| Data do not follow a Discernable Distribution  95% Useful UCLs | 24.56 |   |
| Student's-t UCL                                                | 31.56 |   |
| 95% UCLs (Adjusted for Skewness)                               |       |   |
| 95% Adjusted-CLT UCL                                           | 37.35 |   |
| 95% Modified-t UCL                                             | 32.56 |   |
| Non-Parametric UCLs                                            |       |   |
| 95% CLT UCL                                                    | 30.95 | • |
| 95% Jackknife UCL                                              | 31.56 |   |
| 95% Standard Bootstrap UCL                                     | 30.37 |   |
| 95% Bootstrap-t UCL                                            | 66.91 |   |
| 95% Hall's Bootstrap UCL                                       | 67.88 |   |
| 95% Percentile Bootstrap UCL                                   | 32.64 |   |
| 95% BCA Bootstrap UCL                                          | 40.53 |   |
| •                                                              | 48.59 | • |
| 95% Chebyshev(Mean, Sd) UCL                                    |       |   |
| 95% Chebyshev(Mean, Sd) UCL<br>97.5% Chebyshev(Mean, Sd) UCL   | 60.85 |   |

#### Chrysene

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 11      |
| Number of Detected Data   | 7       |
| Minimum Detected          | 0.011   |
| Maximum Detected          | 1.3     |
| Percent Non-Detects       | 61.11%  |
| Minimum Non-detect        | 0.00911 |
| Maximum Non-detect        | 0.0523  |
|                           |         |
| Mean of Detected Data     | 0.253   |
| Median of Detected Data   | 0.115   |
| Variance of Detected Data | 0.216   |
| SD of Detected Data       | 0.465   |
| CV of Detected Data       | 1.838   |
| Skewness of Detected Data | 2.58    |
| Mean of Detected log data | -2.455  |
| SD of Detected Log data   | 1.543   |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 13
Number treated as Detected 5
Single DL Percent Detection 72.22%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.105  |
| SD                                | 0.293  |
| Standard Error of Mean            | 0.0746 |
| 95% KM (t) UCL                    | 0.235  |
| 95% KM (z) UCL                    | 0.228  |
| 95% KM (BCA) UCL                  | 0.323  |
| 95% KM (Percentile Bootstrap) UCL | 0.248  |
| 95% KM (Chebyshev) UCL            | 0.43   |
| 97.5% KM (Chebyshev) UCL          | 0.571  |
| 99% KM (Chebyshev) UCL            | 0.847  |
|                                   |        |

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

| ** Instead of UCL, EPC is selected to be median = | <0.0103         |
|---------------------------------------------------|-----------------|
| [por recommendation in BrollCl User Cuide]        | ik kuliziarati. |

| Cobalt                             |        |    |
|------------------------------------|--------|----|
| Number of Valid Observations       | 18     |    |
| Number of Distinct Observations    | 18     |    |
| Minimum                            | 2.81   |    |
| Maximum                            | 7.87   |    |
| Mean                               | 5.789  |    |
| Median                             | 5.84   |    |
| SD                                 | 1.506  |    |
| Variance                           | 2,268  |    |
| Coefficient of Variation           | 0.26   |    |
| Skewness                           | -0.505 |    |
| Mean of log data                   | 1.718  |    |
| SD of log data                     | 0.299  |    |
| 95% Useful UCLs<br>Student's-t UCL | 6.406  |    |
| 95% UCLs (Adjusted for Skewness)   |        |    |
| 95% Adjusted-CLT UCL               | 6.328  |    |
| 95% Modified-t UCL                 | 6.399  | ** |
| Non-Parametric UCLs                |        |    |
| 95% CLT UCL                        | 6.373  | `  |
| 95% Jackknife UCL                  | 6.406  |    |
| 95% Standard Bootstrap UCL         | 6.352  |    |
| 95% Bootstrap-t UCL                | 6.376  |    |
| 95% Hall's Bootstrap UCL           | 6.339  |    |
| 95% Percentile Bootstrap UCL       | 6.363  |    |
| 95% BCA Bootstrap UCL              | 6.318  |    |
| 95% Chebyshev(Mean, Sd) UCL        | 7.336  |    |
| 97.5% Chebyshev(Mean, Sd) UCL      | 8.006  |    |
| 99% Chebyshev(Mean, Sd) UCL        | 9.321  |    |
| Data appear Normal (0.05)          |        |    |
| May want to try Normal UCLs        |        |    |
|                                    |        |    |
| Copper                             |        |    |
| Number of Valid Observations       | 18     |    |
| Number of Distinct Observations    | 17     |    |
| Minimum                            | 5.9    |    |
| Maximum                            | 200    |    |
| Mean                               | 24.13  |    |
| Median                             | 9.895  |    |
| SD                                 | 44.66  |    |
| Variance                           | 1994   |    |

| Coefficient of Variation                      | 1.851   |
|-----------------------------------------------|---------|
| Skewness                                      | 4.008   |
| Mean of log data                              | 2.621   |
| SD of log data                                | 0.865   |
| Data do not follow a Discernable Distribution |         |
| 95% Useful UCLs                               |         |
| Student's-t UCL                               | 42.44   |
| 95% UCLs (Adjusted for Skewness)              |         |
| 95% Adjusted-CLT UCL                          | 52.07   |
| 95% Modified-t UCL                            | 44.1    |
| Non-Parametric UCLs                           |         |
| 95% CLT UCL                                   | 41.44   |
| 95% Jackknife UCL                             | 42.44   |
| 95% Standard Bootstrap UCL                    | 40.65   |
| 95% Bootstrap-t UCL                           | 100.8   |
| 95% Hall's Bootstrap UCL                      | 104     |
| 95% Percentile Bootstrap UCL                  | 44.65   |
| 95% BCA Bootstrap UCL                         | 56.68   |
| 95% Chebyshev(Mean, Sd) UCL                   | 70.01   |
| 97.5% Chebyshev(Mean, Sd) UCL                 | 89.86   |
| 99% Chebyshev(Mean, Sd) UCL                   | 128.9   |
| Potential UCL to Use                          |         |
| Use 95% Chebyshev (Mean, Sd) UCL              | 70.01   |
|                                               |         |
| Dibenz(a,h)anthracene                         |         |
| Total Number of Data                          | 18      |
| Number of Non-Detect Data                     | 14      |
| Number of Detected Data                       | 4       |
| Minimum Detected                              | 0.045   |
| Maximum Detected                              | 0.404   |
| Percent Non-Detects                           | 77.78%  |
| Minimum Non-detect                            | 0.00687 |
| Maximum Non-detect                            | 0.0565  |
| Mean of Detected Data                         | 0.189   |
| Median of Detected Data                       | 0.153   |
| Variance of Detected Data                     | 0.0233  |
| SD of Detected Data                           | 0.153   |

0.81

1.295

-1.944

0.902

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),

CV of Detected Data

Skewness of Detected Data

Mean of Detected log data

SD of Detected Log data

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 15 Number treated as Detected 3 Single DL Percent Detection 83.33%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0769 |
| SD                                | 0.0863 |
| Standard Error of Mean            | 0.0235 |
| 95% KM (t) UCL                    | 0.118  |
| 95% KM (z) UCL                    | 0.116  |
| 95% KM (BCA) UCL                  | 0.192  |
| 95% KM (Percentile Bootstrap) UCL | 0.192  |
| 95% KM (Chebyshev) UCL            | 0.179  |
| 97.5% KM (Chebyshev) UCL          | 0.224  |
| 99% KM (Chebyshev) UCL            | 0.311  |
|                                   |        |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.0110 [per recommendation in ProUCL User Guide]

#### Dibenzofuran

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 17      |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.0862  |
| Maximum Detected          | 0.0862  |
| Percent Non-Detects       | 94.44%  |
| Minimum Non-detect        | 0.00606 |
| Maximum Non-detect        | 0.083   |

Data set has all detected values equal to = 0.0862, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0862

\*\* Instead of UCL, EPC is selected to be median = <0.0152 [per recommendation in ProUCL User Guide]

#### Dieldrin

| Total Number of Data      | 18       |
|---------------------------|----------|
| Number of Non-Detect Data | 17       |
| Number of Detected Data   | 1        |
| Minimum Detected          | 0.00545  |
| Maximum Detected          | 0.00545  |
| Percent Non-Detects       | 94.44%   |
| Minimum Non-detect        | 0.000165 |
| Maximum Non-detect        | 0.00246  |

Data set has all detected values equal to = 0.00545, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set. All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00545

\*\* Instead of UCL, EPC is selected to be median = < <0.000183 [per recommendation in ProUCL User Guide]

#### Diethyl phthalate

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 17      |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.011   |
| Maximum Detected          | 0.011   |
| Percent Non-Detects       | 94.44%  |
| Minimum Non-detect        | 0.00756 |
| Maximum Non-detect        | 0.0996  |

Data set has all detected values equal to = 0.011, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set. All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.011

\*\* Instead of UCL, EPC is selected to be median = <0.0185 [per recommendation in ProUCL User Guide]

# Di-n-butyl phthalate

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 17      |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.01    |
| Maximum Detected          | 0.01    |
| Percent Non-Detects       | 94.44%  |
| Minimum Non-detect        | 0.00797 |
| Maximum Non-detect        | 0.167   |

Data set has all detected values equal to = 0.01, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.01

| ** Instead of UCL, EPC is selected to be median =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.0310                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| A LINE FOR BUILDING AND A SECOND SECO |                                                                                                                 |
| per recommendation in ProUCL User Guide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AND THE STREET, |

## Di-n-octyl phthalate

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 16      |
| Number of Detected Data   | 2       |
| Minimum Detected          | 0.0154  |
| Maximum Detected          | 0.123   |
| Percent Non-Detects       | 88.89%  |
| Minimum Non-detect        | 0.00848 |
| Maximum Non-detect        | 0.0487  |
| Mean of Detected Data     | 0.0692  |
| Median of Detected Data   | 0.0692  |
| Variance of Detected Data | 0.00579 |
| SD of Detected Data       | 0.0761  |
| CV of Detected Data       | 1.099   |
| Skewness of Detected Data | N/A     |
| Mean of Detected log data | -3.134  |
| SD of Detected Log data   | 1.469   |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect17Number treated as Detected1Single DL Percent Detection94.44%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                                                                                   | N/A                                        |            |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|
| Kaplan Meier (KM) Method                                                                               |                                            |            |
| Mean                                                                                                   | 0.0214                                     |            |
| SD                                                                                                     | 0.0246                                     |            |
| Standard Error of Mean                                                                                 | 0.00822                                    |            |
| 95% KM (t) UCL                                                                                         | 0.0357                                     |            |
| 95% KM (z) UCL                                                                                         | 0.0349                                     |            |
| 95% KM (BCA) UCL                                                                                       | 0.123                                      |            |
| 95% KM (Percentile Bootstrap) UCL                                                                      | N/A                                        |            |
| 95% KM (Chebyshev) UCL                                                                                 | 0.0572                                     |            |
| 97.5% KM (Chebyshev) UCL                                                                               | 0.0727                                     |            |
| 99% KM (Chebyshev) UCL                                                                                 | 0.103                                      |            |
|                                                                                                        |                                            |            |
| Potential UCL to Use                                                                                   |                                            |            |
| 95% KM (BCA) UCL                                                                                       | 0.123                                      |            |
|                                                                                                        | 450 GM (1986-1987)                         |            |
| ** Instead of UCL, EPC is selected to be median =<br>[per recommendation in ProUCL User Guide          | 한다 하는 사람들은 회사에 가장하는 것이 없는 것이 없는 것이 없다면 없다. |            |
| [per recommendation in Frooct Oser Guide                                                               |                                            |            |
|                                                                                                        |                                            |            |
| Endrin                                                                                                 |                                            |            |
| Total Number of Data                                                                                   | 18                                         |            |
| Number of Non-Detect Data                                                                              | 17                                         |            |
| Number of Detected Data                                                                                | 1                                          |            |
| Minimum Detected                                                                                       | 0.00149                                    |            |
| Maximum Detected                                                                                       | 0.00149                                    |            |
| Percent Non-Detects                                                                                    | 94.44%                                     |            |
| Minimum Non-detect                                                                                     | 0.0002                                     |            |
| Maximum Non-detect                                                                                     | 0.00295                                    |            |
| Data set has all detected values equal to = 0.0014                                                     | 10 having '0' variation                    |            |
| Data set has all detected values equal to = 0.0014  No reliable or meaningful statistics and estimates |                                            |            |
| All relevant statistics such as background statistic                                                   | -                                          |            |
| Specifically, UPLs, UCLs, UTLs are all less than the                                                   |                                            | ionactects |
| .,                                                                                                     |                                            |            |
| ** Instead of UCL, EPC is selected to be median =                                                      | <0.000222                                  | •          |
| [per recommendation in ProUCL User Guide                                                               |                                            |            |
|                                                                                                        |                                            |            |
| - 1: 1 ·                                                                                               | •                                          |            |
| Endrin ketone                                                                                          |                                            |            |
| Total Number of Data                                                                                   | 18                                         |            |
| Number of Non-Detect Data                                                                              | 17                                         |            |
| Number of Detected Data                                                                                | 1                                          |            |
| Minimum Detected                                                                                       | 0.00966                                    |            |
| Maximum Detected                                                                                       | 0.00966                                    |            |
| Percent Non-Detects                                                                                    | 94.44%                                     |            |
| Minimum Non-detect                                                                                     | 0.000495                                   |            |
|                                                                                                        |                                            |            |

Maximum Non-detect

0.00298

Data set has all detected values equal to = 0.00966, having '0' variation. No reliable or meaningful statistics and estimates can be computed using such a data set. All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00966

\*\* Instead of UCL, EPC is selected to be median = \$\insec\cdots \cdots 0.000548 [per recommendation in ProUCL User Guide]

#### **Fluoranthene**

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 12      |
| Number of Detected Data   | 6       |
| Minimum Detected          | 0.0214  |
| Maximum Detected          | 2.19    |
| Percent Non-Detects       | 66.67%  |
| Minimum Non-detect        | 0.00676 |
| Maximum Non-detect        | 0.0658  |
| Mean of Detected Data     | 0.462   |
| Median of Detected Data   | 0.125   |
| Variance of Detected Data | 0.724   |
| SD of Detected Data       | 0.851   |
| CV of Detected Data       | 1.843   |
| Skewness of Detected Data | 2.395   |
| Mean of Detected log data | -1.942  |
| SD of Detected Log data   | 1.595   |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

14 Number treated as Non-Detect Number treated as Detected Single DL Percent Detection 77.78%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

N/A Winsorization Method

Kaplan Meier (KM) Method

| • •                    |       |
|------------------------|-------|
| Mean                   | 0.168 |
| SD ·                   | 0.494 |
| Standard Error of Mean | 0.128 |

| 95% KM (t) UCL                    | 0.39  |
|-----------------------------------|-------|
| 95% KM (z) UCL                    | 0.378 |
| 95% KM (BCA) UCL                  | 0.447 |
| 95% KM (Percentile Bootstrap) UCL | 0.416 |
| 95% KM (Chebyshev) UCL            | 0.725 |
| 97.5% KM (Chebyshev) UCL          | 0.965 |
| 99% KM (Chebyshev) UCL            | 1.438 |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.0128
[per recommendation in ProUCL User Guide]

#### Fluorene

| Total Number of Data      | 18      |  |
|---------------------------|---------|--|
| Number of Non-Detect Data | 15      |  |
| Number of Detected Data   | 3       |  |
| Minimum Detected          | 0.017   |  |
| Maximum Detected          | 0.141   |  |
| Percent Non-Detects       | 83.33%  |  |
| Minimum Non-detect        | 0.00689 |  |
| Maximum Non-detect        | 0.0575  |  |
| Mean of Detected Data     | 0.0647  |  |
| Median of Detected Data   | 0.036   |  |
| Variance of Detected Data | 0.00446 |  |
| SD of Detected Data       | 0.0668  |  |
| CV of Detected Data       | 1.033   |  |
| Skewness of Detected Data | 1.576   |  |
| Mean of Detected log data | -3.119  |  |
| SD of Detected Log data   | 1.073   |  |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17
Number treated as Detected 1
Single DL Percent Detection 94.44%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only

## Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.025   |
| SD ···                            | 0.0285  |
| Standard Error of Mean            | 0.00823 |
| 95% KM (t) UCL                    | 0.0393  |
| 95% KM (z) UCL                    | 0.0385  |
| 95% KM (BCA) UCL                  | N/A     |
| 95% KM (Percentile Bootstrap) UCL | 0.141   |
| 95% KM (Chebyshev) UCL            | 0.0609  |
| 97.5% KM (Chebyshev) UCL          | 0.0764  |
| 99% KM (Chebyshev) UCL            | 0.107   |

Data appear Normal (0.05)
May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.0109 [per recommendation in ProUCL User Guide]

## Indeno(1,2,3-cd)pyrene

| Total Number of Data      | 18     |
|---------------------------|--------|
| Number of Non-Detect Data | 9      |
| Number of Detected Data   | 9      |
| Minimum Detected          | 0.02   |
| Maximum Detected          | 1.51   |
| Percent Non-Detects       | 50.00% |
| Minimum Non-detect        | 0.0165 |
| Maximum Non-detect        | 0.095  |
|                           |        |
| Mean of Detected Data     | 0.289  |
| Median of Detected Data   | 0.149  |
| Variance of Detected Data | 0.215  |
| SD of Detected Data       | 0.464  |
| CV of Detected Data       | 1.604  |
| Skewness of Detected Data | 2.851  |
| Mean of Detected log data | -1.916 |
| SD of Detected Log data   | 1.153  |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect12Number treated as Detected6Single DL Percent Detection66.67%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions
It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Ditribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.155  |
| SD                                | 0.337  |
| Standard Error of Mean            | 0.0843 |
| 95% KM (t) UCL                    | 0.302  |
| 95% KM (z) UCL                    | 0.294  |
| 95% KM (BCA) UCL                  | 0.333  |
| 95% KM (Percentile Bootstrap) UCL | 0.317  |
| 95% KM (Chebyshev) UCL            | 0.523  |
| 97.5% KM (Chebyshev) UCL          | 0.682  |
| 99% KM (Chebyshev) UCL            | 0.994  |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

#### Iron

| Number of Valid Observations    | 18       |
|---------------------------------|----------|
| Number of Distinct Observations | 18       |
| Minimum                         | 8450     |
| Maximum                         | 102000   |
| Mean                            | 19477    |
| Median                          | 14700    |
| SD                              | 21073    |
| Variance                        | 4.44E+08 |
| Coefficient of Variation        | 1.082    |
| Skewness                        | 3.929    |
| Mean of log data                | 9.653    |
| SD of log data                  | 0.564    |

### Data do not follow a Discernable Distribution

| 95% Useful UCLs                  |       |
|----------------------------------|-------|
| Student's-t UCL                  | 28117 |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 32561 |
| 95% Modified-t UCL               | 28884 |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 27646 |
| 95% Jackknife UCL                | 28117 |
| 95% Standard Bootstrap UCL       | 27671 |

| 95% Bootstrap-t UCL                                          | 49011                                                   |  |
|--------------------------------------------------------------|---------------------------------------------------------|--|
| 95% Hall's Bootstrap UCL                                     | 60240                                                   |  |
| 95% Percentile Bootstrap UCL                                 | 29148                                                   |  |
| 95% BCA Bootstrap UCL                                        | 33973                                                   |  |
| 95% Chebyshev(Mean, Sd) UCL                                  | 41127                                                   |  |
| 97.5% Chebyshev(Mean, Sd) UCL                                | 50495                                                   |  |
| 99% Chebyshev(Mean, Sd) UCL                                  | 68897                                                   |  |
| 55% Chebyshev(Mean, 5d) Oct                                  | 00057                                                   |  |
| Potential UCL to Use<br>Use 95% Chebyshev (Mean, Sd) UCL     | .411 <u>27</u>                                          |  |
| Lead                                                         | PER S DES S DES S DES S DES S DES X DES S DES S DE S DE |  |
| Number of Valid Observations                                 | 18                                                      |  |
| Number of Distinct Observations                              | 16                                                      |  |
| Minimum                                                      | 8.22                                                    |  |
| Maximum                                                      | 471                                                     |  |
| Mean                                                         | 57.7                                                    |  |
| Median                                                       | 17.1                                                    |  |
| SD                                                           | 111.1                                                   |  |
| Variance                                                     | 12345                                                   |  |
| Coefficient of Variation                                     | 1.926                                                   |  |
| Skewness                                                     | 3.403                                                   |  |
| Mean of log data                                             | 3.182                                                   |  |
| SD of log data                                               | 1.161                                                   |  |
| Data do not follow a Discernable Distribution                |                                                         |  |
| 95% Useful UCLs                                              |                                                         |  |
| Student's-t UCL                                              | 103.3                                                   |  |
| 95% UCLs (Adjusted for Skewness)                             |                                                         |  |
| 95% Adjusted-CLT UCL                                         | 123.2                                                   |  |
| 95% Modified-t UCL                                           | 106.8                                                   |  |
| 55% Mounica Cool                                             | 100.0                                                   |  |
| Non-Parametric UCLs                                          |                                                         |  |
| 95% CLT UCL                                                  | 100.8                                                   |  |
| 95% Jackknife UCL                                            | 103.3                                                   |  |
| 95% Standard Bootstrap UCL                                   | 98.59                                                   |  |
| 95% Bootstrap-t UCL                                          | 189.9                                                   |  |
| 95% Hall's Bootstrap UCL                                     | 228.1                                                   |  |
| 95% Percentile Bootstrap UCL                                 | 106.1                                                   |  |
| 95% BCA Bootstrap UCL                                        | 131.6                                                   |  |
| 95% Chebyshev(Mean, Sd) UCL                                  | 171.9                                                   |  |
|                                                              | 221.2                                                   |  |
| 97.5% Chebyshev(Mean, Sd) UCL<br>99% Chebyshev(Mean, Sd) UCL | 318.3                                                   |  |

## Lithium

| Number of Valid Observations                                                | 18     |
|-----------------------------------------------------------------------------|--------|
|                                                                             |        |
| Number of Distinct Observations                                             | 18     |
| Minimum                                                                     | 2.59   |
| Maximum                                                                     | 26.6   |
| Mean                                                                        | 16.57  |
| Median                                                                      | 16.15  |
| SD                                                                          | 5.136  |
| Variance                                                                    | 26.38  |
| Coefficient of Variation                                                    | 0.31   |
| Skewness                                                                    | -0.697 |
| Mean of log data                                                            | 2.729  |
| SD of log data                                                              | 0.49   |
| 95% Useful UCLs                                                             |        |
| 하루 마음하다 화면 살이 살아가면 하는데 보고 있다. 그리는 그 전에 살아 나는 그 때 아이는 것이 되었다. 그는 것으로 없는데 없다. |        |
| Student's-t UCL                                                             | 18.68  |

| 95% UCLs (Adjusted for Skewness) |       |
|----------------------------------|-------|
| 95% Adjusted-CLT UCL             | 18.35 |
| 95% Modified-t UCL               | 18.64 |
| Non-Parametric UCLs              |       |

| 95% CLT UCL                   | 18.56 |
|-------------------------------|-------|
| 95% Jackknife UCL             | 18.68 |
| 95% Standard Bootstrap UCL    | 18.5  |
| 95% Bootstrap-t UCL           | 18.59 |
| 95% Hall's Bootstrap UCL      | 18.58 |
| 95% Percentile Bootstrap UCL  | 18.48 |
| 95% BCA Bootstrap UCL         | 18.33 |
| 95% Chebyshev(Mean, Sd) UCL   | 21.85 |
| 97.5% Chebyshev(Mean, Sd) UCL | 24.13 |
| 99% Chebyshev(Mean, Sd) UCL   | 28.62 |

# Data appear Normal (0.05)

May want to try Normal UCLs

# Manganese

| Number of Valid Observations    | 18    |
|---------------------------------|-------|
| Number of Distinct Observations | 18    |
| Minimum                         | 82.3  |
| Maximum                         | 1210  |
| Mean                            | 369.5 |
| Median                          | 296   |
| SD                              | 247.7 |
| Variance                        | 61331 |
| Coefficient of Variation        | 0.67  |
| Skewness                        | 2.484 |
| Mean of log data                | 5.754 |
| SD of log data                  | 0.565 |

| 95% Useful UCLs                  |       |
|----------------------------------|-------|
| Student's-t UCL                  | 471   |
|                                  |       |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 502   |
| 95% Modified-t UCL               | 476.7 |
|                                  |       |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 465.5 |
| 95% Jackknife UCL                | 471   |
| 95% Standard Bootstrap UCL       | 463.6 |
| 95% Bootstrap-t UCL              | 537.6 |
| 95% Hall's Bootstrap UCL         | 893.1 |
| 95% Percentile Bootstrap UCL     | 466.1 |
| 95% BCA Bootstrap UCL            | 496.7 |
| 95% Chebyshev(Mean, Sd) UCL      | 623.9 |
| 97.5% Chebyshev (Mean, Sd) UCL   | 734   |
| 99% Chebyshev(Mean, Sd) UCL      | 950.3 |
|                                  |       |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

18

## Mercury

**Total Number of Data** 

| Number of Non-Detect Data | 10       |
|---------------------------|----------|
| Number of Detected Data   | 8        |
| Minimum Detected          | 0.006    |
| Maximum Detected          | 0.064    |
| Percent Non-Detects       | 55.56%   |
| Minimum Non-detect        | 0.0023   |
| Maximum Non-detect        | 0.025    |
|                           |          |
| Mean of Detected Data     | 0.0229   |
| Median of Detected Data   | 0.0165   |
| Variance of Detected Data | 3.98E-04 |
| SD of Detected Data       | 0.0199   |
| CV of Detected Data       | 0.872    |
| Skewness of Detected Data | 1.451    |
| Mean of Detected log data | -4.096   |
| SD of Detected Log data   | 0.853    |
|                           |          |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect15Number treated as Detected3Single DL Percent Detection83.33%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions. It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0138  |
| SD                                | 0.0149  |
| Standard Error of Mean            | 0.00379 |
| 95% KM (t) UCL                    | 0.0204  |
| 95% KM (z) UCL                    | 0.0201  |
| 95% KM (BCA) UCL                  | 0.0227  |
| 95% KM (Percentile Bootstrap) UCL | 0.0213  |
| 95% KM (Chebyshev) UCL            | 0.0303  |
| 97.5% KM (Chebyshev) UCL          | 0.0375  |
| 99% KM (Chebyshev) UCL            | 0.0515  |

Data appear Normal (0.05)
May want to try Normal UCLs

#### Molybdenum

| Total Number of Data      | 18     |
|---------------------------|--------|
| Number of Non-Detect Data | 7      |
| Number of Detected Data   | 11     |
| Minimum Detected          | 0.085  |
| Maximum Detected          | 10.7   |
| Percent Non-Detects       | 38.89% |
| Minimum Non-detect        | 0.074  |
| Maximum Non-detect        | 0.084  |
| Mean of Detected Data     | 1.527  |
| Median of Detected Data   | 0.26   |
| Variance of Detected Data | 9.681  |
| SD of Detected Data       | 3.111  |
| CV of Detected Data       | 2.038  |
| Skewness of Detected Data | 3.066  |
| Mean of Detected log data | -0.802 |
| SD of Detected Log data   | 1.546  |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method                          | 1.546  |     |
|-----------------------------------------------|--------|-----|
| Mean                                          | 0.112  |     |
| SD                                            | 0.0267 |     |
| 95% Winsor (t) UCL                            | 0.127  |     |
| Kaplan Meier (KM) Method                      |        |     |
| Mean                                          | 0.966  |     |
| SD                                            | 2.423  |     |
| Standard Error of Mean                        | 0.599  |     |
| 95% KM (t) UCL                                | 2.008  |     |
| 95% KM (z) UCL                                | 1.951  |     |
| 95% KM (BCA) UCL                              | 2.184  |     |
| 95% KM (Percentile Bootstrap) UCL             | 2.068  |     |
| 95% KM (Chebyshev) UCL                        | 3.577  |     |
| 97.5% KM (Chebyshev) UCL                      | 4.707  |     |
| 99% KM (Chebyshev) UCL                        | 6.927  |     |
|                                               |        | •   |
| Data follow Appr. Gamma Distribution (0.05)   |        |     |
| May want to try Gamma UCLs                    |        |     |
|                                               |        |     |
| Nickel                                        |        |     |
| Number of Valid Observations                  | 18     |     |
| Number of Distinct Observations               | 17     |     |
| Minimum                                       | 11.7   | * * |
| Maximum                                       | 51.7   |     |
| Mean                                          | 17.04  |     |
| Median                                        | 14.6   |     |
| SD                                            | 9.054  |     |
| Variance                                      | 81.97  |     |
| Coefficient of Variation                      | 0.531  |     |
| Skewness                                      | 3.644  |     |
| Mean of log data                              | 2.762  |     |
| SD of log data                                | 0.343  |     |
| Data do not follow a Discernable Distribution |        |     |
| 95% Useful UCLs                               |        |     |
| Student's-t UCL                               | 20.76  |     |
| Student S-t OCE                               | 20.76  |     |
| 95% UCLs (Adjusted for Skewness)              |        |     |
| 95% Adjusted-CLT UCL                          | 22.51  |     |
| 95% Modified-t UCL                            | 21.06  |     |
| Non-Parametric UCLs                           |        |     |
| Non-Parametric OCLS                           | 20.55  |     |

20.55

20.76

20.47

27.18

33.8

20.98

95% CLT UCL

95% Jackknife UCL

95% Bootstrap-t UCL

95% Hall's Bootstrap UCL

95% Standard Bootstrap UCL

95% Percentile Bootstrap UCL

| 95% BCA Bootstrap UCL         | 23.37 |
|-------------------------------|-------|
| 95% Chebyshev(Mean, Sd) UCL   | 26.35 |
| 97.5% Chebyshev(Mean, Sd) UCL | 30.37 |
| 99% Chebyshev(Mean, Sd) UCL   | 38.28 |
| •                             |       |

Potential UCL to Use

| Use 95% Student's-t UCL | 20.76 |
|-------------------------|-------|
| Or 95% Modified-t UCL   | 21.06 |

#### **Phenanthrene**

| Total Number of Data      | 18      |
|---------------------------|---------|
| Number of Non-Detect Data | 11      |
| Number of Detected Data   | 7       |
| Minimum Detected          | 0.018   |
| Maximum Detected          | 1.34    |
| Percent Non-Detects       | 61.11%  |
| Minimum Non-detect        | 0.00729 |
| Maximum Non-detect        | 0.0727  |
| Mean of Detected Data     | 0.266   |
| Median of Detected Data   | 0.041   |
| Variance of Detected Data | 0.231   |
| SD of Detected Data       | 0.481   |
| CV of Detected Data       | 1.805   |
| Skewness of Detected Data | 2.482   |
| Mean of Detected log data | -2.452  |
| SD of Detected Log data   | 1.542   |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect15Number treated as Detected3Single DL Percent Detection83.33%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method     | N/A    |
|--------------------------|--------|
| Kaplan Meier (KM) Method |        |
| Mean                     | 0.115  |
| SD                       | 0.303  |
| Standard Error of Mean   | 0.0771 |
| 95% KM (t) UCL           | 0.249  |

| 95% KM (z) UCL                    | 0.242 |
|-----------------------------------|-------|
| 95% KM (BCA) UCL                  | 0.265 |
| 95% KM (Percentile Bootstrap) UCL | 0.261 |
| 95% KM (Chebyshev) UCL            | 0.451 |
| 97.5% KM (Chebyshev) UCL          | 0.596 |
| 99% KM (Chebyshev) UCL            | 0.882 |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

|                                                         | ċ  |
|---------------------------------------------------------|----|
| ** Instead of UCL, EPC is selected to be median = <0.0  | ľ  |
| Institute of Oct. In Classification of incuran —        | 7  |
| 。<br>[1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2 | :  |
| [per recommendation in ProUCL User Guide]               | ſ. |
| per recommendation in Frooch Oser Guide                 | å  |
|                                                         |    |

#### Pyrene

| Total Number of Data      | 19             |
|---------------------------|----------------|
| Number of Non-Detect Data | 10             |
| Number of Detected Data   | 9              |
| Minimum Detected          | 0.0149         |
| Maximum Detected          | 4.64           |
| Percent Non-Detects       | 52.63%         |
| Minimum Non-detect        | 0.0122         |
| Maximum Non-detect        | 0.0702         |
| Mean of Detected Data     | 0.798          |
| Median of Detected Data   | 0.091          |
| Variance of Detected Data | 2.426          |
| SD of Detected Data       | 1.558          |
| CV of Detected Data       | 1.951          |
| Skewness of Detected Data | 2.356          |
| Mean of Detected log data | <b>-1</b> .978 |
| SD of Detected Log data   | 2.019          |
|                           |                |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect13Number treated as Detected6Single DL Percent Detection68.42%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

| Mean                              | 0.386 |
|-----------------------------------|-------|
| SD                                | 1.084 |
| Standard Error of Mean            | 0.264 |
| 95% KM (t) UCL                    | 0.843 |
| 95% KM (z) UCL                    | 0.82  |
| 95% KM (BCA) UCL                  | 0.898 |
| 95% KM (Percentile Bootstrap) UCL | 0.866 |
| 95% KM (Chebyshev) UCL            | 1.536 |
| 97,5% KM (Chebyshev) UCL          | 2,033 |
| 99% KM (Chebyshev) UCL            | 3.01  |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

### Silver

| Total Number of Data      | 18     |
|---------------------------|--------|
| Number of Non-Detect Data | 16     |
| Number of Detected Data   | 2      |
| Minimum Detected          | 0.092  |
| Maximum Detected          | 0.41   |
| Percent Non-Detects       | 88.89% |
| Minimum Non-detect        | 0.027  |
| Maximum Non-detect        | 0.15   |
|                           |        |
| Mean of Detected Data     | 0.251  |
| Median of Detected Data   | 0.251  |
| Variance of Detected Data | 0.0506 |
| SD of Detected Data       | 0.225  |
| CV of Detected Data       | 0.896  |
| Skewness of Detected Data | N/A    |
| Mean of Detected log data | -1.639 |
| SD of Detected Log data   | 1.057  |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17
Number treated as Detected 1
Single DL Percent Detection 94.44%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable. It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                              | N/A          |
|---------------------------------------------------|--------------|
| Kaplan Meier (KM) Method                          |              |
| Mean                                              | 0.11         |
| SD                                                | 0.0728       |
| Standard Error of Mean                            | 0.0243       |
| 95% KM (t) UCL                                    | 0.152        |
| 95% KM (z) UCL                                    | 0.15         |
| 95% KM (BCA) UCL                                  | 0.41         |
| 95% KM (Percentile Bootstrap) UCL                 | 0.41         |
| 95% KM (Chebyshev) UCL                            | 0.216        |
| 97.5% KM (Chebyshev) UCL                          | 0.261        |
| 99% KM (Chebyshev) UCL                            | 0.351        |
| Potential UCL to Use                              |              |
| 95% KM (BCA) UCL                                  | 0.41         |
| ** Instead of UCL, EPC is selected to be median = | <0.0600      |
| [per recommendation in ProUCL User Guide]         | A SERVICE OF |

#### Strontium

| Number of Valid Observations       | 18    |
|------------------------------------|-------|
| Number of Distinct Observations    | 18    |
| Minimum                            | 26.6  |
| Maximum                            | 93.6  |
| Mean                               | 57.32 |
| Median                             | 52.85 |
| SD                                 | 19.7  |
| Variance                           | 388.2 |
| Coefficient of Variation           | 0.344 |
| Skewness                           | 0.325 |
| Mean of log data                   | 3.989 |
| SD of log data                     | 0.364 |
| 95% Useful UCLs<br>Student's-t UCL | 65.4  |
| 95% UCLs (Adjusted for Skewness)   |       |
| 95% Adjusted-CLT UCL               | 65.34 |
| 95% Modified-t UCL                 | 65.45 |
| Non-Parametric UCLs                |       |
| 95% CLT UCL                        | 64.96 |

| 95% Jackknife UCL             | 65.4  |
|-------------------------------|-------|
| 95% Standard Bootstrap UCL    | 64.55 |
| 95% Bootstrap-t UCL           | 66.09 |
| 95% Hall's Bootstrap UCL      | 65.38 |
| 95% Percentile Bootstrap UCL  | 64.71 |
| 95% BCA Bootstrap UCL         | 64.87 |
| 95% Chebyshev(Mean, Sd) UCL   | 77.56 |
| 97.5% Chebyshev(Mean, Sd) UCL | 86.32 |
| 99% Chebyshev(Mean, Sd) UCL   | 103.5 |

## Data appear Normal (0.05)

May want to try Normal UCLs

#### Thallium

| Total Number of Data      | 18     |
|---------------------------|--------|
| Number of Non-Detect Data | 17     |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.63   |
| Maximum Detected          | 0.63   |
| Percent Non-Detects       | 94.44% |
| Minimum Non-detect        | 0.091  |
| Maximum Non-detect        | 0.89   |

Data set has all detected values equal to = 0.63, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.63

\*\* Instead of UCL, EPC is selected to be median = <0.100
[per recommendation in ProUCL User Guide]

...........

#### Tin

| Total Number of Data      | 18     |
|---------------------------|--------|
| Number of Non-Detect Data | 14     |
| Number of Detected Data   | 4      |
| Minimum Detected          | 0.68   |
| Maximum Detected          | 3.67   |
| Percent Non-Detects       | 77.78% |
| Minimum Non-detect        | 0.39   |
| Maximum Non-detect        | 2.17   |
| Mean of Detected Data     | 1.673  |
| Median of Detected Data   | 1.17   |
| Variance of Detected Data | 1.962  |
| SD of Detected Data       | 1.401  |
| CV of Detected Data       | 0.837  |
| Skewness of Detected Data | 1.487  |
| Mean of Detected log data | 0.267  |

0.795

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 17 Number treated as Detected 1 **Single DL Percent Detection** 94.44%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 0.904 |
| SD                                | 0.706 |
| Standard Error of Mean            | 0.193 |
| 95% KM (t) UCL                    | 1.239 |
| 95% KM (z) UCL                    | 1.221 |
| 95% KM (BCA) UCL                  | 3.67  |
| 95% KM (Percentile Bootstrap) UCL | 1.848 |
| 95% KM (Chebyshev) UCL            | 1.744 |
| 97.5% KM (Chebyshev) UCL          | 2.108 |
| 99% KM (Chebyshev) UCL            | 2.822 |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = [per recommendation in ProUCL User Guide]

#### Titanium

| Number of Valid Observations    | 18    |
|---------------------------------|-------|
| Number of Distinct Observations | 17    |
| Minimum                         | 3.41  |
| Maximum                         | 55.9  |
| Mean                            | 20.67 |
| Median                          | 18.7  |
| SD                              | 11.65 |
| Variance                        | 135.7 |
| Coefficient of Variation        | 0.563 |
| Skewness                        | 1.656 |
| Mean of log data                | 2.882 |
| SD of log data                  | 0.591 |

| 95% Useful UCLs                      |       |
|--------------------------------------|-------|
| Student's-t UCL                      | 25.45 |
|                                      |       |
| 95% UCLs (Adjusted for Skewness)     |       |
| 95% Adjusted-CLT UCL                 | 26.33 |
| 95% Modified-t UCL                   | 25.63 |
|                                      |       |
| Non-Parametric UCLs                  |       |
| 95% CLT UCL                          | 25.19 |
| 95% Jackknife UCL                    | 25.45 |
| 95% Standard Bootstrap UCL           | 24.96 |
| 95% Bootstrap-t UCL                  | 27.41 |
| 95% Hall's Bootstrap UCL             | 33.8  |
| 95% Percentile Bootstrap UCL         | 25.5  |
| 95% BCA Bootstrap UCL                | 26.63 |
| 95% Chebyshev(Mean, Sd) UCL          | 32.64 |
| 97.5% Chebyshev(Mean, Sd) UCL        | 37.82 |
| 99% Chebyshev(Mean, Sd) UCL          | 47.99 |
|                                      |       |
| Data appear Gamma Distributed (0.05) |       |
| A                                    |       |

May want to try Gamma UCLs

| Va | na | Ь | <br>m |
|----|----|---|-------|
|    |    |   |       |

| Number of Valid Observations                                                                                                | 18                             |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Number of Distinct Observations                                                                                             | 18                             |
| Minimum                                                                                                                     | 7.85                           |
| Maximum                                                                                                                     | 45.8                           |
| Mean                                                                                                                        | 19.66                          |
| Median                                                                                                                      | 18.65                          |
| SD                                                                                                                          | 9.126                          |
| Variance                                                                                                                    | 83.28                          |
| Coefficient of Variation                                                                                                    | 0.464                          |
| Skewness                                                                                                                    | 1.322                          |
| Mean of log data                                                                                                            | 2.884                          |
| SD of log data                                                                                                              | 0.449                          |
|                                                                                                                             |                                |
| 95% Useful UCLs<br>Student's-t UCL                                                                                          | 23.4                           |
| Student's-t UCL                                                                                                             | 23.4                           |
| 그 많은 경우, 사람은 중심원들(경우) 가입하는 이 하는 것 같은 사람은 사람이 살아 없는 것 같아 있다.                                                                 | <b>23.4</b> 23.91              |
| Student's-t UCL 95% UCLs (Adjusted for Skewness)                                                                            | er of the end of the secondary |
| Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL                                                      | 23.91                          |
| 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL                                                    | 23.91                          |
| 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL Non-Parametric UCLs                                | 23.91<br>23.51                 |
| 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL                   | 23.91<br>23.51<br>23.2         |
| 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL | 23.91<br>23.51<br>23.2<br>23.4 |

| 95% Percentile Bootstrap UCL  | 23.28 |
|-------------------------------|-------|
| 95% BCA Bootstrap UCL         | 23.91 |
| 95% Chebyshev(Mean, Sd) UCL   | 29.03 |
| 97.5% Chebyshev(Mean, Sd) UCL | 33.09 |
| 99% Chebyshev(Mean, Sd) UCL   | 41.06 |
|                               |       |

# Data appear Normal (0.05)

| Zinc                                          |         |  |
|-----------------------------------------------|---------|--|
| Zinc                                          |         |  |
| Number of Valid Observations                  | 18      |  |
| Number of Distinct Observations               | 18      |  |
| Minimum                                       | 29.5    |  |
| Maximum                                       | 5640    |  |
| Mean                                          | 418.4   |  |
| Median                                        | 53.95   |  |
| SD                                            | 1308    |  |
| Variance                                      | 1709718 |  |
| Coefficient of Variation                      | 3.125   |  |
| Skewness                                      | 4.195   |  |
| Mean of log data                              | 4.562   |  |
| SD of log data                                | 1.321   |  |
| Data do not follow a Discernable Distribution |         |  |
| 95% Useful UCLs                               |         |  |
| Student's-t UCL                               | 954.5   |  |
| 95% UCLs (Adjusted for Skewness)              |         |  |
| 95% Adjusted-CLT UCL                          | 1251    |  |
| 95% Modified-t UCL                            | 1005    |  |
| Non-Parametric UCLs                           |         |  |
| 95% CLT UCL                                   | 925.3   |  |
| 95% Jackknife UCL                             | 954.5   |  |
| 95% Standard Bootstrap UCL                    | 913.4   |  |
| 95% Bootstrap-t UCL                           | 5677    |  |
| 95% Hall's Bootstrap UCL                      | 3640    |  |
| 95% Percentile Bootstrap UCL                  | 1029    |  |
| 95% BCA Bootstrap UCL                         | 1364    |  |
| 95% Chebyshev(Mean, Sd) UCL                   | 1762    |  |
| 97.5% Chebyshev(Mean, Sd) UCL                 | 2343    |  |
| 99% Chebyshev(Mean, Sd) UCL                   | 3485    |  |

**APPENDIX A-4** 

NORTH OF MARLIN SOIL

#### Nonparametric UCL Statistics for Data Sets with Non-Detects

**User Selected Options** 

From File

C:\Users\Michael\....\ProUCL data analysis\North of Marlin Soil Boring\North of Marlin Soil - all data\_ProUCL input.wst

2.93

**Full Precision** 

OFF

**Confidence Coefficient** 

95%

**Number of Bootstrap Operations** 

2000

#### 1,1-Dichloroethane

| Total Number of Data      | 21       |
|---------------------------|----------|
| Number of Non-Detect Data | 18       |
| Number of Detected Data   | 3        |
| Minimum Detected          | 0.00161  |
| Maximum Detected          | 0.518    |
| Percent Non-Detects       | 85.71%   |
| Minimum Non-detect        | 1.28E-04 |
| Maximum Non-detect        | 0.186    |
|                           |          |
| Mean of Detected Data     | 0.177    |
| Median of Detected Data   | 0.0121   |
| Variance of Detected Data | 0.0871   |
| SD of Detected Data       | 0.295    |
| CV of Detected Data       | 1.665    |
| Skewness of Detected Data | 1.73     |
| Mean of Detected log data | -3.835   |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

SD of Detected Log data

Number treated as Non-Detect 20
Number treated as Detected 1
Single DL Percent Detection 95.24%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

 Mean
 0.0267

 SD
 0.11

| Standard Error of Mean            | 0.0294 |
|-----------------------------------|--------|
| 95% KM (t) UCL                    | 0.0774 |
| 95% KM (z) UCL                    | 0.075  |
| 95% KM (BCA) UCL                  | 0.518  |
| 95% KM (Percentile Bootstrap) UCL | 0.518  |
| 95% KM (Chebyshev) UCL            | 0.155  |
| 97.5% KM (Chebyshev) UCL          | 0.21   |
| 99% KM (Chebyshev) UCL            | 0.319  |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

\*\* Instead of UCL, EPC is selected to be median = < <0.000175

[per recommendation in ProUCL User Guide]

#### 1,1-Dichloroethene

| Total Number of Data      | 21       |
|---------------------------|----------|
| Number of Non-Detect Data | 19       |
| Number of Detected Data   | 2        |
| Minimum Detected          | 0.00178  |
| Maximum Detected          | 0.313    |
| Percent Non-Detects       | 90.48%   |
| Minimum Non-detect        | 2.90E-04 |
| Maximum Non-detect        | 0.419    |
| Mean of Detected Data     | 0.157    |
| Median of Detected Data   | 0.157    |
| Variance of Detected Data | 0.0484   |
| SD of Detected Data       | 0.22     |
| CV of Detected Data       | 1.398    |
| Skewness of Detected Data | N/A      |
| Mean of Detected log data | -3.746   |
| SD of Detected Log data   | 3.655    |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                              | N/A       |
|---------------------------------------------------|-----------|
| Kaplan Meier (KM) Method                          |           |
| Mean                                              | 0.0173    |
| SD                                                | 0.0678    |
| Standard Error of Mean                            | 0.0214    |
| 95% KM (t) UCL                                    | 0.0543    |
| 95% KM (z) UCL                                    | 0.0526    |
| 95% KM (BCA) UCL                                  | 0.313     |
| 95% KM (Percentile Bootstrap) UCL                 | N/A       |
| 95% KM (Chebyshev) UCL                            | 0.111     |
| 97.5% KM (Chebyshev) UCL                          | 0.151     |
| 99% KM (Chebyshev) UCL                            | 0.231     |
| Potential UCL to Use                              |           |
| 99% KM (Chebyshev) UCL                            | 0.231     |
| ** Instead of UCL, EPC is selected to be median = | <0.000392 |

## 1,2-Dichloroethane

| Total Number of Data      | 21       |
|---------------------------|----------|
| Number of Non-Detect Data | 16       |
| Number of Detected Data   | 5        |
| Minimum Detected          | 0.00231  |
| Maximum Detected          | 0.178    |
| Percent Non-Detects       | 76.19%   |
| Minimum Non-detect        | 9.20E-05 |
| Maximum Non-detect        | 0.133    |
|                           |          |
| Mean of Detected Data     | 0.0744   |
| Median of Detected Data   | 0.011    |
| Variance of Detected Data | 0.00887  |
| SD of Detected Data       | 0.0942   |
| CV of Detected Data       | 1.266    |
| Skewness of Detected Data | 0.603    |
| Mean of Detected log data | -3.934   |
| SD of Detected Log data   | 2.091    |
|                           |          |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs

| Number treated as Non-Detect | 19     |
|------------------------------|--------|
| Number treated as Detected   | 2      |
| Single DL Percent Detection  | 90.48% |

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0195 |
| SD                                | 0.0513 |
| Standard Error of Mean            | 0.0125 |
| 95% KM (t) UCL                    | 0.0411 |
| 95% KM (z) UCL                    | 0.0401 |
| 95% KM (BCA) UCL                  | 0.177  |
| 95% KM (Percentile Bootstrap) UCL | 0.0507 |
| 95% KM (Chebyshev) UCL            | 0.0741 |
| 97.5% KM (Chebyshev) UCL          | 0.0977 |
| 99% KM (Chebyshev) UCL            | 0.144  |
|                                   |        |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

\*\* Instead of UCL, EPC is selected to be median = [per recommendation in ProUCL User Guide]

<0.000127

### 2-Butanone

| Total Number of Data      | 21       |
|---------------------------|----------|
| Number of Non-Detect Data | 10       |
| Number of Detected Data   | 11       |
| Minimum Detected          | 0.0017   |
| Maximum Detected          | 0.208    |
| Percent Non-Detects       | 47.62%   |
| Minimum Non-detect        | 2.52E-04 |
| Maximum Non-detect        | 0.364    |
| Mean of Detected Data     | 0.0222   |
| Median of Detected Data   | 0.00299  |
| Variance of Detected Data | 0.0038   |
| SD of Detected Data       | 0.0617   |
| CV of Detected Data       | 2.78     |
| Skewness of Detected Data | 3.312    |
| Mean of Detected log data | -5.351   |
| SD of Detected Log data   | 1.327    |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kaplan Meier (KM) Method          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mean                              | 0.0132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SD                                | 0.0447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Standard Error of Mean            | 0.0105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 95% KM (t) UCL                    | 0.0313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 95% KM (z) UCL                    | 0.0305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 95% KM (BCA) UCL                  | 0.0339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 95% KM (Percentile Bootstrap) UCL | 0.0327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 95% KM (Chebyshev) UCL            | 0.0589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 97.5% KM (Chebyshev) UCL          | 0.0787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 99% KM (Chebyshev) UCL            | 0.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                   | and the second s |
| Potential UCL to Use              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

97.5% KM (Chebyshev) UCL 0.0787

## 2-Methylnaphthalene

| Total Number of Data      | . 38   |
|---------------------------|--------|
| Number of Non-Detect Data | 32     |
| Number of Detected Data   | 6      |
| Minimum Detected          | 0.01   |
| Maximum Detected          | 1.04   |
| Percent Non-Detects       | 84.21% |
| Minimum Non-detect        | 0.01   |
| Maximum Non-detect        | 0.0634 |
|                           |        |
| Mean of Detected Data     | 0.202  |
| Median of Detected Data   | 0.0493 |
| Variance of Detected Data | 0.169  |
| SD of Detected Data       | 0.411  |
| CV of Detected Data       | 2.029  |
| Skewness of Detected Data | 2.437  |
| Mean of Detected log data | -2.979 |
| SD of Detected Log data   | 1.651  |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

| Number treated as Non-Detect | 37     |
|------------------------------|--------|
| Number treated as Detected   | 1      |
| Single DL Percent Detection  | 97.37% |

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0405 |
| SD                                | 0.165  |
| Standard Error of Mean            | 0.0293 |
| 95% KM (t) UCL                    | 0.0899 |
| 95% KM (z) UCL                    | 0.0886 |
| 95% KM (BCA) UCL                  | 1.04   |
| 95% KM (Percentile Bootstrap) UCL | 0.0983 |
| 95% KM (Chebyshev) UCL            | 0.168  |
| 97.5% KM (Chebyshev) UCL          | 0.223  |
| 99% KM (Chebyshev) UCL            | 0.332  |
|                                   |        |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

| ** Instead of UCL, EPC is selected to be median = <0 | 0.0119 |
|------------------------------------------------------|--------|
|                                                      |        |
|                                                      |        |
|                                                      |        |
|                                                      |        |
|                                                      |        |
|                                                      |        |
| [per recommendation in ProUCL User Guide]            |        |
|                                                      |        |
|                                                      |        |
|                                                      |        |

## 4,4'-DDE

| Total Number of Data      | 38       |
|---------------------------|----------|
| Number of Non-Detect Data | 36       |
| Number of Detected Data   | 2        |
| Minimum Detected          | 0.00216  |
| Maximum Detected          | 0.0149   |
| Percent Non-Detects       | 94.74%   |
| Minimum Non-detect        | 3.79E-04 |
| Maximum Non-detect        | 0.054    |
|                           |          |
| Mean of Detected Data     | 0.00853  |
| Median of Detected Data   | 0.00853  |
| Variance of Detected Data | 8.12E-05 |
| SD of Detected Data       | 0.00901  |
| CV of Detected Data       | 1.056    |
| Skewness of Detected Data | N/A      |
| Mean of Detected log data | -5.172   |
| SD of Detected Log data   | 1.366    |
|                           |          |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 38
Number treated as Detected 0
Single DL Percent Detection 100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                              | N/A       |
|---------------------------------------------------|-----------|
| Kaplan Meier (KM) Method                          |           |
| Mean                                              | 0.0025    |
| SD                                                | 0.00207   |
| Standard Error of Mean                            | 4.80E-04  |
| 95% KM (t) UCL                                    | 0.00331   |
| 95% KM (z) UCL                                    | 0.00329   |
| 95% KM (BCA) UCL                                  | 0.0149    |
| 95% KM (Percentile Bootstrap) UCL                 | 0.0149    |
| 95% KM (Chebyshev) UCL                            | 0.0046    |
| 97.5% KM (Chebyshev) UCL                          | 0.0055    |
| 99% KM (Chebyshev) UCL                            | 0.00728   |
| Potential UCL to Use                              |           |
| 95% KM (BCA) UCL                                  | 0.0149    |
| ** Instead of UCL, EPC is selected to be median = | <0.000428 |

| **   | Instead of  | f UCL, EPC is selec | cted to be med  | ian = <0.000428 |
|------|-------------|---------------------|-----------------|-----------------|
| L ., | 404,000 000 |                     |                 |                 |
| 높.   | Iner reco   | ommendation in      | ProffCl liser G | uidel           |
| 100  | ipeeec      |                     |                 |                 |

## 4,4'-DDT

| Total Number of Data      | 38       |
|---------------------------|----------|
| Number of Non-Detect Data | 29       |
| Number of Detected Data   | 9        |
| Minimum Detected          | 0.000597 |

| Maximum Detected          | 0.395    |
|---------------------------|----------|
| Percent Non-Detects       | 76.32%   |
| Minimum Non-detect        | 1.46E-04 |
| Maximum Non-detect        | 0.00282  |
|                           |          |
| Mean of Detected Data     | 0.0471   |
| Median of Detected Data   | 0.00145  |
| Variance of Detected Data | 0.017    |
| SD of Detected Data       | 0.131    |
| CV of Detected Data       | 2.771    |
| Skewness of Detected Data | 2.995    |
| Mean of Detected log data | -5.592   |
| SD of Detected Log data   | 2.035    |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect34Number treated as Detected4Single DL Percent Detection89.47%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A    |  |  |  |  |  |  |  |
|-----------------------------------|--------|--|--|--|--|--|--|--|
| Kaplan Meier (KM) Method          |        |  |  |  |  |  |  |  |
| Mean                              | 0.0116 |  |  |  |  |  |  |  |
| SD                                | 0.0631 |  |  |  |  |  |  |  |
| Standard Error of Mean            | 0.0109 |  |  |  |  |  |  |  |
| 95% KM (t) UCL                    | 0.0299 |  |  |  |  |  |  |  |
| 95% KM (z) UCL                    | 0.0295 |  |  |  |  |  |  |  |
| 95% KM (BCA) UCL                  | 0.0329 |  |  |  |  |  |  |  |
| 95% KM (Percentile Bootstrap) UCL | 0.0323 |  |  |  |  |  |  |  |
| 95% KM (Chebyshev) UCL            | 0.0589 |  |  |  |  |  |  |  |
| 97.5% KM (Chebyshev) UCL          | 0.0794 |  |  |  |  |  |  |  |
| 99% KM (Chebyshev) UCL            | 0.12   |  |  |  |  |  |  |  |
| Potential UCL to Use              |        |  |  |  |  |  |  |  |
| 99% KM (Chebyshev) UCL 0.12       |        |  |  |  |  |  |  |  |
|                                   |        |  |  |  |  |  |  |  |

# Acenaphthene

| Number of Non-Detect Data | 33 |
|---------------------------|----|
| Number of Detected Data   | 5  |

| Minimum Detected          | 0.013   |
|---------------------------|---------|
| Maximum Detected          | 0.157   |
| Percent Non-Detects       | 86.84%  |
| Minimum Non-detect        | 0.00998 |
| Maximum Non-detect        | 0.125   |
|                           |         |
| Mean of Detected Data     | 0.0648  |
| Median of Detected Data   | 0.027   |
| Variance of Detected Data | 0.00406 |
| SD of Detected Data       | 0.0637  |
| CV of Detected Data       | 0.983   |
| Skewness of Detected Data | 0.93    |
| Mean of Detected log data | -3.183  |
| SD of Detected Log data   | 1.078   |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 37
Number treated as Detected 1
Single DL Percent Detection 97.37%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0199  |
| SD <sup>-</sup>                   | 0.0272  |
| Standard Error of Mean            | 0.00495 |
| 95% KM (t) UCL                    | 0.0283  |
| 95% KM (z) UCL                    | 0.0281  |
| 95% KM (BCA) UCL                  | 0.107   |
| 95% KM (Percentile Bootstrap) UCL | 0.0407  |
| 95% KM (Chebyshev) UCL            | 0.0415  |
| 97.5% KM (Chebyshev) UCL          | 0.0508  |
| 99% KM (Chebyshev) UCL            | 0.0692  |
| Data appear Normal (0.05)         |         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| ** Instead of UCL, EPC is selected to be median = <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11     |
| 《大学》的《南西》,他们的诗诗《古典》的《西西蒙诗》," <del>随着</del> "随时的","这种情况,这种情况,这种"自然"。"这一个的"自然","这一个的","这一个一个一个一个一个一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tales. |
| [per recommendation in ProUCL User Guide]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Same   |
| in a liper recommendation in Product User Guide is the light and limited the liper recommendation in Product User Guide is the liper recommendatio |        |

## Acenaphthylene

May want to try Normal UCLs

| Total Number of Data      | 38      |
|---------------------------|---------|
| Number of Non-Detect Data | 37      |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.0555  |
| Maximum Detected          | 0.0555  |
| Percent Non-Detects       | 97.37%  |
| Minimum Non-detect        | 0.00768 |
| Maximum Non-detect        | 0.09    |

Data set has all detected values equal to = 0.0555, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0555

| is selected to be median |  |
|--------------------------|--|
|                          |  |
|                          |  |
|                          |  |
| ion in ProUCL User Guide |  |
|                          |  |
|                          |  |
|                          |  |

| mı | m  | ım   |
|----|----|------|
|    | mi | minı |

| Number of Valid Observations    | 39       |
|---------------------------------|----------|
| Number of Distinct Observations | 34       |
| Minimum                         | 1810     |
| Maximum                         | 18300    |
| Mean                            | 12268    |
| Median                          | 12600    |
| SD                              | 3987     |
| Variance                        | 15892441 |
| Coefficient of Variation        | 0.325    |
| Skewness                        | -0.344   |
| Mean of log data                | 9.344    |
| SD of log data                  | 0.431    |
|                                 |          |

| 1 | Ċ | 9 | 5 | ٩'n | ı   | Je | e | fı | ıl  | t. | iC | Ĺ  | \$<br>- [] |    | ं | į. |    |    | å, |    | (a) | 0.0 | 4   | ú  |     | 'n |     | Ĵ, | ેં  | ġ |     |    |    |   | Ŕ, |
|---|---|---|---|-----|-----|----|---|----|-----|----|----|----|------------|----|---|----|----|----|----|----|-----|-----|-----|----|-----|----|-----|----|-----|---|-----|----|----|---|----|
|   | 3 | 7 | 3 | 6   | 9.3 |    |   |    |     | w  | 10 | 7  |            |    | 1 |    | 1  | ٠. | 11 | 44 | ٠,  |     | S,  |    |     |    | . 4 |    |     | े |     | Ţζ | ٠. | 0 | 3  |
| ċ |   | * |   | ۱.  |     |    |   | ì  | . 1 | ^  |    | 10 | <br>120    | j. | - |    | 75 | 9  | 1  | 1  | - 3 | 1   | ्रा | KQ | ٠., |    |     | ٠. | : 4 |   | -3. | 2  | •  |   | 1  |

| Student's-t UCL 133              |       |  |  |  |  |  |
|----------------------------------|-------|--|--|--|--|--|
| 95% UCLs (Adjusted for Skewness) |       |  |  |  |  |  |
| 95% Adjusted-CLT UCL             | 13281 |  |  |  |  |  |
| 95% Modified-t UCL               | 13339 |  |  |  |  |  |
| Non-Parametric UCLs              |       |  |  |  |  |  |
| 95% CLT UCL                      | 13318 |  |  |  |  |  |
| 95% Jackknife UCL                | 13344 |  |  |  |  |  |
| 95% Standard Bootstrap UCL       | 13305 |  |  |  |  |  |
| 95% Bootstrap-t UCL              | 13336 |  |  |  |  |  |
| 95% Hall's Bootstrap UCL         | 13249 |  |  |  |  |  |
| 95% Percentile Bootstrap UCL     | 13267 |  |  |  |  |  |
| 95% BCA Bootstrap UCL            | 13253 |  |  |  |  |  |
| 95% Chebyshev(Mean, Sd) UCL      | 15051 |  |  |  |  |  |

16255

18620

97.5% Chebyshev(Mean, Sd) UCL

99% Chebyshev(Mean, Sd) UCL

## Data appear Normal (0.05)

May want to try Normal UCLs

\_\_\_\_\_

#### Anthracene

| •                         |         |
|---------------------------|---------|
| Total Number of Data      | 38      |
| Number of Non-Detect Data | 30      |
| Number of Detected Data   | 8       |
| Minimum Detected          | 0.00887 |
| Maximum Detected          | 0.264   |
| Percent Non-Detects       | 78.95%  |
| Minimum Non-detect        | 0.00744 |
| Maximum Non-detect        | 0.0641  |
| Mean of Detected Data     | 0.104   |
| Median of Detected Data   | 0.0565  |
| Variance of Detected Data | 0.00876 |
| SD of Detected Data       | 0.0936  |
| CV of Detected Data       | 0.899   |
| Skewness of Detected Data | 0.812   |
| Mean of Detected log data | -2.719  |
| SD of Detected Log data   | 1.124   |
|                           |         |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect35Number treated as Detected3Single DL Percent Detection92.11%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

# Data Dsitribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

| Winsorization Method     | N/A |
|--------------------------|-----|
| Kaplan Meier (KM) Method |     |
|                          |     |

| Mean                              | 0.029  |
|-----------------------------------|--------|
| SD                                | 0.0559 |
| Standard Error of Mean            | 0.0097 |
| 95% KM (t) UCL                    | 0.0454 |
| 95% KM (z) UCL                    | 0.045  |
| 95% KM (BCA) UCL                  | 0.0731 |
| 95% KM (Percentile Bootstrap) UCL | 0.064  |
| 95% KM (Chebyshev) UCL            | 0.0713 |
| 97.5% KM (Chebyshev) UCL          | 0.0896 |

Data appear Normal (0.05)
May want to try Normal UCLs

| May want to try Normal UCLs                          |        |   |
|------------------------------------------------------|--------|---|
| Antimony                                             |        |   |
| Total Number of Data                                 | 39     | - |
| Number of Non-Detect Data                            | 20     |   |
| Number of Detected Data                              | 19     |   |
| Minimum Detected                                     | 0.22   |   |
| Maximum Detected                                     | 8.09   |   |
| Percent Non-Detects                                  | 51.28% |   |
| Minimum Non-detect                                   | 0.19   |   |
| Maximum Non-detect                                   | 0.26   |   |
| Mean of Detected Data                                | 2.753  |   |
| Median of Detected Data                              | 2.56   |   |
| Variance of Detected Data                            | 2.663  |   |
| SD of Detected Data                                  | 1.632  |   |
| CV of Detected Data                                  | 0.593  |   |
| Skewness of Detected Data                            | 1.815  |   |
| Mean of Detected log data                            | 0.798  |   |
| SD of Detected Log data                              | 0.807  |   |
| Note: Data have multiple DLs - Use of KM Method      |        |   |
| For all methods (except KM, DL/2, and ROS Method     | s),    |   |
| Observations < Largest DL are treated as NDs         |        |   |
| Number treated as Non-Detect                         | 21     |   |
| Number treated as Detected                           | 18     |   |
| Single DL Percent Detection                          | 53.85% |   |
| Data Dsitribution Test with Detected Values Only     |        |   |
| Data do not follow a Discernable Distribution (0.05) |        |   |
| Winsorization Method                                 | N/A    |   |
| Kaplan Meier (KM) Method                             |        |   |
| Mean                                                 | 1.454  |   |
| SD                                                   | 1.683  |   |
| Standard Error of Mean                               | 0.277  |   |
| 95% KM (t) UCL                                       | 1.921  | • |
| 95% KM (z) UCL                                       | 1.91   |   |
| 95% KM (BCA) UCL                                     | 2.662  |   |
| 95% KM (Percentile Bootstrap) UCL                    | 2.454  |   |
| 95% KM (Chebyshey) UCL                               | 2.661  |   |
| 97.5% KM (Chebyshev) UCL                             | 3.183  |   |
| 99% KM (Chebyshev) UCL                               | 4.209  |   |
| Potential UCL to Use                                 |        |   |
| 95% KM (t) UCL                                       | 1.921  |   |

#### Aroclor-1254

| Total Number of Data      | 38      |
|---------------------------|---------|
| Number of Non-Detect Data | 35      |
| Number of Detected Data   | 3       |
| Minimum Detected          | 0.0122  |
| Maximum Detected          | 6.35    |
| Percent Non-Detects       | 92.11%  |
| Minimum Non-detect        | 0.00379 |
| Maximum Non-detect        | 0.033   |
|                           |         |
| Mean of Detected Data     | 2.152   |
| Median of Detected Data   | 0.0938  |
| Variance of Detected Data | 13.22   |
| SD of Detected Data       | 3.636   |
| CV of Detected Data       | 1.689   |
| Skewness of Detected Data | 1.731   |
| Mean of Detected log data | -1.641  |
| SD of Detected Log data   | 3.19    |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect36Number treated as Detected2Single DL Percent Detection94.74%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 0.181 |
| SD                                | 1.014 |
| Standard Error of Mean            | 0.202 |
| 95% KM (t) UCL                    | 0.521 |
| 95% KM (z) UCL                    | 0.513 |
| 95% KM (BCA) UCL                  | N/A   |
| 95% KM (Percentile Bootstrap) UCL | N/A   |

| 95% KM (Chebyshev) UCL   | 1.059 |
|--------------------------|-------|
| 97.5% KM (Chebyshev) UCL | 1.44  |
| 99% KM (Chebyshev) UCL   | 2.186 |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

| ** Instead of UCL, EPC is selected to be median = |
|---------------------------------------------------|
|                                                   |

#### Arsenic

| Total Number of Data      | 39     |
|---------------------------|--------|
| Number of Non-Detect Data | 6      |
| Number of Detected Data   | 33     |
| Minimum Detected          | 0.54   |
| Maximum Detected          | 5.69   |
| Percent Non-Detects       | 15.38% |
| Minimum Non-detect        | 0.15   |
| Maximum Non-detect        | 0.68   |
|                           |        |
| Mean of Detected Data     | 2.83   |
| Median of Detected Data   | 2.55   |
| Variance of Detected Data | 1.311  |
| SD of Detected Data       | 1.145  |
| CV of Detected Data       | 0.405  |
| Skewness of Detected Data | 0.914  |
| Mean of Detected log data | 0.956  |
| SD of Detected Log data   | 0.441  |
|                           |        |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect7Number treated as Detected32Single DL Percent Detection17.95%

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method     | 17.95% |
|--------------------------|--------|
| Mean                     | 2.436  |
| SD                       | 0.738  |
| 95% Winsor (t) UCL       | 2.638  |
| Kanlan Mojor (KM) Mothod |        |

| Kapian ivieler (Kivi) ivietnod |       |
|--------------------------------|-------|
| Mean                           | 2.477 |
| SD                             | 1.326 |
| Standard Error of Mean         | 0.216 |
| 95% KM (t) UCL                 | 2.841 |
| 95% KM (z) UCL                 | 2.832 |
|                                |       |

| 95% KM (BCA) UCL                            | 2.994 |   |
|---------------------------------------------|-------|---|
| 95% KM (Percentile Bootstrap) UCL           | 2.905 |   |
| 95% KM (Chebyshev) UCL                      | 3.417 |   |
| 97.5% KM (Chebyshev) UCL                    | 3.824 | , |
| 99% KM (Chebyshev) UCL                      | 4.623 |   |
| Data follow Appr. Gamma Distribution (0.05) |       |   |
| May want to try Gamma UCLs                  |       |   |
|                                             |       |   |
| Barium                                      |       |   |
| Number of Valid Observations                | 39    |   |
| Number of Distinct Observations             | 33    |   |
| Minimum                                     | 46.1  |   |
| Maximum                                     | 476   |   |
| Mean ·                                      | 141   |   |
| Median                                      | 123   |   |
| SD                                          | 93.22 |   |
| Variance                                    | 8690  |   |
| Coefficient of Variation                    | 0.661 |   |
| Skewness                                    | 2.335 |   |
| Mean of log data                            | 4.799 |   |
| SD of log data                              | 0.523 |   |
| 95% Useful UCLs                             |       |   |
| Student's-t UCL                             | 166.1 |   |
| 95% UCLs (Adjusted for Skewness)            |       |   |
| 95% Adjusted-CLT UCL                        | 171.5 |   |
| 95% Modified-t UCL                          | 167.1 |   |
| Non-Parametric UCLs                         |       |   |
| 95% CLT UCL                                 | 165.5 |   |
| 95% Jackknife UCL                           | 166.1 |   |
| 95% Standard Bootstrap UCL                  | 164.9 |   |
| 95% Bootstrap-t UCL                         | 176.3 |   |
| 95% Hall's Bootstrap UCL                    | 184.8 |   |
| 95% Percentile Bootstrap UCL                | 165.8 |   |
| 95% BCA Bootstrap UCL                       | 173.7 |   |
| 95% Chebyshev(Mean, Sd) UCL                 | 206   |   |
| 97.5% Chebyshev (Mean, Sd) UCL              | 234.2 |   |
| 99% Chebyshev(Mean, Sd) UCL                 | 289.5 |   |
| Data appear Lognormal (0.05)                |       |   |
| May want to try Lognormal UCLs              |       |   |

21

9

Page 15 of 66

Benzene

Total Number of Data

Number of Non-Detect Data

| Number of Detected Data   | 12       |
|---------------------------|----------|
| Minimum Detected          | 0.00138  |
| Maximum Detected          | 0.00632  |
| Percent Non-Detects       | 42.86%   |
| Minimum Non-detect        | 9.00E-05 |
| Maximum Non-detect        | 0.121    |
|                           |          |
| Mean of Detected Data     | 0.00357  |
| Median of Detected Data   | 0.00299  |
| Variance of Detected Data | 2.98E-06 |
| SD of Detected Data       | 0.00173  |
| CV of Detected Data       | 0.484    |
| Skewness of Detected Data | 0.473    |
| Mean of Detected log data | -5.752   |
| SD of Detected Log data   | 0.517    |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method N, | /A |
|-------------------------|----|
|-------------------------|----|

Kaplan Meier (KM) Method

| •                                 |          |
|-----------------------------------|----------|
| Mean                              | 0.00292  |
| SD                                | 0.0016   |
| Standard Error of Mean            | 3.95E-04 |
| 95% KM (t) UCL                    | 0.0036   |
| 95% KM (z) UCL                    | 0.00357  |
| 95% KM (BCA) UCL                  | 0.00371  |
| 95% KM (Percentile Bootstrap) UCL | 0.00361  |
| 95% KM (Chebyshev) UCL            | 0.00464  |
| 97.5% KM (Chebyshev) UCL          | 0.00539  |
| 99% KM (Chebyshev) UCL            | 0.00685  |

Data appear Normal (0.05)
May want to try Normal UCLs

## Benzo(a)anthracene

| Total Number of Data      | 38     |
|---------------------------|--------|
| Number of Non-Detect Data | 33     |
| Number of Detected Data   | 5      |
| Minimum Detected          | 0.0383 |
| Maximum Detected          | 1.18   |
| Percent Non-Detects       | 86.84% |

| Minimum Non-detect        | 0.00503 |
|---------------------------|---------|
| Maximum Non-detect        | 0.0596  |
|                           | •       |
| Mean of Detected Data     | 0.576   |
| Median of Detected Data   | 0.611   |
| Variance of Detected Data | 0.219   |
| SD of Detected Data       | 0.468   |
| CV of Detected Data       | 0.813   |
| Skewness of Detected Data | 0.128   |
| Mean of Detected log data | -1.075  |
| SD of Detected Log data   | 1.398   |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 34
Number treated as Detected 4
Single DL Percent Detection 89.47%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method                             | N/A     |
|--------------------------------------------------|---------|
| Kaplan Meier (KM) Method                         |         |
| Mean                                             | 0.109   |
| SD                                               | 0.237   |
| Standard Error of Mean                           | 0.043   |
| 95% KM (t) UCL                                   | 0.182   |
| 95% KM (z) UCL                                   | 0.18    |
| 95% KM (BCA) UCL                                 | 0.864   |
| 95% KM (Percentile Bootstrap) UCL                | 0.671   |
| 95% KM (Chebyshev) UCL                           | 0.296   |
| 97.5% KM (Chebyshev) UCL                         | 0.377   |
| 99% KM (Chebyshev) UCL                           | 0.537   |
| Data appear Normal (0.05)                        |         |
| May want to try Normal UCLs                      |         |
| ** Instead of UCL_EPC is selected to be median = | <0.0111 |

## Benzo(a)pyrene

| Total Number of Data      | 38 |
|---------------------------|----|
| Number of Non-Detect Data | 28 |

[per recommendation in ProUCL User Guide]

| Number of Detected Data                           | 10               |     |
|---------------------------------------------------|------------------|-----|
| Minimum Detected                                  | 0.0135           |     |
| Maximum Detected                                  | 1.42             |     |
| Percent Non-Detects                               | 73.68%           |     |
| Minimum Non-detect                                | 0.009Õ1          | • ' |
| Maximum Non-detect                                | 0.1              |     |
|                                                   |                  |     |
| Mean of Detected Data                             | 0.318            |     |
| Median of Detected Data                           | 0.107            |     |
| Variance of Detected Data                         | 0.223            |     |
| SD of Detected Data                               | 0.472            |     |
| CV of Detected Data                               | 1.484            |     |
| Skewness of Detected Data                         | 1.951            |     |
| Mean of Detected log data                         | -2.019           |     |
| SD of Detected Log data                           | 1.398            |     |
|                                                   |                  |     |
| Note: Data have multiple DLs - Use of KM Method   | d is recommended |     |
| For all methods (except KM, DL/2, and ROS Metho   | ds),             |     |
| Observations < Largest DL are treated as NDs      |                  |     |
| Number treated as Non-Detect                      | 31               |     |
| Number treated as Detected                        | 7                |     |
| Single DL Percent Detection                       | 81.58%           |     |
|                                                   |                  |     |
| Data Dsitribution Test with Detected Values Only  |                  |     |
| Data appear Gamma Distributed at 5% Significance  | e Level          |     |
| Winsorization Method                              | N/A              |     |
|                                                   |                  |     |
| Kaplan Meier (KM) Method                          |                  |     |
| Mean                                              | 0.0937           |     |
| SD                                                | 0.266            |     |
| Standard Error of Mean                            | 0.0455           |     |
| 95% KM (t) UCL                                    | 0.17             |     |
| 95% KM (z) UCL                                    | 0.169            |     |
| 95% KM (BCA) UCL                                  | 0.226            |     |
| 95% KM (Percentile Bootstrap) UCL                 | 0.183            |     |
| 95% KM (Chebyshev) UCL                            | 0.292            |     |
| 97.5% KM (Chebyshev) UCL                          | 0.378            |     |
| 99% KM (Chebyshev) UCL                            | 0.546            |     |
|                                                   |                  |     |
| Data appear Gamma Distributed (0.05)              |                  |     |
| May want to try Gamma UCLs                        |                  |     |
|                                                   |                  |     |
|                                                   |                  |     |
| Benzo(b)fluoranthene                              |                  |     |
| Benzo(b)fluoranthene  Total Number of Data        | 38               |     |
|                                                   | 38<br>26         |     |
| Total Number of Data                              |                  |     |
| Total Number of Data<br>Number of Non-Detect Data | 26               |     |

1.62

68.42%

Maximum Detected

**Percent Non-Detects** 

| Minimum Non-detect                                   | 0.00721       |  |
|------------------------------------------------------|---------------|--|
| Maximum Non-detect                                   | 0.137         |  |
|                                                      |               |  |
| Mean of Detected Data                                | 0.349         |  |
| Median of Detected Data                              | 0.148         |  |
| Variance of Detected Data                            | 0.237         |  |
| SD of Detected Data                                  | 0.487         |  |
| CV of Detected Data                                  | 1.397         |  |
| Skewness of Detected Data                            | 2.223         |  |
| Mean of Detected log data                            | -1.63         |  |
| SD of Detected Log data                              | 1             |  |
|                                                      |               |  |
| Note: Data have multiple DLs - Use of KM Method i    | s recommended |  |
| For all methods (except KM, DL/2, and ROS Methods    | s),           |  |
| Observations < Largest DL are treated as NDs         |               |  |
| Number treated as Non-Detect                         | 31            |  |
| Number treated as Detected                           | 7             |  |
| Single DL Percent Detection                          | 81.58%        |  |
|                                                      |               |  |
| Data Dsitribution Test with Detected Values Only     |               |  |
| Data do not follow a Discernable Distribution (0.05) |               |  |
| and the second of                                    | N1 / A        |  |
| Winsorization Method                                 | N/A           |  |
| Kaplan Meier (KM) Method                             |               |  |
| Mean                                                 | 0.144         |  |
| SD                                                   | 0.297         |  |
| Standard Error of Mean                               | 0.0503        |  |
|                                                      | 0.229         |  |
| 95% KM (t) UCL                                       | 0.229         |  |
| 95% KM (z) UCL                                       | 0.293         |  |
| 95% KM (BCA) UCL                                     | 0.252         |  |
| 95% KM (Percentile Bootstrap) UCL                    | 0.363         |  |
| 95% KM (Chebyshev) UCL                               | 0.458         |  |
| 97.5% KM (Chebyshev) UCL                             |               |  |
| 99% KM (Chebyshev) UCL                               | 0.644         |  |
| Potential UCL to Use                                 |               |  |
| 95% KM (t) UCL                                       | 0.229         |  |
| 95% KM (% Bootstrap) UCL                             | 0.252         |  |
|                                                      |               |  |
|                                                      |               |  |
| Benzo(g,h,i)perylene                                 |               |  |
|                                                      |               |  |
| Total Number of Data                                 | 38            |  |
| Number of Non-Detect Data                            | 24            |  |
| Number of Detected Data                              | 14            |  |
| Minimum Detected                                     | 0.0237        |  |
| Maximum Detected                                     | 1.28          |  |
| Percent Non-Detects                                  | 63.16%        |  |
| Minimum Non-detect                                   | 0.00933       |  |
| NA . Junior Name debenk                              | 0.101         |  |

0.101

Maximum Non-detect

| 0.239  |
|--------|
| 0.0895 |
| 0.119  |
| 0.345  |
| 1.448  |
| 2.504  |
| -2.129 |
| 1.17   |
|        |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect33Number treated as Detected5Single DL Percent Detection86.84%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

| Mean                              | 0.103  |
|-----------------------------------|--------|
| SD                                | 0.227  |
| Standard Error of Mean            | 0.0382 |
| 95% KM (t) UCL                    | 0.168  |
| 95% KM (z) UCL                    | 0.166  |
| 95% KM (BCA) UCL                  | 0.188  |
| 95% KM (Percentile Bootstrap) UCL | 0.174  |
| 95% KM (Chebyshev) UCL            | 0.27   |
| 97.5% KM (Chebyshev) UCL          | 0.342  |
| 99% KM (Chebyshev) UCL            | 0.483  |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

# Benzo(k)fluoranthene

| Total Number of Data      | 38     |
|---------------------------|--------|
| Number of Non-Detect Data | 32     |
| Number of Detected Data   | 6      |
| Minimum Detected          | 0.068  |
| Maximum Detected          | 0.799  |
| Percent Non-Detects       | 84.21% |
| Minimum Non-detect        | 0.011  |
| Maximum Non-detect        | 0.124  |
| Mean of Detected Data     | 0.314  |
| Median of Detected Data   | 0.137  |
| Variance of Detected Data | 0.108  |
| SD of Detected Data       | 0.328  |

| Mean of Detected Data     | 0.75  |
|---------------------------|-------|
| Median of Detected Data   | 0.69  |
| Variance of Detected Data | 0.202 |
| SD of Detected Data       | 0.449 |
| CV of Detected Data       | 0.599 |
| Skewness of Detected Data | 3.001 |
| Mean of Detected log data | -0.44 |
| SD of Detected Log data   | 0.608 |

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method     | 0.608  |
|--------------------------|--------|
| Mean                     | 0.671  |
| SD                       | 0.307  |
| 95% Winsor (t) UCL       | 0.754  |
|                          |        |
| Kaplan Meier (KM) Method |        |
| Mean                     | 0.715  |
| SD                       | 0.457  |
| Standard Error of Mean   | 0.0742 |
| 95% KM (t) UCL           | 0.84   |
| 000/ 1/84/-11101         | 0.027  |

 95% KM (z) UCL
 0.837

 95% KM (BCA) UCL
 0.851

 95% KM (Percentile Bootstrap) UCL
 0.839

 95% KM (Chebyshev) UCL
 1.038

 97.5% KM (Chebyshev) UCL
 1.178

 99% KM (Chebyshev) UCL
 1.453

Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs

# Bis(2-Ethylhexyl)phthalate

| Total Number of Data      | 38      |
|---------------------------|---------|
| Number of Non-Detect Data | 26      |
| Number of Detected Data   | 12      |
| Minimum Detected          | 0.0122  |
| Maximum Detected          | 0.239   |
| Percent Non-Detects       | 68.42%  |
| Minimum Non-detect        | 0.013   |
| Maximum Non-detect        | 0.54    |
| Mean of Detected Data     | 0.0795  |
| Median of Detected Data   | 0.0546  |
| Variance of Detected Data | 0.00471 |
| SD of Detected Data       | 0.0686  |

| CV of Detected Data       | 1.043  |
|---------------------------|--------|
| Skewness of Detected Data | 1.006  |
| Mean of Detected log data | -1.639 |
| SD of Detected Log data   | 1.066  |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 34
Number treated as Detected 4
Single DL Percent Detection 89.47%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

0.37

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.107  |
| SD                                | 0.149  |
| Standard Error of Mean            | 0.0265 |
| 95% KM (t) UCL                    | 0.152  |
| 95% KM (z) UCL                    | 0.15   |
| 95% KM (BCA) UCL                  | 0.67   |
| 95% KM (Percentile Bootstrap) UCL | 0.18   |
| 95% KM (Chebyshev) UCL            | 0.222  |
| 97.5% KM (Chebyshev) UCL          | 0.272  |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

99% KM (Chebyshev) UCL

| ** Instead of UCL, EPC is selected to be | median = <0.0172 |
|------------------------------------------|------------------|
| [per recommendation in ProUCL Us         |                  |
| 1 Selberger Commendation III Frooch O    |                  |

# Beryllium

| Total Number of Data      | 39    |
|---------------------------|-------|
| Number of Non-Detect Data | . 2   |
| Number of Detected Data   | 37    |
| Minimum Detected          | 0.066 |
| Maximum Detected          | 2.88  |
| Percent Non-Detects       | 5.13% |
| Minimum Non-detect        | 0.02  |
| Maximum Non-detect        | 0.026 |

| CV of Detected Data       | 0.863  |
|---------------------------|--------|
| Skewness of Detected Data | 1.287  |
| Mean of Detected log data | -2.888 |
| SD of Detected Log data   | 0.918  |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect38Number treated as Detected0Single DL Percent Detection100.00%

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method | N/A |
|----------------------|-----|
|                      |     |

Kaplan Meier (KM) Method

| Mean                              | 0.0412  |
|-----------------------------------|---------|
| SD                                | 0.0472  |
| Standard Error of Mean            | 0.00871 |
| 95% KM (t) UCL                    | 0.0559  |
| 95% KM (z) UCL                    | 0.0555  |
| 95% KM (BCA) UCL                  | 0.0609  |
| 95% KM (Percentile Bootstrap) UCL | 0.0584  |
| 95% KM (Chebyshev) UCL            | 0.0792  |
| 97.5% KM (Chebyshev) UCL          | 0.0956  |
| 99% KM (Chebyshev) UCL            | 0.128   |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

### **Boron**

| Total Number of Data      | 39     |
|---------------------------|--------|
| Number of Non-Detect Data | 10     |
| Number of Detected Data   | 29     |
| Minimum Detected          | 3.14   |
| Maximum Detected          | 39.2   |
| Percent Non-Detects       | 25.64% |
| Minimum Non-detect        | 1.11   |
| Maximum Non-detect        | 1.3    |
| Mean of Detected Data     | 11.22  |
| Median of Detected Data   | 9.21   |
| Variance of Detected Data | 67.05  |
| SD of Detected Data       | 8.189  |
| CV of Detected Data       | 0.73   |
| Skewness of Detected Data | 1.832  |
| Mean of Detected log data | 2.199  |
| SD of Detected Log data   | 0.668  |
|                           |        |

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | 0.668 |
|-----------------------------------|-------|
| Mean                              | 7.644 |
| SD                                | 4.488 |
| 95% Winsor (t) UCL                | 8.89  |
|                                   |       |
| Kaplan Meier (KM) Method          |       |
| Mean                              | 9.152 |
| SD                                | 7.785 |
| Standard Error of Mean            | 1.269 |
| 95% KM (t) UCL <sup>-</sup>       | 11.29 |
| 95% KM (z) UCL                    | 11.24 |
| 95% KM (BCA) UCL                  | 11.42 |
| 95% KM (Percentile Bootstrap) UCL | 11.44 |
| 95% KM (Chebyshev) UCL            | 14.68 |
| 97.5% KM (Chebyshev) UCL          | 17.07 |
| 99% KM (Chebyshev) UCL            | 21.77 |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

## **Bromoform**

| Total Number of Data      | 21       |
|---------------------------|----------|
| Number of Non-Detect Data | 19       |
| Number of Detected Data   | 2        |
| Minimum Detected          | 0.011    |
| Maximum Detected          | 0.018    |
| Percent Non-Detects       | 90.48%   |
| Minimum Non-detect        | 1.37E-04 |
| Maximum Non-detect        | 0.197    |
| Mean of Detected Data     | 0.0145   |
| Median of Detected Data   | 0.0145   |
| Variance of Detected Data | 2.45E-05 |
| SD of Detected Data       | 0.00495  |
| CV of Detected Data       | 0.341    |
| Skewness of Detected Data | N/A      |
| Mean of Detected log data | -4.264   |
| SD of Detected Log data   | 0.348    |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs

| Number treated as Non-Detect |   | 21      |
|------------------------------|---|---------|
| Number treated as Detected   |   | 0       |
| Single DL Percent Detection  | , | 100.00% |

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates. The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods. However, results obtained using 4 to 9 distinct values may not be reliable. It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                                        | N/A      |  |  |
|-------------------------------------------------------------|----------|--|--|
| Kaplan Meier (KM) Method                                    |          |  |  |
| Mean                                                        | 0.0114   |  |  |
| SD                                                          | 0.00153  |  |  |
| Standard Error of Mean                                      | 4.82E-04 |  |  |
| 95% KM (t) UCL                                              | 0.0122   |  |  |
| 95% KM (z) UCL                                              | 0.0121   |  |  |
| 95% KM (BCA) UCL                                            | 0.018    |  |  |
| 95% KM (Percentile Bootstrap) UCL                           | N/A      |  |  |
| 95% KM (Chebyshev) UCL                                      | 0.0135   |  |  |
| 97.5% KM (Chebyshev) UCL                                    | 0.0144   |  |  |
| 99% KM (Chebyshev) UCL                                      | 0.0162   |  |  |
| Potential UCL to Use                                        |          |  |  |
| 95% KM (t) UCL                                              | 0.0122   |  |  |
| 95% KM (% Bootstrap) UCL                                    | N/A      |  |  |
| ** Instead of UCL, EPC is selected to be median = <0.000186 |          |  |  |

|        | 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - 11 1 4 2 C M 1 1 2 1 1 1 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | 1120 100 100 100 100 100 100 100 100 100 | 医甲基基酚 医抗乳毒素蛋白  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en it diverge galerate en en en en en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|-----------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24.3   |                                         | J - F I I C I                 | , EPC is se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                          |                | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.000186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | INSTABL                                 | n                             | PPI IS SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IPCTRA TO                                  | i ne meni:                               | an = ' '       | the state of the s | CU UIIIII Xh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 100    | 1110000                                 | u                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .cocca se                                  |                                          |                | N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | こんきべいし しょうりょういい                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>I control of the fact.</li> </ul> | ALTERNATION OF SMILE AND                 | 14 CF 14 CF 17 | 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SECTION SECTION AND ADMINISTRATION OF THE PERSON OF THE PE |
| 17,    | 2                                       | Committee of the committee of | Charles and Application of the Con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second of the second of            | 医动脉 医电极性衰竭性 电流管静脉 化氯                     |                | Acres to the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Service of the servic |
|        |                                         |                               | Carlot and the control of the contro |                                            |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A CONTRACTOR OF THE PARTY OF TH |
| - K 15 | INOT                                    | racamm                        | endation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IN UPALIF                                  | I HEAT (-II                              | וממו           | the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 医抗性性 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1      | STATE OF STATE                          | LECOMMIN                      | CHUGUUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111 FIOUL                                  | L OSCI UU                                | uue i          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COLORS OF THE STATE OF THE STAT |
|        |                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### **Butyl benzyl phthalate**

| Total Number of Data      | 38      |
|---------------------------|---------|
| Number of Non-Detect Data | 36      |
| Number of Detected Data   | 2       |
| Minimum Detected          | 0.054   |
| Maximum Detected          | 0.151   |
| Percent Non-Detects       | 94.74%  |
| Minimum Non-detect        | 0.00913 |

| Maximum Non-detect        | 0.107  |
|---------------------------|--------|
| Mean of Detected Data     | 0.103  |
| Median of Detected Data   | 0.103  |
| Variance of Detected Data | 0.0047 |
| SD of Detected Data       | 0.0686 |
| CV of Detected Data       | 0.669  |
| Skewness of Detected Data | N/A    |
| Mean of Detected log data | -2.405 |
| SD of Detected Log data   | 0.727  |

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest DL are treated as NDs

Number treated as Non-Detect 37
Number treated as Detected 1
Single DL Percent Detection 97.37%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0566  |
| SD                                | 0.0155  |
| Standard Error of Mean            | 0.00356 |
| 95% KM (t) UCL                    | 0.0626  |
| 95% KM (z) UCL                    | 0.0624  |
| 95% KM (BCA) UCL                  | 0.151   |
| 95% KM (Percentile Bootstrap) UCL | N/A     |
| 95% KM (Chebýshev) UCL            | 0.0721  |
| 97.5% KM (Chebyshev) UCL          | 0.0788  |
| 99% KM (Chebyshev) UCL            | 0.092   |
| Potential UCL to Use              |         |
| 95% KM (t) UCL                    | 0.0626  |
| 95% KM (% Bootstrap) UCL          | N/A     |

| THE RESIDENCE     | 500亿数型的 第二次 | 4、漢籍 法证据                                    | 24 (11) |         |             | (1200 - 151) |
|-------------------|-------------|---------------------------------------------|---------|---------|-------------|--------------|
| ** Instea         | id of UC    | FPC                                         | is sele | cted to | be me       | dian =       |
|                   |             | ·, -: ·                                     |         |         | DC 111C     |              |
| The Legisland Res | rocomn      | na iswaliu tu                               |         |         | 11.00       |              |
| I DOF             | racama      | $\alpha \alpha \alpha \alpha \alpha \gamma$ | tion in | Drall   | I I I COF ( |              |

< 0.0136

0.363

| Cadmium |  |  |
|---------|--|--|

| Total Number of Data      | 39     |
|---------------------------|--------|
| Number of Non-Detect Data | 23     |
| Number of Detected Data   | 16     |
| Minimum Detected          | 0.28   |
| Maximum Detected          | 0.94   |
| Percent Non-Detects       | 58.97% |
| Minimum Non-detect        | 0.006  |
| Maximum Non-detect        | 0.033  |
|                           |        |
| Mean of Detected Data     | 0.483  |
| Median of Detected Data   | 0.43   |
| Variance of Detected Data | 0.0333 |
| SD of Detected Data       | 0.183  |
| CV of Detected Data       | 0.378  |
| Skewness of Detected Data | 1.401  |
| Mean of Detected log data | -0.786 |
| SD of Detected Log data   | 0.338  |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

| Wincorization Method | N/A |
|----------------------|-----|

| Kaplan Meier (KM) Method |  |
|--------------------------|--|
| Mean                     |  |
| ~~                       |  |

 SD
 0.151

 Standard Error of Mean
 0.0249

 95% KM (t) UCL
 0.405

 95% KM (z) UCL
 0.404

 95% KM (BCA) UCL
 0.444

95% KM (Percentile Bootstrap) UCL0.42495% KM (Chebyshev) UCL0.472

**97.5% KM (Chebyshev) UCL**99% KM (Chebyshev) UCL

0.519

0.611

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

### Carbazole

| Total Number of Data      | 38      |
|---------------------------|---------|
| Number of Non-Detect Data | 31      |
| Number of Detected Data   | . 7     |
| Minimum Detected          | 0.0108  |
| Maximum Detected          | 0.128   |
| Percent Non-Detects       | 81.58%  |
| Minimum Non-detect        | 0.00965 |
| Maximum Non-detect        | 0.108   |
| •                         |         |
| Mean of Detected Data     | 0.0465  |
| Median of Detected Data   | 0.019   |
| Variance of Detected Data | 0.0025  |
| SD of Detected Data       | 0.05    |
| CV of Detected Data       | 1.075   |
| Skewness of Detected Data | 1.231   |
| Mean of Detected log data | -3.532  |
| SD of Detected Log data   | 1.001   |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect36Number treated as Detected2Single DL Percent Detection94.74%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Vanlan Majar (VMA) Mathad         | •       |
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0174  |
| SD                                | 0.0242  |
| Standard Error of Mean            | 0.00425 |
| 95% KM (t) UCL                    | 0.0246  |
| 95% KM (z) UCL                    | 0.0244  |
| 95% KM (BCA) UCL                  | 0.0314  |
| 95% KM (Percentile Bootstrap) UCL | 0.0272  |
| 95% KM (Chebyshev) UCL            | 0.036   |
| 97.5% KM (Chebyshev) UCL          | 0.044   |
| 99% KM (Chebyshev) UCL            | 0.0597  |

Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.011
[per recommendation in ProUCL User Guide]

### Carbon disulfide

| Total Number of Data      | 21       |
|---------------------------|----------|
| Number of Non-Detect Data | 18       |
| Number of Detected Data   | 3        |
| Minimum Detected          | 0.00757  |
| Maximum Detected          | 0.0284   |
| Percent Non-Detects       | 85.71%   |
| Minimum Non-detect        | 8.80E-05 |
| Maximum Non-detect        | 0.127    |
| Mean of Detected Data     | 0.0147   |
| Median of Detected Data   | 0.00811  |
| Variance of Detected Data | 1.41E-04 |
| SD of Detected Data       | 0.0119   |
| CV of Detected Data       | 0.808    |
| Skewness of Detected Data | 1.728    |
| Mean of Detected log data | -4.42    |
| SD of Detected Log data   | 0.744    |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.00864 |
| SD                                | 0.00454 |
| Standard Error of Mean            | 0.00124 |
| 95% KM (t) UCL                    | 0.0108  |
| 95% KM (z) UCL                    | 0.0107  |
| 95% KM (BCA) UCL                  | 0.0284  |
| 95% KM (Percentile Bootstrap) UCL | 0.0284  |
| 95% KM (Chebyshev) UCL            | 0.0141  |

| 97.5% KM (Chebyshev) UCL | 0.0164 |
|--------------------------|--------|
| 99% KM (Chebyshev) UCL   | 0.021  |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.000119
[per recommendation in ProUCL User Guide]

| Chromium                                                    |       |  |
|-------------------------------------------------------------|-------|--|
| Number of Valid Observations                                | 39    |  |
| Number of Distinct Observations                             | 36    |  |
| Minimum                                                     | 7.76  |  |
| Maximum                                                     | 128   |  |
| Mean                                                        | 18.31 |  |
| Median                                                      | 13.1  |  |
| SD                                                          | 19.72 |  |
| Variance                                                    | 388.8 |  |
| Coefficient of Variation                                    | 1.077 |  |
| Skewness                                                    | 4.908 |  |
| Mean of log data                                            | 2.705 |  |
| SD of log data                                              | 0.522 |  |
| Data do not follow a Discernable Distribution               |       |  |
| 95% Useful UCLs                                             |       |  |
| Student's-t UCL                                             | 23.64 |  |
| 95% UCLs (Adjusted for Skewness)                            |       |  |
| 95% Adjusted-CLT UCL                                        | 26.16 |  |
| 95% Modified-t UCL                                          | 24.05 |  |
|                                                             |       |  |
| Non-Parametric UCLs                                         |       |  |
| 95% CLT UCL                                                 | 23.51 |  |
| 95% Jackknife UCL                                           | 23.64 |  |
| 95% Standard Bootstrap UCL                                  | 23.54 |  |
| 95% Bootstrap-t UCL                                         | 35.49 |  |
| 95% Hall's Bootstrap UCL                                    | 45.31 |  |
| 95% Percentile Bootstrap UCL                                | 23.87 |  |
| 95% BCA Bootstrap UCL                                       | 27.9  |  |
| 95% Chebyshev(Mean, Sd) UCL                                 | 32.08 |  |
| 97.5% Chebyshev(Mean, Sd) UCL                               | 38.03 |  |
| 99% Chebyshev(Mean, Sd) UCL                                 | 49.73 |  |
| Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 32.08 |       |  |

Chrysene

| Total Number of Data                           | 38                 |     |
|------------------------------------------------|--------------------|-----|
| Number of Non-Detect Data                      | 26                 |     |
| Number of Detected Data                        | 12                 | ·   |
| Minimum Detected                               | 0.0104             | · . |
| Maximum Detected                               | 1.3                |     |
| Percent Non-Detects                            | 68.42%             |     |
| Minimum Non-detect                             | 0.00816            |     |
| Maximum Non-detect                             | 0.0523             |     |
|                                                | 0.702              |     |
| Mean of Detected Data                          | 0.302              |     |
| Median of Detected Data                        | 0.122              |     |
| Variance of Detected Data                      | 0.181<br>0.425     |     |
| SD of Detected Data                            |                    |     |
| CV of Detected Data                            | 1.408<br>1.711     |     |
| Skewness of Detected Data                      | -2.204             |     |
| Mean of Detected log data                      | 1.606              |     |
| SD of Detected Log data                        | 1.000              |     |
| Note: Data have multiple DLs - Use of KM Meth  | nod is recommended |     |
| For all methods (except KM, DL/2, and ROS Met  |                    |     |
| Observations < Largest DL are treated as NDs   |                    |     |
| Number treated as Non-Detect                   | 29                 |     |
| Number treated as Detected                     | 9 ·                |     |
| Single DL Percent Detection                    | 76.32%             | •   |
|                                                | ,                  |     |
| Data Ditribution Test with Detected Values Onl |                    |     |
| Data appear Gamma Distributed at 5% Significan | nce Level          |     |
| Winsorization Method                           | N/A                |     |
|                                                |                    |     |
| Kaplan Meier (KM) Method                       | 0.103              |     |
| Mean                                           | 0.103              |     |
| SD<br>Standard Freez of Moon                   | 0.266              |     |
| Standard Error of Mean                         | 0.179              |     |
| 95% KM (t) UCL<br>95% KM (z) UCL               | 0.177              |     |
| 95% KM (BCA) UCL                               | 0.206              |     |
| 95% KM (Percentile Bootstrap) UCL              | 0.187              |     |
| 95% KM (Chebyshev) UCL                         | 0.299              |     |
| 97.5% KM (Chebyshev) UCL                       | 0.384              |     |
| 99% KM (Chebyshev) UCL                         | 0.551              |     |
|                                                |                    |     |
| Data appear Gamma Distributed (0.05)           |                    |     |
| May want to try Gamma UCLs                     |                    |     |
|                                                |                    |     |
| cis-1,2-Dichloroethene                         |                    |     |
| Total Number of Data                           | 21                 |     |
| Number of Non-Detect Data                      | 19                 |     |
| Number of Detected Data                        | 2                  |     |
| NAC 1 D. barakani                              | 0.0105             |     |

0.0195

Minimum Detected

| Maximum Detected          | 0.999    |
|---------------------------|----------|
| Percent Non-Detects       | 90.48%   |
| Minimum Non-detect        | 1.02E-04 |
| Maximum Non-detect        | 0.147    |
|                           |          |
| Mean of Detected Data     | 0.509    |
| Median of Detected Data   | 0.509    |
| Variance of Detected Data | 0.48     |
| SD of Detected Data       | 0.693    |
| CV of Detected Data       | 1.36     |
| Skewness of Detected Data | N/A      |
| Mean of Detected log data | -1.969   |
| SD of Detected Log data   | 2.783    |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect20Number treated as Detected1Single DL Percent Detection95.24%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

NI/A

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Mincorization Mathed

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0661 |
| \$D                               | 0.209  |
| Standard Error of Mean            | 0.0644 |
| 95% KM (t) UCL                    | 0.177  |
| 95% KM (z) UCL                    | 0.172  |
| 95% KM (BCA) UCL                  | 0.999  |
| 95% KM (Percentile Bootstrap) UCL | 0.999  |
| 95% KM (Chebyshev) UCL            | 0.347  |
| 97.5% KM (Chebyshev) UCL          | 0.468  |
| 99% KM (Chebyshev) UCL            | 0.707  |
|                                   |        |

0.707

| Cobalt                               |                      | 1 |
|--------------------------------------|----------------------|---|
| Number of Valid Observations         | 39                   |   |
| Number of Distinct Observations      | 39                   |   |
| Minimum                              | 2.81                 |   |
| Maximum                              | . 12                 |   |
| Mean                                 | 6.517                |   |
| Median                               | 6.14                 |   |
| SD                                   | 1.938                |   |
| Variance                             | 3.756                |   |
| Coefficient of Variation             | 0.297                |   |
| Skewness                             | 0.492                |   |
| Mean of log data                     | 1.829                | • |
| SD of log data                       | 0.312                |   |
| (95% Useful UCLs<br>Student's-t- UCL | 7.04                 |   |
| <u> </u>                             | # 2016 (Figure 1976) |   |
| 95% UCLs (Adjusted for Skewness)     | 7.050                |   |
| 95% Adjusted-CLT UCL                 | 7.053                | • |
| 95% Modified-t UCL                   | 7.044                |   |
| Non-Parametric UCLs                  |                      |   |
| 95% CLT UCL                          | 7.027                |   |
| 95% Jackknife UCL                    | 7.04                 |   |
| 95% Standard Bootstrap UCL           | 7.019                |   |
| 95% Bootstrap-t UCL                  | 7.096                |   |
| 95% Hall's Bootstrap UCL             | 7.063                |   |
| 95% Percentile Bootstrap UCL         | 7.051                |   |
| 95% BCA Bootstrap UCL                | 7.051                |   |
| 95% Chebyshev(Mean, Sd) UCL          | 7.869                |   |
| 97.5% Chebyshev(Mean, Sd) UCL        | 8.455                |   |
| 99% Chebyshev(Mean, Sd) UCL          | 9.605                | • |
| Data appear Normal (0.05)            |                      |   |
| May want to try Normal UCLs          |                      |   |
|                                      |                      |   |
| Copper                               |                      |   |
| Number of Valid Observations         | 39                   |   |
| Number of Distinct Observations      | 37                   |   |
| Minimum                              | 4.59                 |   |
| Maximum                              | 1760                 |   |
| Mean                                 | 65.61                |   |

| Median                                              | 11.9  |
|-----------------------------------------------------|-------|
| SD                                                  | 280.4 |
| Variance                                            | 78619 |
| Coefficient of Variation                            | 4.273 |
| Skewness                                            | 6.117 |
| Mean of log data                                    | 2.754 |
| SD of log data                                      | 1.077 |
| Data do not follow a Discernable Distribution       |       |
| 95% Useful UCLs                                     |       |
| Student's-t UCL                                     | 141.3 |
| 95% UCLs (Adjusted for Skewness)                    |       |
| 95% Adjusted-CLT UCL                                | 186.5 |
| 95% Modified-t UCL                                  | 148.6 |
|                                                     |       |
| Non-Parametric UCLs                                 |       |
| 95% CLT UCL                                         | 139.5 |
| 95% Jackknife UCL                                   | 141.3 |
| 95% Standard Bootstrap UCL                          | 136.1 |
| 95% Bootstrap-t UCL                                 | 1052  |
| 95% Hall's Bootstrap UCL                            | 612.4 |
| 95% Percentile Bootstrap UCL                        | 153.8 |
| 95% BCA Bootstrap UCL                               | 243.2 |
| 95% Chebyshev(Mean, Sd) UCL                         | 261.3 |
| 97.5% Chebyshev(Mean, Sd) UCL                       | 346   |
| 99% Chebyshev(Mean, Sd) UCL                         | 512.3 |
| Potential UCL to Use<br>99% Chebyshev(Mean, Sd) UCL | 512.3 |

# Cyclohexane

| Total Number of Data      | 21       |
|---------------------------|----------|
| Number of Non-Detect Data | 16       |
| Number of Detected Data   | 5        |
| Minimum Detected          | 0.000981 |
| Maximum Detected          | 0.00185  |
| Percent Non-Detects       | 76.19%   |
| Minimum Non-detect        | 9.62E-04 |
| Maximum Non-detect        | 1.29     |
|                           |          |
| Mean of Detected Data     | 0.00141  |
| Median of Detected Data   | 0.00145  |
| Variance of Detected Data | 1.05E-07 |
| SD of Detected Data       | 3.25E-04 |
| CV of Detected Data       | 0.23     |
| Skewness of Detected Data | -0.0112  |
| Mean of Detected log data | -6.583   |
| SD of Detected Log data   | 0.238    |
|                           |          |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

| 0.00113  |
|----------|
| 2.64E-04 |
| 7.65E-05 |
| 0.00126  |
| 0.00125  |
| 0.00156  |
| 0.00152  |
| 0.00146  |
| 0.0016   |
| 0.00189  |
|          |

Data appear Normal (0.05)
May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.00125
[per recommendation in ProUCL User Guide]

# Di-Benzo(g,h,i)perylene

Total Number of Data

Insufficent Number of Observations to produce Meaningful Statistics.

## Dibenz(a,h)anthracene

| Total Number of Data      | 38      |
|---------------------------|---------|
| Number of Non-Detect Data | 31      |
| Number of Detected Data   | 7       |
| Minimum Detected          | 0.045   |
| Maximum Detected          | 0.404   |
| Percent Non-Detects       | 81.58%  |
| Minimum Non-detect        | 0.00687 |

| Maximum Non-detect        | 0.077  |
|---------------------------|--------|
| Mean of Detected Data     | 0.174  |
| Median of Detected Data   | 0.166  |
| Variance of Detected Data | 0.0138 |
| SD of Detected Data       | 0.117  |
| CV of Detected Data       | 0.676  |
| Skewness of Detected Data | 1.29   |
| Mean of Detected log data | -1.955 |
| SD of Detected Log data   | 0.723  |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 33
Number treated as Detected 5
Single DL Percent Detection 86.84%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

N/A

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

|                                   | •      |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0688 |
| SD                                | 0.0684 |
| Standard Error of Mean            | 0.012  |
| 95% KM (t) UCL                    | 0.089  |
| 95% KM (z) UCL                    | 0.0885 |
| 95% KM (BCA) UCL                  | 0.181  |
| 95% KM (Percentile Bootstrap) UCL | 0.163  |
| 95% KM (Chebyshev) UCL            | 0.121  |
| 97.5% KM (Chebyshev) UCL          | 0.144  |
| 99% KM (Chebyshev) UCL            | 0.188  |
|                                   |        |

Data appear Normal (0.05)
May want to try Normal UCLs

Winsorization Method

| ** Instead o | f UCL. EPC is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | elected to       | be mediar             | 14.                                            | <0.0108          |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|------------------------------------------------|------------------|
|              | The state of the s | 化氯化物 化二氯化物 医二氯化物 | 化电影 网络医鼠科 经存储 医牙 医隐虫科 | 医环状性 化二氯甲基基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲 |                  |
| per rec      | ommendatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 IN ProUCI      | L User Guid           | 1e] :                                          | "大学"及"关系"及"关系"的。 |

# Dibenzofuran

| Total Number of Data      | 38 |
|---------------------------|----|
| Number of Non-Detect Data | 34 |
| Number of Detected Data   | 4  |

| Minimum Detected          | 0.01    |
|---------------------------|---------|
| Maximum Detected          | 0.291   |
| Percent Non-Detects       | 89.47%  |
| Minimum Non-detect        | 0.00606 |
| Maximum Non-detect        | 0.083   |
|                           | 0.404   |
| Mean of Detected Data     | 0.101   |
| Median of Detected Data   | 0.0506  |
| Variance of Detected Data | 0.0173  |
| SD of Detected Data       | 0.132   |
| CV of Detected Data       | . 1.309 |
| Skewness of Detected Data | 1.618   |
| Mean of Detected log data | -3.123  |
| SD of Detected Log data   | 1.568   |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 36
Number treated as Detected 2
Single DL Percent Detection 94.74%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0196  |
| SD                                | 0.0462  |
| Standard Error of Mean            | 0.00867 |
| 95% KM (t) UCL                    | 0.0343  |
| 95% KM (z) UCL                    | 0.0339  |
| 95% KM (BCA) UCL                  | 0.291   |
| 95% KM (Percentile Bootstrap) UCL | 0.102   |
| 95% KM (Chebyshev) UCL            | 0.0574  |
| 97.5% KM (Chebyshev) UCL          | 0.0738  |
| 99% KM (Chebyshev) UCL            | 0.106   |
| Data appear Normal (0.05)         |         |

| ** Instead of UCL. EPC                    | is selected to be | median = i | <0.0150 |
|-------------------------------------------|-------------------|------------|---------|
| ** Instead of UCL, EPC<br>[per recommenda | tion in ProUCL U  | ser Guide] |         |

## Dieldrin

May want to try Normal UCLs

| Total Number of Data      | 38       |
|---------------------------|----------|
| Number of Non-Detect Data | 37       |
| Number of Detected Data   | 1        |
| Minimum Detected          | 0.00545  |
| Maximum Detected          | 0.00545  |
| Percent Non-Detects       | 97.37%   |
| Minimum Non-detect        | 0.000163 |
| Maximum Non-detect        | 0.053    |

Data set has all detected values equal to = 0.00545, having '0' variation. No reliable or meaningful statistics and estimates can be computed using such a data set. All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00545

\*\* Instead of UCL, EPC is selected to be median = <0.000184 [per recommendation in ProUCL User Guide]

### Diethyl phthalate

| Total Number of Data      | 38       |
|---------------------------|----------|
| Number of Non-Detect Data | 36       |
| Number of Detected Data   | 2        |
| Minimum Detected          | 0.00992  |
| Maximum Detected          | 0.011    |
| Percent Non-Detects       | 94.74%   |
| Minimum Non-detect        | 0.00756  |
| Maximum Non-detect        | 0.0996   |
| Mean of Detected Data     | 0.0105   |
| Median of Detected Data   | 0.0105   |
| Variance of Detected Data | 5.83E-07 |
| SD of Detected Data       | 7.64E-04 |
| CV of Detected Data       | 0.073    |
| Skewness of Detected Data | N/A      |
| Mean of Detected log data | -4.562   |
| SD of Detected Log data   | 0.0731   |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

38 Number treated as Non-Detect Number treated as Detected 0 100.00% Single DL Percent Detection

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates. The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                              | N/A      |
|---------------------------------------------------|----------|
| Kaplan Meier (KM) Method                          |          |
| Mean                                              | 0.0101   |
| SD                                                | 3.57E-04 |
| Standard Error of Mean                            | 1.79E-04 |
| 95% KM (t) UCL                                    | 0.0104   |
| 95% KM (z) UCL                                    | 0.0103   |
| 95% KM (BCA) UCL                                  | N/A      |
| 95% KM (Percentile Bootstrap) UCL                 | N/A      |
| 95% KM (Chebyshev) UCL                            | 0.0108   |
| 97.5% KM (Chebyshev) UCL                          | 0.0112   |
| 99% KM (Chebyshev) UCL                            | 0.0118   |
| Potential UCL to Use                              |          |
| 95% KM (t) UCL                                    | 0.0104   |
| 95% KM (% Bootstrap) UCL                          | N/A      |
| ** instead of UCL, EPC is selected to be median = | (0.0185) |
| [per recommendation in ProUCL User Guide]         |          |

## Di-n-butyl phthalate

| Total Number of Data      | 38       |
|---------------------------|----------|
| Number of Non-Detect Data | 36       |
| Number of Detected Data   | 2        |
| Minimum Detected          | 0.01     |
| Maximum Detected          | 0.015    |
| Percent Non-Detects       | 94.74%   |
| Minimum Non-detect        | 0.00797  |
| Maximum Non-detect        | 0.167    |
|                           |          |
| Mean of Detected Data     | 0.0125   |
| Median of Detected Data   | 0.0125   |
| Variance of Detected Data | 1.25E-05 |
| SD of Detected Data       | 0.00354  |
| CV of Detected Data       | 0.283    |
| Skewness of Detected Data | N/A      |
| Mean of Detected log data | -4.402   |
| SD of Detected Log data   | 0.287    |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect38Number treated as Detected0Single DL Percent Detection100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Kaplan Meier (KM) Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Standard Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.71E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 95% KM (t) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 95% KM (z) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 95% KM (BCA) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 95% KM (Chebyshev) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 97.5% KM (Chebyshev) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 99% KM (Chebyshev) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Potential UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 95% KM (t) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 95% KM (% Bootstrap) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| ** Instead of UCL, EPC is selected to be median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n= <0.0307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| [per recommendation in ProUCL User Guid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| and the second of the second second of the s | the Control of the Control of Con |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

## Di-n-octyl phthalate

| Total Number of Data      | 38 |
|---------------------------|----|
| Number of Non-Detect Data | 35 |
| Number of Detected Data   | 3  |

| Minimum Detected          | 0.0154  |
|---------------------------|---------|
| Maximum Detected          | 0.123   |
| Percent Non-Detects       | 92.11%  |
| Minimum Non-detect        | 0.00834 |
| Maximum Non-detect        | 0.254   |
|                           |         |
| Mean of Detected Data     | 0.0601  |
| Median of Detected Data   | 0.042   |
| Variance of Detected Data | 0.00314 |
| SD of Detected Data       | 0.056   |
| CV of Detected Data       | 0.932   |
| Skewness of Detected Data | 1.304   |
| Mean of Detected log data | -3.146  |
| SD of Detected Log data   | 1.039   |
|                           |         |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect38Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.019  |
| SD                                | 0.0179 |
| Standard Error of Mean            | 0.0036 |
| 95% KM (t) UCL                    | 0.0251 |
| 95% KM (z) UCL                    | 0.025  |
| 95% KM (BCA) UCL                  | 0.123  |
| 95% KM (Percentile Bootstrap) UCL | 0.123  |
| 95% KM (Chebyshev) UCL            | 0.0347 |
| 97.5% KM (Chebyshev) UCL          | 0.0415 |
| 99% KM (Chebyshev) UCL            | 0.0549 |

Data appear Normal (0.05)
May want to try Normal UCLs

<sup>\*\*</sup> Instead of UCL, EPC is selected to be median = <0.00952</pre>

## [per recommendation in ProUCL User Guide]

#### **Endrin**

| Total Number of Data      | 38       |
|---------------------------|----------|
| Number of Non-Detect Data | 37       |
| Number of Detected Data   | 1        |
| Minimum Detected          | 0.00149  |
| Maximum Detected          | 0.00149  |
| Percent Non-Detects       | 97.37%   |
| Minimum Non-detect        | 0.000198 |
| Maximum Non-detect        | 0.063    |

Data set has all detected values equal to = 0.00149, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00149

\*\* Instead of UCL, EPC is selected to be median = \$\\$ <0.000224

[per recommendation in ProUCL User Guide]

#### **Endrin ketone**

| Total Number of Data      | 38      |
|---------------------------|---------|
| Number of Non-Detect Data | 37      |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.00966 |
| Maximum Detected          | 0.00966 |
| Percent Non-Detects       | 97.37%  |
| Minimum Non-detect        | 0.00049 |
| Maximum Non-detect        | 0.064   |

Data set has all detected values equal to = 0.00966, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00966

\*\* Instead of UCL, EPC is selected to be median = [per recommendation in ProUCL User Guide]

### Ethylbenzene

| Total Number of Data      | 21       |
|---------------------------|----------|
| Number of Non-Detect Data | 15       |
| Number of Detected Data   | 6        |
| Minimum Detected          | 0.00114  |
| Maximum Detected          | 0.023    |
| Percent Non-Detects       | 71.43%   |
| Minimum Non-detect        | 1.74E-04 |

| Maximum Non-detect        | 0.242    |
|---------------------------|----------|
| Mean of Detected Data     | 0.00598  |
| Median of Detected Data   | 0.00244  |
| Variance of Detected Data | 7.13E-05 |
| SD of Detected Data       | 0.00844  |
| CV of Detected Data       | 1.413    |
| Skewness of Detected Data | 2.323    |
| Mean of Detected log data | -5.697   |
| SD of Detected Log data   | 1.059    |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method | N/A |
|----------------------|-----|

Kaplan Meier (KM) Method

| Rapidii Mele (RM) Method          |         |
|-----------------------------------|---------|
| Mean                              | 0.00269 |
| SD                                | 0.00476 |
| Standard Error of Mean            | 0.00117 |
| 95% KM (t) UCL                    | 0.00471 |
| 95% KM (z) UCL                    | 0.00462 |
| 95% KM (BCA) UCL                  | 0.00584 |
| 95% KM (Percentile Bootstrap) UCL | 0.00502 |
| 95% KM (Chebyshev) UCL            | 0.0078  |
| 97.5% KM (Chebyshev) UCL          | 0.01    |
| 99% KM (Chebyshev) UCL            | 0.0144  |
|                                   |         |

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

| 機能がある。これでは、1995年に大阪1年末の1995年の1996年の1996年から | aan makasan muk eromata aan makasa kan matala maka mili in isi aa a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | regroups included a com-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15、15、12的16、多型建筑设置设置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200 2004 PG                |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| ## 1222222122616616616                     | rno:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TO THE ROOM BETWEEN THE PARTY OF THE PARTY O | 00111                      |
| TT Instead of UCL.                         | EPC is selected to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | median = -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00114                      |
|                                            | The Clare of Experience of the Control of the Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control of the Contro |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.50-7.7                   |
| 医皮肤性性切除 机电子电子电子电子电子电子电子电子电子电子              | and the state of t |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 그 그 사람이 살아가 되었다. 보다 그 사람                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r i i i i distribution del |
| , 보는 모든 그들은 그렇게 그렇게 되는 것이다.                | - J-1: !- D1101 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "公园"的现在分词 计时间转换器 机熔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21 1 20 124                |
| ner recomme                                | ndation in Prouct Us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er Guidei"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 计设计计划 的复数人名英德特拉里尔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0 4 64 5 124             |
| Tper recomme                               | ndation in ProUCL Us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er Guidel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Charles and Mark at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |

## **Fluoranthene**

| Total Number of Data      | 38 |
|---------------------------|----|
| Number of Non-Detect Data | 28 |
| Number of Detected Data   | 10 |

| Minimum Detected                                      | 0.014     |   |
|-------------------------------------------------------|-----------|---|
| Maximum Detected                                      | 2.19      |   |
| Percent Non-Detects                                   | 73.68%    |   |
| Minimum Non-detect                                    | 0.00676   |   |
| Maximum Non-detect                                    | 0.075     |   |
| Mean of Detected Data                                 | 0.508     |   |
| Median of Detected Data                               | 0.146     |   |
| Variance of Detected Data                             | 0.652     |   |
| SD of Detected Data                                   | 0.808     | • |
| CV of Detected Data                                   | 1.591     |   |
| Skewness of Detected Data                             | 1.754     |   |
| Mean of Detected log data                             | -1.863    | • |
| SD of Detected Log data                               | 1.68      |   |
| . •                                                   |           |   |
| Note: Data have multiple DLs - Use of KM Method is re | commended |   |
| For all methods (except KM, DL/2, and ROS Methods),   |           |   |
| Observations < Largest DL are treated as NDs          |           |   |
| Number treated as Non-Detect                          | 32        |   |
| Number treated as Detected                            | 6         |   |
| Single DL Percent Detection                           | 84.21%    |   |
| Date Datedharten Text with Date to dividue Only       |           |   |
| Data Distribution Test with Detected Values Only      | -1        |   |
| Data appear Gamma Distributed at 5% Significance Leve | <u>.</u>  |   |
| Winsorization Method                                  | N/A       |   |
| Kaplan Meier (KM) Method                              |           |   |
| Mean                                                  | 0.144     |   |
| SD                                                    | 0.449     |   |
| Standard Error of Mean                                | 0.0768    |   |
| 95% KM (t) UCL                                        | 0.274     |   |
| 95% KM (z) UCL                                        | 0.27      |   |
| 95% KM (BCA) UCL                                      | 0.318     |   |
| 95% KM (Percentile Bootstrap) UCL                     | 0.286     |   |
| 95% KM (Chebyshev) UCL                                | 0.479     |   |
| 97.5% KM (Chebyshev) UCL                              | 0.624     |   |
| 99% KM (Chebyshev) UCL                                | 0.908     |   |
|                                                       |           |   |
| Data appear Gamma Distributed (0.05)                  |           |   |
| May want to try Gamma UCLs                            | ••        |   |
|                                                       |           |   |
| Fluorene                                              |           |   |
| Total Number of Data                                  | 38        |   |
| Number of Non-Detect Data                             | 32        |   |
| Number of Detected Data                               | 6         |   |
| Minimum Detected                                      | 0.017     |   |
| Maximum Detected                                      | 1.21      |   |
| Percent Non-Detects                                   | 84.21%    |   |
| Minimum Non-detect                                    | 0.00687   |   |
|                                                       |           |   |

| Maximum Non-detect        | 0.0575 |
|---------------------------|--------|
|                           |        |
| Mean of Detected Data     | 0.243  |
| Median of Detected Data   | 0.032  |
| Variance of Detected Data | 0.227  |
| SD of Detected Data       | 0.476  |
| CV of Detected Data       | 1.959  |
| Skewness of Detected Data | 2.4    |
| Mean of Detected log data | -2.732 |
| SD of Detected Log data   | 1.603  |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 36
Number treated as Detected 2
Single DL Percent Detection 94.74%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0527 |
| SD                                | 0.191  |
| Standard Error of Mean            | 0.034  |
| 95% KM (t) UCL                    | 0.11   |
| 95% KM (z) UCL                    | 0.109  |
| 95% KM (BCA) UCL                  | 0.169  |
| 95% KM (Percentile Bootstrap) UCL | 0.121  |
| 95% KM (Chebyshev) UCL            | 0.201  |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

97.5% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

| ** Instead | of UCL. FF   | C is select  | ed to be     | median =      |
|------------|--------------|--------------|--------------|---------------|
|            | LEFATOR WELL | ENDARKS TO A | 이 그렇게 하루스 바람 | 是"自由为城" 医超级光度 |
| [nor re    | commone      | lation in D  | roll() lle   | or Guidal     |

<0.000392

0.265

0.391

[per recommendation in ProUCL User Guide]

## Indeno(1,2,3-cd)pyrene

| Total Number of Data      | 38 |
|---------------------------|----|
| Number of Non-Detect Data | 25 |
| Number of Detected Data   | 13 |

| Minimum Detected                                                                                                                                                                                                                                                                                                                                                              | 0.02                                                                                           |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---|
| Maximum Detected                                                                                                                                                                                                                                                                                                                                                              | 1.51                                                                                           |   |
| Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                           | 65.79%                                                                                         |   |
| Minimum Non-detect                                                                                                                                                                                                                                                                                                                                                            | 0.014                                                                                          |   |
| Maximum Non-detect                                                                                                                                                                                                                                                                                                                                                            | 0.147                                                                                          |   |
|                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |   |
| Mean of Detected Data                                                                                                                                                                                                                                                                                                                                                         | 0.295                                                                                          |   |
| Median of Detected Data                                                                                                                                                                                                                                                                                                                                                       | 0.149                                                                                          |   |
| Variance of Detected Data                                                                                                                                                                                                                                                                                                                                                     | 0.172                                                                                          |   |
| SD of Detected Data                                                                                                                                                                                                                                                                                                                                                           | 0.414                                                                                          |   |
| CV of Detected Data                                                                                                                                                                                                                                                                                                                                                           | 1.403                                                                                          |   |
| Skewness of Detected Data                                                                                                                                                                                                                                                                                                                                                     | 2.569                                                                                          |   |
| Mean of Detected log data                                                                                                                                                                                                                                                                                                                                                     | -1.812                                                                                         |   |
| SD of Detected log data                                                                                                                                                                                                                                                                                                                                                       | 1.079                                                                                          |   |
| 3D of Defected Log data                                                                                                                                                                                                                                                                                                                                                       | 1.075                                                                                          |   |
| Note: Data have multiple DLs - Use of KM Method is r                                                                                                                                                                                                                                                                                                                          | ocommended                                                                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                               | econinienaea                                                                                   |   |
| For all methods (except KM, DL/2, and ROS Methods),                                                                                                                                                                                                                                                                                                                           |                                                                                                |   |
| Observations < Largest DL are treated as NDs                                                                                                                                                                                                                                                                                                                                  | 24                                                                                             |   |
| Number treated as Non-Detect                                                                                                                                                                                                                                                                                                                                                  | 31                                                                                             |   |
| Number treated as Detected                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                              |   |
| Single DL Percent Detection                                                                                                                                                                                                                                                                                                                                                   | 81.58%                                                                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |   |
| Data Dsitribution Test with Detected Values Only                                                                                                                                                                                                                                                                                                                              |                                                                                                |   |
| Data appear Lognormal at 5% Significance Level                                                                                                                                                                                                                                                                                                                                |                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |   |
| Winsorization Method                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                            | - |
|                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                            | • |
| Kaplan Meier (KM) Method                                                                                                                                                                                                                                                                                                                                                      |                                                                                                | · |
|                                                                                                                                                                                                                                                                                                                                                                               | 0.115                                                                                          | · |
| Kaplan Meier (KM) Method                                                                                                                                                                                                                                                                                                                                                      | 0.115<br>0.267                                                                                 | • |
| Kaplan Meier (KM) Method<br>Mean                                                                                                                                                                                                                                                                                                                                              | 0.115                                                                                          | • |
| Kaplan Meier (KM) Method<br>Mean<br>SD                                                                                                                                                                                                                                                                                                                                        | 0.115<br>0.267                                                                                 | • |
| Kaplan Meier (KM) Method<br>Mean<br>SD<br>Standard Error of Mean                                                                                                                                                                                                                                                                                                              | 0.115<br>0.267<br>0.0451                                                                       |   |
| Kaplan Meier (KM) Method<br>Mean<br>SD<br>Standard Error of Mean<br>95% KM (t) UCL                                                                                                                                                                                                                                                                                            | 0.115<br>0.267<br>0.0451<br>0.191                                                              |   |
| Kaplan Meier (KM) Method<br>Mean<br>SD<br>Standard Error of Mean<br>95% KM (t) UCL<br>95% KM (z) UCL                                                                                                                                                                                                                                                                          | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189                                                     |   |
| Kaplan Meier (KM) Method<br>Mean<br>SD<br>Standard Error of Mean<br>95% KM (t) UCL<br>95% KM (z) UCL<br>95% KM (BCA) UCL                                                                                                                                                                                                                                                      | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243                                            |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                      | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215                                   |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL                                                                                                                                                                                                               | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215                                   |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL                                                                                                                                                                                                               | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311                          |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL                                                                                                                                                                                                               | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311                          |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Lognormal (0.05)                                                                                                                                                         | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311                          |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL                                                                                                                                                                                      | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311                          |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Lognormal (0.05)                                                                                                                                                         | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311                          |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Lognormal (0.05)                                                                                                                                                         | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311                          |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Lognormal (0.05) May want to try Lognormal UCLs                                                                                                                          | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311                          | · |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Lognormal (0.05) May want to try Lognormal UCLs                                                                                                                          | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311                          |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Lognormal (0.05) May want to try Lognormal UCLs                                                                                                                          | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311<br><b>0.396</b><br>0.563 |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 100 Data appear Lognormal (0.05) 100 May want to try Lognormal UCLs  100 Iron  Number of Valid Observations                                                   | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311<br><b>0.396</b><br>0.563 |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL  Data appear Lognormal (0.05) May want to try Lognormal UCLs  Iron  Number of Valid Observations Number of Distinct Observations                            | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311<br>0.396<br>0.563        |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL Data appear Lognormal (0.05) May want to try Lognormal UCLs  Iron  Number of Valid Observations Number of Distinct Observations Minimum                     | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311<br>0.396<br>0.563        |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL  Data appear Lognormal (0.05) May want to try Lognormal UCLs  Iron  Number of Valid Observations Number of Distinct Observations Minimum Maximum Maximum Mean | 0.115 0.267 0.0451 0.191 0.189 0.243 0.215 0.311 0.396 0.563                                   |   |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL  Data appear Lognormal (0.05) May want to try Lognormal UCLs  Iron  Number of Valid Observations Number of Distinct Observations Minimum Maximum              | 0.115<br>0.267<br>0.0451<br>0.191<br>0.189<br>0.243<br>0.215<br>0.311<br>0.396<br>0.563        |   |

| Variance                                              | 5.26E+08 |    |   |
|-------------------------------------------------------|----------|----|---|
| Coefficient of Variation                              | 1.098    |    |   |
| Skewness                                              | 4.023    |    |   |
| Mean of log data                                      | 9.721    |    |   |
| SD of log data                                        | 0.554    |    |   |
| ob of tog data                                        | 0.55.    |    |   |
| Data do not follow a Discernable Distribution         |          |    | • |
| 95% Useful UCLs                                       |          |    |   |
| Student's-t UCL                                       | 27077    | N. |   |
| 95% UCLs (Adjusted for Skewness)                      |          |    |   |
| 95% Adjusted-CLT UCL                                  | 29453    |    |   |
| 95% Modified-t UCL                                    | 27471    |    |   |
| 3370 Widamica Code                                    | 27471    |    |   |
| Non-Parametric UCLs                                   |          |    |   |
| 95% CLT UCL                                           | 26926    |    |   |
| 95% Jackknife UCL                                     | 27077    |    |   |
| 95% Standard Bootstrap UCL                            | 26865    |    |   |
| 95% Bootstrap-t UCL                                   | 46464    |    |   |
| 95% Hall's Bootstrap UCL                              | 59416    |    |   |
| 95% Percentile Bootstrap UCL                          | 27342    |    |   |
| 95% BCA Bootstrap UCL                                 | 30966    |    |   |
| 95% Chebyshev(Mean, Sd) UCL                           | 36891    |    |   |
| 97.5% Chebyshev(Mean, Sd) UCL                         | 43816    |    |   |
| 99% Chebyshev(Mean, Sd) UCL                           | 57418    |    |   |
| Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL | 36891    |    |   |
| Lead                                                  |          |    |   |
| Number of Valid Observations                          | 39       |    |   |
| Number of Distinct Observations                       | 34       |    |   |
| Minimum                                               | 5.88     |    |   |
| Maximum                                               | 630      |    |   |
| Mean                                                  | 52.97    |    |   |
| Median                                                | 16.1     |    |   |
| SD-                                                   | 122.7    |    |   |
| Variance                                              | 15045    |    |   |
| Coefficient of Variation                              | 2.316    |    |   |
| Skewness                                              | 3.977    |    |   |
| Mean of log data                                      | 3.054    |    |   |
| SD of log data                                        | 1.066    |    |   |
| Data do not follow a Discernable Distribution         |          |    |   |
| 059/ Hooful HClo                                      |          |    |   |
| 95% Useful UCLs                                       | 96.00    |    |   |
| Student's-t UCL                                       | 86.08    | ~  |   |
|                                                       |          |    |   |

95% UCLs (Adjusted for Skewness)

| 95% Adjusted-CLT UCL<br>95% Modified-t UCL           | 98.64<br>88.16 |
|------------------------------------------------------|----------------|
| Non-Parametric UCLs 95% CLT UCL                      | 85.27<br>86.08 |
| 95% Jackknife UCL                                    | 86.08          |
| 95% Standard Bootstrap UCL                           | 83.96          |
| 95% Bootstrap-t UCL                                  | 173.7<br>218.9 |
| 95% Hall's Bootstrap UCL                             | 89.44          |
| 95% Percentile Bootstrap UCL                         | 100.6          |
| 95% BCA Bootstrap UCL<br>95% Chebyshev(Mean, Sd) UCL | 138.6          |
| 97.5% Chebyshev(Mean, Sd) UCL                        | 175.6          |
| 99% Chebyshev(Mean, Sd) UCL                          | 248.4          |
| 95% Chebyshev(iviean, 3u) OCL                        | 240.4          |
| Potential UCL to Use<br>99% Chebyshev(Mean, Sd) UCL  | 248.4          |
|                                                      |                |
| Lithium                                              |                |
| Number of Valid Observations                         | 39             |
| Number of Distinct Observations                      | 36             |
| Minimum                                              | 2.59           |
| Maximum                                              | 32.2           |
| Mean                                                 | 19.22          |
| Median                                               | 19             |
| SD                                                   | 5.944          |
| Variance                                             | 35.33          |
| Coefficient of Variation                             | 0.309          |
| Skewness                                             | -0.0688        |
| Mean of log data                                     | 2.892          |
| SD of log data                                       | 0.416          |
| 95% Useful UCLs<br>Student's-t UCL                   | 20.83          |
| 95% UCLs (Adjusted for Skewness)                     |                |
| 95% Adjusted-CLT UCL                                 | 20.78          |
| 95% Modified-t UCL                                   | 20.83          |
|                                                      |                |
| Non-Parametric UCLs                                  |                |
| 95% CLT UCL                                          | 20.79          |
| 95% Jackknife UCL                                    | 20.83          |
| 95% Standard Bootstrap UCL                           | 20.77          |
| 95% Bootstrap-t UCL                                  | 20.88          |
| 95% Hall's Bootstrap UCL                             | 20.84          |
| 95% Percentile Bootstrap UCL                         | 20.78          |
| 95% BCA Bootstrap UCL                                | 20.84          |
| 95% Chebyshev(Mean, Sd) UCL                          | 23.37          |
| 97.5% Chebyshev(Mean, Sd) UCL                        | 25.17          |
| 99% Chebyshev(Mean, Sd) UCL                          | 28.69          |

## Data appear Normal (0.05)

May want to try Normal UCLs

\_\_\_\_\_\_

#### m,p-Xylene

| Total Number of Data      | 21       |
|---------------------------|----------|
| Number of Non-Detect Data | 19       |
| Number of Detected Data   | 2        |
| Minimum Detected          | 0.00132  |
| Maximum Detected          | 0.00139  |
| Percent Non-Detects       | 90.48%   |
| Minimum Non-detect        | 3.21E-04 |
| Maximum Non-detect        | 0.465    |
|                           |          |
| Mean of Detected Data     | 0.00136  |
| Median of Detected Data   | 0.00136  |
| Variance of Detected Data | 2.45E-09 |
| SD of Detected Data       | 4.95E-05 |
| CV of Detected Data       | 0.0365   |
| Skewness of Detected Data | N/A      |
| Mean of Detected log data | -6.604   |
| SD of Detected Log data   | 0.0365   |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates. The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Winsorization Method

N/A

Kaplan Meier (KM) Method

| Mean                              | 0.00132                                          |
|-----------------------------------|--------------------------------------------------|
| SD .                              | 1.75E-05                                         |
| Standard Error of Mean            | 6.38E-06                                         |
| 95% KM (t) UCL                    | 0.00134                                          |
| 95% KM (z) UCL                    | 0.00134                                          |
| 95% KM (BCA) UCL                  | 0.00139                                          |
| 95% KM (Percentile Bootstrap) UCL | 0.00139                                          |
| 95% KM (Chebyshev) UCL            | 0.00135                                          |
| 97.5% KM (Chebyshev) UCL          | 0.00136                                          |
| 99% KM (Chebyshev) UCL            | 0.00139                                          |
| Potential UCL to Use              |                                                  |
| 95% KM (t) UCL                    | 0.00134                                          |
| 95% KM (% Bootstrap) UCL          | 0.00139                                          |
| ·                                 | 在本次数100%。18.100000000000000000000000000000000000 |

\*\* Instead of UCL; EPC is selected to be median = \$\ <0.000422 \ [per recommendation in ProUCL User Guide]

# Manganese

| Number of Valid Observations     | 39    |
|----------------------------------|-------|
| Number of Distinct Observations  | 39    |
| Minimum                          | 82.3  |
| Maximum                          | 1210  |
| Mean                             | 387   |
| Median                           | 300   |
| SD                               | 251.9 |
| Variance                         | 63467 |
| Coefficient of Variation         | 0.651 |
| Skewness                         | 1.816 |
| Mean of log data                 | 5.785 |
| SD of log data                   | 0.594 |
|                                  |       |
| 95% Useful UCLs                  |       |
| Student's-t UCL                  | 455   |
|                                  |       |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 465.9 |
| 95% Modified-t UCL               | 457   |
|                                  |       |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 453.4 |
| 95% Jackknife UCL                | 455   |
| 95% Standard Bootstrap UCL       | 451.9 |
| 95% Bootstrap-t UCL              | 476.4 |
| 95% Hall's Bootstrap UCL         | 480.5 |
| 95% Percentile Bootstrap UCL     | 455   |
| 95% BCA Bootstrap UCL            | 472.4 |
| 95% Chebyshev(Mean, Sd) UCL      | 562.9 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 638.9 |
| 99% Chebyshev(Mean, Sd) UCL      | 788.4 |

| Mercury                                                                                                                                                   |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Total Number of Data                                                                                                                                      | 39                      |
| Number of Non-Detect Data                                                                                                                                 | 24                      |
| Number of Detected Data                                                                                                                                   | 15                      |
| Minimum Detected                                                                                                                                          | 0.0034                  |
| Maximum Detected                                                                                                                                          | 0.17                    |
| Percent Non-Detects                                                                                                                                       | 61.54%                  |
| Minimum Non-detect                                                                                                                                        | 0.0023                  |
| Maximum Non-detect                                                                                                                                        | 0.028                   |
| Mean of Detected Data                                                                                                                                     | 0.0301                  |
| Median of Detected Data                                                                                                                                   | 0.015                   |
| Variance of Detected Data                                                                                                                                 | 0.0018                  |
| SD of Detected Data                                                                                                                                       | 0.0424                  |
| CV of Detected Data                                                                                                                                       | 1.409                   |
| Skewness of Detected Data                                                                                                                                 | ` 2.922                 |
| Mean of Detected log data                                                                                                                                 | -4.076                  |
| SD of Detected Log data                                                                                                                                   | 1.033                   |
| Note: Data have multiple DLs - Use of KM Method is<br>For all methods (except KM, DL/2, and ROS Methods),<br>Observations < Largest DL are treated as NDs |                         |
| Number treated as Non-Detect                                                                                                                              | 35                      |
| Number treated as Detected                                                                                                                                | 4                       |
| Single DL Percent Detection                                                                                                                               | 89.74%                  |
| Data Dsitribution Test with Detected Values Only                                                                                                          |                         |
| Data appear Gamma Distributed at 5% Significance Le                                                                                                       | evel                    |
| Winsorization Method                                                                                                                                      | N/A                     |
| Kaplan Meier (KM) Method                                                                                                                                  |                         |
| Mean                                                                                                                                                      | 0.0143                  |
| SD                                                                                                                                                        | 0.0284                  |
| Standard Error of Mean                                                                                                                                    | 0.00472                 |
| 95% KM (t) UCL                                                                                                                                            | 0.0223                  |
| 95% KM (z) UCL                                                                                                                                            | 0.0221                  |
| 95% KM (BCA) UCL                                                                                                                                          | 0.0253                  |
| 95% KM (Percentile Bootstrap) UCL                                                                                                                         | 0.0233                  |
| 95% KM (Chebyshev) UCL                                                                                                                                    | 0.0349                  |
| 97.5% KM (Chebyshev) UCL<br>99% KM (Chebyshev) UCL                                                                                                        | <b>0.0438</b><br>0.0613 |
|                                                                                                                                                           |                         |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

### Methylcyclohexane

| Total Number of Data      | 21       |
|---------------------------|----------|
| Number of Non-Detect Data | 15       |
| Number of Detected Data   | 6        |
| Minimum Detected          | 0.0015   |
| Maximum Detected          | 0.00278  |
| Percent Non-Detects       | 71.43%   |
| Minimum Non-detect        | 2.99E-04 |
| Maximum Non-detect        | 0.432    |
|                           |          |
| Mean of Detected Data     | 0.00216  |
| Median of Detected Data   | 0.0022   |
| Variance of Detected Data | 3.18E-07 |
| SD of Detected Data       | 5.64E-04 |
| CV of Detected Data       | 0.261    |
| Skewness of Detected Data | -0.144   |
| Mean of Detected log data | -6.167   |
| SD of Detected Log data   | 0.273    |
|                           |          |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00176  |
| SD                                | 4.59E-04 |
| Standard Error of Mean            | 1.30E-04 |
| 95% KM (t) UCL                    | 0.00199  |
| 95% KM (z) UCL                    | 0.00198  |
| 95% KM (BCA) UCL                  | 0.00242  |
| 95% KM (Percentile Bootstrap) UCL | 0.00229  |
| 95% KM (Chebyshev) UCL            | 0.00233  |
| 97.5% KM (Chebyshev) UCL          | 0.00258  |
| 99% KM (Chebyshev) UCL            | 0.00306  |

Data appear Normal (0.05) May want to try Normal UCLs

| ** Instead | of UCL. | EPC is se | lected to | be med                           | dian = |
|------------|---------|-----------|-----------|----------------------------------|--------|
|            |         |           | in ProLIC | e in the factor of the factor of |        |

<0.00154

| Molybdenum                                                                                                                                                                                                                                                 |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Total Number of Data                                                                                                                                                                                                                                       | 39                    |
| Number of Non-Detect Data                                                                                                                                                                                                                                  | 15                    |
| Number of Detected Data                                                                                                                                                                                                                                    | 24                    |
| Minimum Detected                                                                                                                                                                                                                                           | 0.085                 |
| Maximum Detected                                                                                                                                                                                                                                           | 10.7                  |
| Percent Non-Detects                                                                                                                                                                                                                                        | 38.46%                |
| Minimum Non-detect                                                                                                                                                                                                                                         | 0.074                 |
| Maximum Non-detect                                                                                                                                                                                                                                         | 0.086                 |
| Mean of Detected Data                                                                                                                                                                                                                                      | 1.061                 |
| Median of Detected Data                                                                                                                                                                                                                                    | 0.375                 |
| Variance of Detected Data                                                                                                                                                                                                                                  | 4.919                 |
| SD of Detected Data                                                                                                                                                                                                                                        | 2.218                 |
| CV of Detected Data                                                                                                                                                                                                                                        | 2.09                  |
| Skewness of Detected Data                                                                                                                                                                                                                                  | 3.957                 |
| Mean of Detected log data                                                                                                                                                                                                                                  | -0.858                |
| SD of Detected Log data                                                                                                                                                                                                                                    | 1.218                 |
| Note: Data have multiple DLs - Use of KM Method is rec<br>For all methods (except KM, DL/2, and ROS Methods),<br>Observations < Largest DL are treated as NDs<br>Number treated as Non-Detect<br>Number treated as Detected<br>Single DL Percent Detection | 16<br>23<br>41.03%    |
| Data Dsitribution Test with Detected Values Only<br>Data appear Lognormal at 5% Significance Level                                                                                                                                                         |                       |
| Winsorization Method                                                                                                                                                                                                                                       | 41.03%                |
| Mean                                                                                                                                                                                                                                                       | 0.14                  |
| SD                                                                                                                                                                                                                                                         | 0.0294                |
| 95% Winsor (t) UCL                                                                                                                                                                                                                                         | 0.149                 |
| Kaplan Meier (KM) Method                                                                                                                                                                                                                                   |                       |
| Mean                                                                                                                                                                                                                                                       | 0.686                 |
| SD                                                                                                                                                                                                                                                         | 1.768                 |
| Standard Error of Mean                                                                                                                                                                                                                                     | 0.289                 |
| 95% KM (t) UCL                                                                                                                                                                                                                                             | 1.174                 |
| 95% KM (z) UCL                                                                                                                                                                                                                                             | 1.162                 |
| 95% KM (BCA) UCL                                                                                                                                                                                                                                           | 1.257                 |
| 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                          | 1.236                 |
| 95% KM (Chebyshev) UCL                                                                                                                                                                                                                                     | 1.947                 |
| 97.5% KM (Chebyshev) UCL<br>99% KM (Chebyshev) UCL                                                                                                                                                                                                         | <b>2.492</b><br>3.564 |

| N | a | b۱ | h | tl | h | а | l | e | n | e |
|---|---|----|---|----|---|---|---|---|---|---|
|   |   |    |   |    |   |   |   |   |   |   |

| Total Number of Data        | 21    |
|-----------------------------|-------|
| Number of Non-Detect Data   | 14    |
| Number of Detected Data     | 7     |
| Minimum Detected 0.         | .0013 |
| Maximum Detected            | 67.8  |
| Percent Non-Detects 66      | .67%  |
| Minimum Non-detect 3.16     | 6E-04 |
| Maximum Non-detect          | 0.502 |
|                             |       |
| Mean of Detected Data       | 9.709 |
| Median of Detected Data 0.0 | 0374  |
| Variance of Detected Data   | 656.2 |
| SD of Detected Data         | 25.62 |
| CV of Detected Data         | 2.638 |
| Skewness of Detected Data   | 2.646 |
| Mean of Detected log data   | 3.897 |
| SD of Detected Log data     | 3.916 |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect20Number treated as Detected1Single DL Percent Detection95.24%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 3.238 |
| SD                                | 14.44 |
| Standard Error of Mean            | 3.403 |
| 95% KM (t) UCL                    | 9.107 |
| 95% KM (z) UCL                    | 8.835 |
| 95% KM (BCA) UCL                  | 9.696 |
| 95% KM (Percentile Bootstrap) UCL | 9.694 |
| 95% KM (Chebyshev) UCL            | 18.07 |
| 97.5% KM (Chebyshev) UCL          | 24.49 |
| 99% KM (Chebyshev) UCL            | 37.09 |

| ** Instead of UCL, EPC is selected to be median = | <0.00370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [per recommendation in ProUCL User Guide]         | and the first field in the original field of the control of the co |

| Nickel                                        |       |     |
|-----------------------------------------------|-------|-----|
| Number of Valid Observations                  | 39    |     |
| Number of Distinct Observations               | 35    |     |
| Minimum                                       | 9.74  |     |
| Maximum                                       | 51.7  |     |
| Mean                                          | 17.98 |     |
| Median                                        | 16.4  |     |
| SD                                            | 7.815 |     |
| Variance                                      | 61.08 |     |
| Coefficient of Variation                      | 0.435 |     |
| Skewness                                      | 3.129 |     |
| Mean of log data                              | 2.829 | •   |
| SD of log data                                | 0.321 |     |
| Data do not follow a Discernable Distribution |       | •   |
| 95% Useful UCLs                               |       |     |
| Student's-t UCL                               | 20.09 |     |
| 95% UCLs (Adjusted for Skewness)              |       |     |
| 95% Adjusted-CLT UCL                          | 20.71 |     |
| 95% Modified-t UCL                            | 20.19 |     |
| Non-Parametric UCLs                           |       |     |
| 95% CLT UCL                                   | 20.04 | · · |
| 95% Jackknife UCL                             | 20.09 |     |
| 95% Standard Bootstrap UCL                    | 20.02 | -   |
| 95% Bootstrap-t UCL                           | 22.36 |     |
| 95% Hall's Bootstrap UCL                      | 31.93 | •   |
| 95% Percentile Bootstrap UCL                  | 20.09 |     |
| 95% BCA Bootstrap UCL                         | 20.82 |     |
| 95% Chebyshev(Mean, Sd) UCL                   | 23.43 |     |
| 97.5% Chebyshev(Mean, Sd) UCL                 | 25.79 |     |
| 99% Chebyshev(Mean, Sd) UCL                   | 30.43 |     |
| Potential UCL to Use                          |       |     |
| Use 95% Student's-t UCL                       | 20.09 |     |
| Or 95% Modified-t UCL                         | 20.19 |     |

# Phenanthrene

**Total Number of Data** 

| Number of Non-Detect Data                                                                                                                                                                                                                                                                                                                                                          | 26                                                                                          |   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---|--|
| Number of Detected Data                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                          |   |  |
| Minimum Detected                                                                                                                                                                                                                                                                                                                                                                   | 0.018                                                                                       |   |  |
| Maximum Detected                                                                                                                                                                                                                                                                                                                                                                   | 1.83                                                                                        |   |  |
| Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                | 68.42%                                                                                      |   |  |
| Minimum Non-detect                                                                                                                                                                                                                                                                                                                                                                 | 0.00729                                                                                     |   |  |
| Maximum Non-detect                                                                                                                                                                                                                                                                                                                                                                 | 0.0727                                                                                      |   |  |
| Maximum Non-detect                                                                                                                                                                                                                                                                                                                                                                 | 0.0727                                                                                      |   |  |
| Mean of Detected Data                                                                                                                                                                                                                                                                                                                                                              | 0.437                                                                                       |   |  |
| Median of Detected Data                                                                                                                                                                                                                                                                                                                                                            | 0.107                                                                                       |   |  |
| Variance of Detected Data                                                                                                                                                                                                                                                                                                                                                          | 0.413                                                                                       |   |  |
| SD of Detected Data                                                                                                                                                                                                                                                                                                                                                                | 0.642                                                                                       |   |  |
| CV of Detected Data                                                                                                                                                                                                                                                                                                                                                                | 1.471                                                                                       |   |  |
| Skewness of Detected Data                                                                                                                                                                                                                                                                                                                                                          | 1.452                                                                                       |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |   |  |
| Mean of Detected log data                                                                                                                                                                                                                                                                                                                                                          | -2.039                                                                                      |   |  |
| SD of Detected Log data                                                                                                                                                                                                                                                                                                                                                            | 1.689                                                                                       |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |   |  |
| Note: Data have multiple DLs - Use of KM Method is re                                                                                                                                                                                                                                                                                                                              | commended                                                                                   |   |  |
| For all methods (except KM, DL/2, and ROS Methods),                                                                                                                                                                                                                                                                                                                                |                                                                                             |   |  |
| Observations < Largest DL are treated as NDs                                                                                                                                                                                                                                                                                                                                       | 20                                                                                          |   |  |
| Number treated as Non-Detect                                                                                                                                                                                                                                                                                                                                                       | 32                                                                                          |   |  |
| Number treated as Detected                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                           |   |  |
| Single DL Percent Detection                                                                                                                                                                                                                                                                                                                                                        | 84.21%                                                                                      | • |  |
|                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |   |  |
| Data Dsitribution Test with Detected Values Only                                                                                                                                                                                                                                                                                                                                   |                                                                                             |   |  |
| Data Follow Appr. Gamma Distribution at 5% Significand                                                                                                                                                                                                                                                                                                                             | ce Level                                                                                    |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |   |  |
| Winsorization Method                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                         |   |  |
| Winsorization Method                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |   |  |
| Winsorization Method  Kaplan Meier (KM) Method                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                         |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean                                                                                                                                                                                                                                                                                                                               | N/A<br>0.15                                                                                 |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean SD                                                                                                                                                                                                                                                                                                                            | N/A<br>0.15<br>0.397                                                                        |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean                                                                                                                                                                                                                                                                                                   | N/A<br>0.15<br>0.397<br>0.0672                                                              |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL                                                                                                                                                                                                                                                                                   | N/A<br>0.15<br>0.397<br>0.0672<br>0.264                                                     |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL                                                                                                                                                                                                                                                                   | N/A  0.15 0.397 0.0672 0.264 0.261                                                          |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL                                                                                                                                                                                                                                                 | N/A  0.15 0.397 0.0672 0.264 0.261 0.284                                                    |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                              | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27                                               |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL                                                                                                                                                                                      | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443                                         |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL                                                                                                                                                                                      | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27                                               |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL                                                                                                                                                                                      | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443                                         |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL  97.5% KM (Chebyshev) UCL                                                                                                                                                            | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57                                    |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL  97,5% KM (Chebyshev) UCL  Data follow Appr. Gamma Distribution (0.05)                                                                                                               | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57                                    |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL  97.5% KM (Chebyshev) UCL                                                                                                                                                            | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57                                    |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL  97,5% KM (Chebyshev) UCL  Data follow Appr. Gamma Distribution (0.05)                                                                                                               | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57                                    |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL  97,5% KM (Chebyshev) UCL  Data follow Appr. Gamma Distribution (0.05)  May want to try Gamma UCLs                                                                                   | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57                                    |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL  97,5% KM (Chebyshev) UCL  Data follow Appr. Gamma Distribution (0.05)                                                                                                               | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57                                    |   |  |
| Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Pota follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs  Pyrene                                                                | 0.15<br>0.397<br>0.0672<br>0.264<br>0.261<br>0.284<br>0.27<br>0.443<br><b>0.57</b><br>0.819 |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL  97,5% KM (Chebyshev) UCL  99% KM (Chebyshev) UCL  Data follow Appr. Gamma Distribution (0.05)  May want to try Gamma UCLs  Pyrene  Total Number of Data                             | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57                                    |   |  |
| Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Pota follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs  Pyrene                                                                | 0.15<br>0.397<br>0.0672<br>0.264<br>0.261<br>0.284<br>0.27<br>0.443<br><b>0.57</b><br>0.819 |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL  97,5% KM (Chebyshev) UCL  99% KM (Chebyshev) UCL  Data follow Appr. Gamma Distribution (0.05)  May want to try Gamma UCLs  Pyrene  Total Number of Data                             | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57 0.819                              |   |  |
| Winsorization Method Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Phata follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs  Pyrene  Total Number of Data Number of Non-Detect Data               | N/A  0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57 0.819                              |   |  |
| Winsorization Method  Kaplan Meier (KM) Method  Mean  SD  Standard Error of Mean  95% KM (t) UCL  95% KM (z) UCL  95% KM (BCA) UCL  95% KM (Percentile Bootstrap) UCL  95% KM (Chebyshev) UCL  97,5% KM (Chebyshev) UCL  Data follow Appr. Gamma Distribution (0.05)  May want to try Gamma UCLs  Pyrene  Total Number of Data  Number of Non-Detect Data  Number of Detected Data | 0.15 0.397 0.0672 0.264 0.261 0.284 0.27 0.443 0.57 0.819                                   |   |  |

| •                                                                          | _                  |          |
|----------------------------------------------------------------------------|--------------------|----------|
| Percent Non-Detects                                                        | 64.10%             |          |
| Minimum Non-detect                                                         | 0.00882            |          |
| Maximum Non-detect                                                         | 0.0702             |          |
| maximum, rom acted                                                         |                    |          |
| Mean of Detected Data                                                      | 0.704              |          |
| Median of Detected Data                                                    | 0.16               |          |
| Variance of Detected Data                                                  | 1.713              |          |
| SD of Detected Data                                                        | 1.309              |          |
| CV of Detected Data                                                        | 1.859              |          |
| Skewness of Detected Data                                                  | 2.492              |          |
| Mean of Detected log data                                                  | -1.838             |          |
| SD of Detected Log data                                                    | 1.841              |          |
| Note: Data have multiple Dis. Hea of VM Moth                               | and is recommended | ·        |
| Note: Data have multiple DLs - Use of KM Meth                              |                    |          |
| For all methods (except KM, DL/2, and ROS Met                              | nous),             |          |
| Observations < Largest DL are treated as NDs  Number treated as Non-Detect | 29                 |          |
| Number treated as Non-Detect  Number treated as Detected                   | 10                 |          |
|                                                                            | 74.36%             |          |
| Single DL Percent Detection                                                | 74.30%             |          |
| Data Dsitribution Test with Detected Values Onl                            | l <b>y</b>         |          |
| Data appear Lognormal at 5% Significance Level                             |                    |          |
|                                                                            |                    |          |
| Winsorization Method                                                       | N/A                |          |
| Kaplan Meier (KM) Method                                                   |                    |          |
| Mean                                                                       | 0.262              |          |
| SD                                                                         | 0.825              |          |
| Standard Error of Mean                                                     | 0.137              |          |
| 95% KM (t) UCL                                                             | 0.493              |          |
| 95% KM (z) UCL                                                             | 0.488              |          |
| 95% KM (BCA) UCL                                                           | 0.521              |          |
| 95% KM (Percentile Bootstrap) UCL                                          | 0.492              |          |
| 95% KM (Chebyshev) UCL                                                     | 0.86               |          |
| 97.5% KM (Chebyshev) UCL                                                   | 1.118              |          |
| 99% KM (Chebyshev) UCL                                                     | 1.626              |          |
| Data appear Lognormal (0.05)                                               |                    |          |
| May want to try Lognormal UCLs                                             |                    |          |
| iviay want to try tognormal octs                                           | •                  |          |
|                                                                            |                    |          |
| Silver                                                                     |                    |          |
| Total Number of Data                                                       | 39                 |          |
| Number of Non-Detect Data                                                  | 36                 |          |
| Number of Detected Data                                                    | 3                  | <b>S</b> |
| Minimum Detected                                                           | 0.092              |          |
| Nandania Datastad                                                          | 0.41               |          |

0.41

92.31%

0.027

0.15

Maximum Detected

**Percent Non-Detects** 

Minimum Non-detect

Maximum Non-detect

| Mean of Detected Data     | 0.264  |
|---------------------------|--------|
| Median of Detected Data   | 0.29   |
| Variance of Detected Data | 0.0258 |
| SD of Detected Data       | 0.161  |
| CV of Detected Data       | 0.608  |
| Skewness of Detected Data | -0.709 |
| Mean of Detected log data | -1.505 |
| SD of Detected Log data   | 0.782  |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect37Number treated as Detected2Single DL Percent Detection94.87%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.105  |
| SD                                | 0.0585 |
| Standard Error of Mean            | 0.0115 |
| 95% KM (t) UCL                    | 0.125  |
| 95% KM (z) UCL                    | 0.124  |
| 95% KM (BCA) UCL                  | N/A    |
| 95% KM (Percentile Bootstrap) UCL | 0.41   |
| 95% KM (Chebyshev) UCL            | 0.155  |
| 97.5% KM (Chebyshev) UCL          | 0.177  |
| 99% KM (Chebyshev) UCL            | 0.219  |
|                                   |        |

Data appear Normal (0.05)
May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = [per recommendation in ProUCL User Guide]

<0.0590

Strontium

**Number of Valid Observations** 

39

| Number of Distinct Observations  | 38     |   |
|----------------------------------|--------|---|
| Minimum                          | 22.1   |   |
| Maximum                          | 96.2   |   |
| Mean                             | 56.35  |   |
| Median                           | 53.4   |   |
| SD                               | 20.89  |   |
| Variance                         | 436.3  |   |
| Coefficient of Variation         | 0.371  |   |
| Skewness                         | 0.0857 | - |
| Mean of log data                 | 3.955  |   |
| SD of log data                   | 0.412  |   |
| 95% Useful UCLs                  |        |   |
| Student's-t UCL                  | 61,99  |   |
| Student S-L OCE                  |        |   |
| 95% UCLs (Adjusted for Skewness) |        |   |
| 95% Adjusted-CLT UCL             | 61.9   |   |
| 95% Modified-t UCL               | 61.99  |   |
|                                  |        |   |
| Non-Parametric UCLs              | ·      |   |
| 95% CLT UCL                      | 61.85  |   |
| 95% Jackknife UCL                | 61.99  |   |
| 95% Standard Bootstrap UCL       | 61.62  |   |
| 95% Bootstrap-t UCL              | 62.37  |   |
| 95% Hall's Bootstrap UCL         | 61.9   |   |
| 95% Percentile Bootstrap UCL     | 61.86  |   |
| 95% BCA Bootstrap UCL            | 61.78  |   |
| 95% Chebyshev(Mean, Sd) UCL      | 70.93  |   |
| 97.5% Chebyshev(Mean, Sd) UCL    | 77.23  |   |
| 99% Chebyshev(Mean, Sd) UCL      | 89.63  |   |
|                                  |        |   |
| Data appear Normal (0.05)        |        |   |
| May want to try Normal UCLs      |        |   |
|                                  |        |   |
|                                  |        |   |
| Tetrachloroethene                |        | - |

| Total Number of Data      | 21            |
|---------------------------|---------------|
| Number of Non-Detect Data | 18            |
| Number of Detected Data   | 3             |
| Minimum Detected          | 0.00135       |
| Maximum Detected          | 0.223         |
| Percent Non-Detects       | <b>85.71%</b> |
| Minimum Non-detect        | 1.55E-04      |
| Maximum Non-detect        | 0.224         |
|                           |               |
| Mean of Detected Data     | 0.076         |
| Median of Detected Data   | 0.00362       |
| Variance of Detected Data | 0.0162        |
| SD of Detected Data       | 0.127         |
| CV of Detected Data       | 1.675         |
| Skewness of Detected Data | 1.731         |
|                           |               |

| Mean of Detected log data | -4.577 |
|---------------------------|--------|
| SD of Detected Log data   | 2.709  |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect21Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0126 |
| SD                                | 0.0483 |
| Standard Error of Mean            | 0.0132 |
| 95% KM (t) UCL                    | 0.0354 |
| 95% KM (z) UCL                    | 0.0343 |
| 95% KM (BCA) UCL                  | 0.223  |
| 95% KM (Percentile Bootstrap) UCL | N/A    |
| 95% KM (Chebyshev) UCL            | 0.0702 |
| 97.5% KM (Chebyshev) UCL          | 0.0951 |
| 99% KM (Chebyshev) UCL            | 0.144  |

May want to try Lognormal UCLs

# Thallium

| Total Number of Data      | 39     |
|---------------------------|--------|
| Number of Non-Detect Data | 38     |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.63   |
| Maximum Detected          | 0.63   |
| Percent Non-Detects       | 97.37% |
| Minimum Non-detect        | 0.09   |

0.89

Data set has all detected values equal to = 0.63, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.63

| 는 이번 전면 보이다면 보다는 사람이 있는데 보다면 보다는데 아니라 아니라 되었다. 그는데 그는데 없는데 보다는데 함께 보다는데 함께 되었다면 되었다면 되었다. 그는데 보다는데 보다는데 보다는데 보다는데 보다는데 보다는데 보다는데 보다                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 医皮肤 化硫酸盐 经工作 医水杨二氏        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ** Instead of UCL, EPC is selected to be median =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.100                    |
| THE INCOME AT THE REPORT OF THE MENTAL AT THE MENTAL AT THE PROPERTY OF THE PR | <b>∞€11.1411</b>          |
| sampled of och in classification of incular states and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.200                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| 그는 사람들은 사람들은 사람들은 살아보다는 사람들은 그 그러워 그는 사람들은 사람들은 사람들이 되었다. 그 그게 되는 사람들은 그렇게 하는 것이 되었다. 하는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the second second     |
| 그리고, 200 등 이어 [25일 : 200 : 1 : 200 : 200 : 1 : 200 : 1 : 200 : 200 : 1 : 200 : 1 : 200 : 1 : 200 : 1 : 200 : 1 : 200 : 1 : 200 : 1 : 200 : 1 : 200 : 1 : 200 : 1 : 200 : 1 : 200 : 1 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 : 200 | <b>进行成队的第三人称单数</b>        |
| [per recommendation in ProUCL User Guide]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AL 2000年11日 2000年11日 2000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |

| Total Number of Data      | 39     |
|---------------------------|--------|
| Number of Non-Detect Data | 33     |
| Number of Detected Data   | 6      |
| Minimum Detected          | 0.68   |
| Maximum Detected          | 178    |
| Percent Non-Detects       | 84.62% |
| Minimum Non-detect        | 0.39   |
| Maximum Non-detect        | 2.17   |
| Mean of Detected Data     | 30.97  |
| Median of Detected Data   | 1.385  |
| Variance of Detected Data | 5189   |
| SD of Detected Data       | 72.04  |
| CV of Detected Data       | 2.326  |
| Skewness of Detected Data | 2.448  |
| Mean of Detected log data | 1.065  |
| SD of Detected Log data   | 2.109  |
|                           |        |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect37Number treated as Detected2Single DL Percent Detection94.87%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method | N/A |
|----------------------|-----|
|----------------------|-----|

Kaplan Meier (KM) Method

| Mean                   | 5.342 |
|------------------------|-------|
| SD                     | 28.01 |
| Standard Error of Mean | 4.914 |

| 95% KM (t) UCL                                  | 13.63                                                          |   |
|-------------------------------------------------|----------------------------------------------------------------|---|
| 95% KM (z) UCL                                  | 13.42                                                          |   |
| 95% KM (BCA) UCL                                | 14.63                                                          |   |
| 95% KM (Percentile Bootstrap) UCL               | 14.44                                                          |   |
| 95% KM (Chebyshev) UCL                          | 26.76                                                          | • |
| 97.5% KM (Chebyshev) UCL                        | 36.03                                                          |   |
| 99% KM (Chebyshev) UCL                          | 54.23                                                          |   |
| , ,                                             |                                                                |   |
| Potential UCL to Use                            |                                                                |   |
| 99% KM (Chebyshev) UCL                          | 54.23                                                          |   |
|                                                 |                                                                |   |
| ** Instead of UCL, EPC is selected to be median | 27.52 Set 201 g de 1954 de 42.5 de 21.5 q 1.5 200 de 41.5 de 1 |   |
| [per recommendation in ProUCL User Guide        |                                                                |   |
|                                                 |                                                                |   |
| Titanium                                        |                                                                |   |
|                                                 |                                                                |   |
| Number of Valid Observations                    | 39                                                             |   |
| Number of Distinct Observations                 | 36                                                             |   |
| Minimum                                         | 3.41                                                           |   |
| Maximum                                         | 87.4                                                           |   |
| Mean                                            | 23.33                                                          |   |
| Median                                          | 18.9                                                           |   |
| SD                                              | 17                                                             |   |
| Variance                                        | 289                                                            |   |
| Coefficient of Variation                        | 0.729                                                          |   |
| Skewness                                        | 1.934                                                          |   |
| Mean of log data                                | 2.928                                                          |   |
| SD of log data                                  | 0.688                                                          |   |
|                                                 |                                                                |   |
| 95% Useful UCLs                                 |                                                                |   |
| Student's-t UCL                                 | 27.92                                                          |   |
| OFFICE (A Product for Charmens)                 |                                                                |   |
| 95% UCLs (Adjusted for Skewness)                | 28.71                                                          |   |
| 95% Adjusted-CLT UCL                            | 28.71                                                          |   |
| 95% Modified-t UCL                              | 28.06                                                          |   |
| Non-Parametric UCLs                             |                                                                |   |
| 95% CLT UCL                                     | 27.81                                                          |   |
| 95% Jackknife UCL                               | 27.92                                                          |   |
| 95% Standard Bootstrap UCL                      | 27.67                                                          |   |
| 95% Bootstrap-t UCL                             | 29.04                                                          |   |
| 95% Hall's Bootstrap UCL                        | 29.8                                                           |   |
| 95% Percentile Bootstrap UCL                    | 28                                                             |   |
| 95% BCA Bootstrap UCL                           | 28.5                                                           |   |
| 95% Chebyshev(Mean, Sd) UCL                     | 35.2                                                           |   |
| 97.5% Chebyshev(Mean, Sd) UCL                   | 40.33                                                          |   |
| 99% Chebyshev(Mean, Sd) UCL                     | 50.42                                                          |   |
|                                                 |                                                                |   |
| Data appear Gamma Distributed (0.05)            |                                                                |   |
|                                                 |                                                                |   |

May want to try Gamma UCLs

#### **Toluene**

| Total Number of Data      | 21       |
|---------------------------|----------|
| Number of Non-Detect Data | 13       |
| Number of Detected Data   | 8        |
| Minimum Detected          | 0.00134  |
| Maximum Detected          | 0.0122   |
| Percent Non-Detects       | 61.90%   |
| Minimum Non-detect        | 4.78E-04 |
| Maximum Non-detect        | 0.642    |
|                           |          |
| Mean of Detected Data     | 0.00491  |
| Median of Detected Data   | 0.00445  |
| Variance of Detected Data | 1.06E-05 |
| SD of Detected Data       | 0.00325  |
| CV of Detected Data       | 0.662    |
| Skewness of Detected Data | 1.816    |
| Mean of Detected log data | -5.488   |
| SD of Detected Log data   | 0.635    |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 21 Number treated as Detected 0 100.00% Single DL Percent Detection

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

0.0111

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00324  |
| SD                                | 0.00285  |
| Standard Error of Mean            | 7.86E-04 |
| 95% KM (t) UCL                    | 0.0046   |
| 95% KM (z) UCL                    | 0.00454  |
| 95% KM (BCA) UCL                  | 0.00561  |
| 95% KM (Percentile Bootstrap) UCL | 0.00515  |
| 95% KM (Chebyshev) UCL            | 0.00667  |
| 97.5% KM (Chebyshev) UCL          | 0.00815  |

Data appear Normal (0.05) May want to try Normal UCLs

99% KM (Chebyshev) UCL

| Vanadium                         |          |  |
|----------------------------------|----------|--|
|                                  |          |  |
| Number of Valid Observations     | 39       |  |
| Number of Distinct Observations  | 35       |  |
| Minimum .                        | 7.85     |  |
| Maximum                          | 45.8     |  |
| Mean                             | 21.04    |  |
| Median                           | . 20.2   |  |
| SD                               | 8.325    |  |
| Variance                         | 69.31    |  |
| Coefficient of Variation         | 0.396    |  |
| Skewness                         | 0.511    |  |
| Mean of log data                 | 2.963    |  |
| SD of log data                   | 0.429    |  |
| 95% Useful UCLs                  |          |  |
| 95% Oseful OCLS Student's-t UCL  | 23.29    |  |
|                                  |          |  |
| 95% UCLs (Adjusted for Skewness) |          |  |
| 95% Adjusted-CLT UCL             | 23.35    |  |
| 95% Modified-t UCL               | 23.31    |  |
|                                  |          |  |
| Non-Parametric UCLs              |          |  |
| 95% CLT UCL                      | 23.23    |  |
| 95% Jackknife UCL                | 23.29    |  |
| 95% Standard Bootstrap UCL       | 23.19    |  |
| 95% Bootstrap-t UCL              | 23.43    |  |
| 95% Hall's Bootstrap UCL         | 23.54    |  |
| 95% Percentile Bootstrap UCL     | 23.34    |  |
| 95% BCA Bootstrap UCL            | 23.3     |  |
| 95% Chebyshev(Mean, Sd) UCL      | 26.85    |  |
| 97.5% Chebyshev(Mean, Sd) UCL    | 29.36    |  |
| 99% Chebyshev(Mean, Sd) UCL      | 34.3     |  |
|                                  |          |  |
| Data appear Normal (0.05)        |          |  |
| May want to try Normal UCLs      |          |  |
|                                  |          |  |
| Xylene (total)                   |          |  |
|                                  |          |  |
| Total Number of Data             | 21       |  |
| Number of Non-Detect Data        | 12       |  |
| Number of Detected Data          | 9        |  |
| Minimum Detected                 | 0.00139  |  |
| Maximum Detected                 | 1.76     |  |
| Percent Non-Detects              | 57.14%   |  |
| Minimum Non-detect               | 4.62E-04 |  |
| Maximum Non-detect               | 0.668    |  |
|                                  | 0.44     |  |
| Mean of Detected Data            | 0.41     |  |

| Median of Detected Data   | 0.069  |
|---------------------------|--------|
| Variance of Detected Data | 0.475  |
| SD of Detected Data       | 0.689  |
| CV of Detected Data       | 1.682  |
| Skewness of Detected Data | 1.647  |
| Mean of Detected log data | -2.638 |
| SD of Detected Log data   | 2.381  |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 19
Number treated as Detected 2
Single DL Percent Detection 90.48%

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 0.178 |
| SD                                | 0.47  |
| Standard Error of Mean            | 0.109 |
| 95% KM (t) UCL                    | 0.365 |
| 95% KM (z) UCL                    | 0.357 |
| 95% KM (BCA) UCL                  | 0.406 |
| 95% KM (Percentile Bootstrap) UCL | 0.372 |
| 95% KM (Chebyshev) UCL            | 0.652 |
| 97.5% KM (Chebyshev) UCL          | 0.858 |
| 99% KM (Chebyshev) UCL            | 1.261 |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

\_\_\_\_\_\_

#### Zinc

| Number of Valid Observations    | 39     |
|---------------------------------|--------|
| Number of Distinct Observations | 39     |
| Minimum                         | 21.1   |
| Maximum                         | 5640   |
| Mean                            | 282.5  |
| Median                          | 56.7   |
| SD                              | 939.6  |
| Variance                        | 882844 |
| Coefficient of Variation        | 3.326  |

| Potential UCL to Use<br>99% Chebyshev(Mean, Sd) UCL | 1779  |
|-----------------------------------------------------|-------|
| 99% Chebyshev(Mean, Sd) UCL                         | 1779  |
| 97.5% Chebyshev(Mean, Sd) UCL                       | 1222  |
| 95% Chebyshev(Mean, Sd) UCL                         | 938.3 |
| 95% BCA Bootstrap UCL                               | 721   |
| 95% Percentile Bootstrap UCL                        | 560.5 |
| 95% Hall's Bootstrap UCL                            | 1561  |
| 95% Bootstrap-t UCL                                 | 2465  |
| 95% Standard Bootstrap UCL                          | 532.5 |
| 95% Jackknife UCL                                   | 536.1 |
| 95% CLT UCL                                         | 530   |
| Non-Parametric UCLs                                 |       |
| 95% Modified-t UCL                                  | 557.5 |
| 95% Adjusted-CLT UCL                                | 666.9 |
| 95% UCLs (Adjusted for Skewness)                    |       |
| Student's-t UCL                                     | 536.1 |
| 95% Useful UCLs                                     |       |
| Data do not follow a Discernable Distribution       |       |
| SD of log data                                      | 1.135 |
| Mean of log data                                    | 4.392 |
| Skewness                                            | 5.321 |

APPENDIX A-5

BACKGROUND SOIL

### Nonparametric UCL Statistics for Data Sets with Non-Detects

**User Selected Options** 

From File C:\Users\Michael\....\ProUCL data analysis\BACKGROUND AREA SOIL\BACKGROUND AREA SOIL\_ProUCL input.wst

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

### **Antimony**

| Total Number of Data      | 10     |
|---------------------------|--------|
| Number of Non-Detect Data | 5      |
| Number of Detected Data   | 5      |
| Minimum Detected          | 1.48   |
| Maximum Detected          | 2.19   |
| Percent Non-Detects       | 50.00% |
| Minimum Non-detect        | 0.25   |
| Maximum Non-detect        | 0.3    |
|                           |        |
| Mean of Detected Data     | 1.768  |
| Median of Detected Data   | 1.69   |
| Variance of Detected Data | 0.0732 |
| SD of Detected Data       | 0.271  |
| CV of Detected Data       | 0.153  |
| Skewness of Detected Data | 1.024  |
| Mean of Detected log data | 0.561  |
| SD of Detected Log data   | 0.148  |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 1.624  |
| SD                                | 0.224  |
| Standard Error of Mean            | 0.0791 |
| 95% KM (t) UCL                    | 1.769  |
| 95% KM (z) UCL                    | 1.754  |
| 95% KM (BCA) UCL                  | 1.89   |
| 95% KM (Percentile Bootstrap) UCL | 1.815  |
| 95% KM (Chebyshev) UCL            | 1.969  |
| 97.5% KM (Chebyshev) UCL          | 2.118  |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.890 [per recommendation in ProUCL User Guide]

| Λ | rc | ^ | - | i | ^ |
|---|----|---|---|---|---|

| Total Number of Data      | 10      |
|---------------------------|---------|
| Number of Non-Detect Data | 1       |
| Number of Detected Data   | 9       |
| Minimum Detected          | 1.69    |
| Maximum Detected          | 5.9     |
| Percent Non-Detects       | 10.00%  |
| Minimum Non-detect        | 0.24    |
| Maximum Non-detect        | 0.24    |
| Mean of Detected Data     | 3.793   |
| Median of Detected Data   | 3.72    |
| Variance of Detected Data | 2.191   |
| SD of Detected Data       | 1.48    |
| CV of Detected Data       | 0.39    |
| Skewness of Detected Data | -0.0437 |
| Mean of Detected log data | 1.253   |
| SD of Detected Log data   | 0.448   |
|                           |         |

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | 0.448 |
|-----------------------------------|-------|
| Mean                              | 3.566 |
| SD                                | 1.518 |
| 95% Winsor (t) UCL                | 4.476 |
| Kaplan Meier (KM) Method          |       |
| Mean                              | 3.583 |
| SD                                | 1.467 |
| Standard Error of Mean            | 0.492 |
| 95% KM (t) UCL                    | 4.485 |
| 95% KM (z) UCL                    | 4.392 |
| 95% KM (BCA) UCL                  | 4.441 |
| 95% KM (Percentile Bootstrap) UCL | 4.423 |
| 95% KM (Chebyshev) UCL            | 5.727 |
| 97.5% KM (Chebyshev) UCL          | 6.655 |

# Data appear Normal (0.05)

May want to try Normal UCLs

| Barium                                      |             |   |
|---------------------------------------------|-------------|---|
| Number of Valid Observations                | 10          |   |
| Number of Distinct Observations             | 8           |   |
| Minimum                                     | 150         |   |
| Maximum                                     | 1130        |   |
| Mean                                        | 333.1       |   |
| Median                                      | 259         | - |
| SD                                          | 288.1       |   |
| Variance                                    | 82980       |   |
| Coefficient of Variation                    | 0.865       |   |
| Skewness                                    | 2.844       |   |
| Mean of log data                            | 5.617       |   |
| SD of log data                              | 0.571       |   |
| 95% Useful UCLs                             |             |   |
| Student's-t UCL                             | 500.1       |   |
| 95% UCLs (Adjusted for Skewness)            |             |   |
| 95% Adjusted-CLT UCL                        | 570.5       |   |
| 95% Modified-t UCL                          | 513.7       |   |
| Non-Parametric UCLs                         |             |   |
| 95% CLT UCL                                 | 482.9       |   |
| 95% Jackknife UCL                           | 500.1       |   |
| 95% Standard Bootstrap UCL                  | 476.8       |   |
| 95% Bootstrap-t UCL                         | 864.1       |   |
| 95% Hall's Bootstrap UCL                    | 1100        |   |
| 95% Percentile Bootstrap UCL                | 497.6       |   |
| 95% BCA Bootstrap UCL                       | 584.8       |   |
| 95% Chebyshev(Mean, Sd) UCL                 | 730.2       |   |
| 97.5% Chebyshev(Mean, Sd) UCL               | 902         |   |
| 99% Chebyshev(Mean, Sd) UCL                 | 1239        |   |
| Data follow Appr. Gamma Distribution (0.05) |             |   |
| May want to try Gamma UCLs                  |             |   |
|                                             |             |   |
| Benzo(a)anthracene                          |             |   |
| Total Number of Data                        | <u>,</u> 10 | 9 |
| Number of Non-Detect Data                   | 9           |   |
| Number of Detected Data                     | 1           |   |
| Minimum Detected                            | 0.082       |   |
| Maximum Detected                            | 0.082       |   |
| Percent Non-Detects                         | 90.00%      |   |
|                                             |             |   |

Minimum Non-detect 0.00646 Maximum Non-detect 0.00908

Data set has all detected values equal to = 0.082, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.082

\*\* Instead of UCL, EPC is selected to be median = <0.00761

[per recommendation in ProUCL User Guide]

### Benzo(a)pyrene

| Total Number of Data      | 10      |
|---------------------------|---------|
| Number of Non-Detect Data | 9       |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.076   |
| Maximum Detected          | 0.076   |
| Percent Non-Detects       | 90.00%  |
| Minimum Non-detect        | 0.00868 |
| Maximum Non-detect        | 0.012   |
|                           |         |

Data set has all detected values equal to = 0.076, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.076

\*\* Instead of UCL, EPC is selected to be median = <0.0100 [per recommendation in ProUCL User Guide]

### Benzo(b)fluoranthene

| Total Number of Data      | 10      |
|---------------------------|---------|
| Number of Non-Detect Data | 9       |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.057   |
| Maximum Detected          | 0.057   |
| Percent Non-Detects       | 90.00%  |
| Minimum Non-detect        | 0.00698 |
| Maximum Non-detect        | 0.00981 |
|                           |         |

Data set has all detected values equal to = 0.057, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.057

\*\* Instead of UCL, EPC is selected to be median = <0.00822 [per recommendation in ProUCL User Guide]

# Benzo(g,h,i)perylene

| Total Number of Data      | 10     |
|---------------------------|--------|
| Number of Non-Detect Data | 9      |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.083  |
| Maximum Detected          | 0.083  |
| Percent Non-Detects       | 90.00% |
| Minimum Non-detect        | 0.03   |
| Maximum Non-detect        | 0.042  |

Data set has all detected values equal to = 0.083, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.083

| TO DO SENSO MAN AND AND AND AND SENSO SENSO SENSO SENSO AND |  |
|-------------------------------------------------------------------------------------------------|--|
| ** Instead of UCL, EPC is selected to be median = <0.035                                        |  |
| reinctood of ICI//EDC ic colocted to be median—////////////////////////////////////             |  |
| ** Instead of UCL EPC is selected to be median = < <0.035                                       |  |
|                                                                                                 |  |
|                                                                                                 |  |
| 才成为大量是这种成功的是一种国际企业的企业,这个目标的企业中的人类的特殊的企业,不能能够是一个企业的企业,但是有一个企业,这个企业是一个企业的企业,不是一个企业                |  |
| [per recommendation in ProUCL User Guide]                                                       |  |
|                                                                                                 |  |
|                                                                                                 |  |
|                                                                                                 |  |

### Benzo(k)fluoranthene

| Total Number of Data      | 10      |
|---------------------------|---------|
| Number of Non-Detect Data | 9       |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.106   |
| Maximum Detected          | 0.106   |
| Percent Non-Detects       | 90.00%  |
| Minimum Non-detect        | 0.00985 |
| Maximum Non-detect        | 0.014   |

Data set has all detected values equal to = 0.106, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.106

| ** Instead of UCL | . EPC is sele               | cted to be         | median = | <0.0115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|-----------------------------|--------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iper recomm       | f the filmbert along divine | 14、19、一个企作"大量"的原则。 |          | A Section Section and the section of |

#### Cadmium

| Total Number of Data      | 10     |
|---------------------------|--------|
| Number of Non-Detect Data | 7      |
| Number of Detected Data   | 3      |
| Minimum Detected          | 0.041  |
| Maximum Detected          | 0.11   |
| Percent Non-Detects       | 70.00% |
| Minimum Non-detect        | 0.015  |
| Maximum Non-detect        | 0.02   |
|                           |        |
| Mean of Detected Data     | 0.083  |

| Median of Detected Data   | 0.098   |
|---------------------------|---------|
| Variance of Detected Data | 0.00136 |
| SD of Detected Data       | 0.0369  |
| CV of Detected Data       | 0.444   |
| Skewness of Detected Data | -1.528  |
| Mean of Detected log data | -2.575  |
| SD of Detected Log data   | 0.54    |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0536  |
| SD                                | 0.0253  |
| Standard Error of Mean            | 0.00982 |
| 95% KM (t) UCL                    | 0.0716  |
| 95% KM (z) UCL                    | 0.0697  |
| 95% KM (BCA) UCL                  | 0.11    |
| 95% KM (Percentile Bootstrap) UCL | N/A     |
| 95% KM (Chebyshev) UCL            | 0.0964  |
| 97.5% KM (Chebyshev) UCL          | 0.115   |
| 99% KM (Chebyshev) UCL            | 0.151   |

Data appear Normal (0.05)
May want to try Normal UCLs

| 그런데 살아보는 사람들은 아이들은 사람들이 가지 않는데 살아가 되는 사람들이 되는 것 같아. 이 사람들이 되는 사람들이 되었다면 하지만 |        |
|-----------------------------------------------------------------------------------------------------------------|--------|
| ** Instead of UCL, EPC is selected to be median =                                                               |        |
|                                                                                                                 | <0.019 |
|                                                                                                                 |        |
|                                                                                                                 |        |
|                                                                                                                 |        |
|                                                                                                                 |        |
|                                                                                                                 |        |
|                                                                                                                 |        |
| [per recommendation in ProUCL User Guide]                                                                       |        |
|                                                                                                                 |        |

#### Carbazole

| Total Number of Data        | 10     |
|-----------------------------|--------|
| Number of Non-Detect Data . | 9      |
| Number of Detected Data     | 1      |
| Minimum Detected            | 0.011  |
| Maximum Detected            | 0.011  |
| Percent Non-Detects         | 90.00% |

| Minimum Non-detect | 0.00752 |
|--------------------|---------|
| Maximum Non-detect | 0.011   |

Data set has all detected values equal to = 0.011, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.011

\*\* Instead of UCL, EPC is selected to be median = <0.00886 [per recommendation in ProUCL User Guide]

| Chromium                                                 |       |  |
|----------------------------------------------------------|-------|--|
| Number of Valid Observations                             | 10    |  |
| Number of Distinct Observations                          | 9     |  |
| Minimum                                                  | 10.7  |  |
| Maximum                                                  | 20.1  |  |
| Mean                                                     | 15.2  |  |
| Median                                                   | 14.15 |  |
| SD                                                       | 3.02  |  |
| Variance                                                 | 9.12  |  |
| Coefficient of Variation                                 | 0.199 |  |
| Skewness                                                 | 0.27  |  |
| Mean of log data                                         | 2.703 |  |
| SD of log data                                           | 0.199 |  |
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL | 16.86 |  |
| 95% Modified-t UCL                                       | 16.96 |  |
| Non-Parametric UCLs                                      |       |  |
| 95% CLT UCL                                              | 16.77 |  |
| 95% Jackknife UCL                                        | 16.95 |  |
| 95% Standard Bootstrap UCL                               | 16.68 |  |
| 95% Bootstrap-t UCL                                      | 17.21 |  |
| 95% Hall's Bootstrap UCL                                 | 16.78 |  |
| 95% Percentile Bootstrap UCL                             | 16.65 |  |
| 95% BCA Bootstrap UCL                                    | 16.72 |  |
| 95% Chebyshev(Mean, Sd) UCL                              | 19.36 |  |
| 97.5% Chebyshev(Mean, Sd) UCL                            | 21.16 |  |
| 99% Chebyshev(Mean, Sd) UCL                              | 24.7  |  |
| Data appear Normal (0.05)                                | •     |  |
|                                                          |       |  |

# Chrysene

| Total Number of Data      | 10     |
|---------------------------|--------|
| Number of Non-Detect Data | 9      |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.083  |
| Maximum Detected          | 0.083  |
| Percent Non-Detects       | 90.00% |
| Minimum Non-detect        | 0.012  |
| Maximum Non-detect        | 0.016  |

Data set has all detected values equal to = 0.083, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.083

| [per recommendation in ProUCL User Gui | de] at a the part of |
|----------------------------------------|----------------------|
|                                        |                      |
| Copper                                 |                      |
| Number of Valid Observations           | 10                   |
| Number of Distinct Observations        | 10                   |

| Number of Valid Observations    | 10    |
|---------------------------------|-------|
| Number of Distinct Observations | 10    |
| Minimum                         | 7.68  |
| Maximum                         | 19.3  |
| Mean                            | 12.12 |
| Median                          | 10.8  |
| SD                              | 3.955 |
| Variance                        | 15.64 |
| Coefficient of Variation        | 0.326 |
| Skewness                        | 0.802 |
| Mean of log data                | 2.449 |
| SD of log data                  | 0.313 |

| 95% Useful UCLs<br>Student's-t UCL | 14.41 |
|------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)   |       |
| 95% Adjusted_CITIICI               | 1/151 |

| 95% Adjusted-CL1 UCL          | 14.51 |
|-------------------------------|-------|
| 95% Modified-t UCL            | 14.46 |
| Non-Parametric UCLs           |       |
| 95% CLT UCL                   | 14.17 |
| 95% Jackknife UCL             | 14.41 |
| 95% Standard Bootstrap UCL    | 14.1  |
| 95% Bootstrap-t UCL           | 15.2  |
| 95% Hail's Bootstrap UCL      | 14.64 |
| 95% Percentile Bootstrap UCL  | 14.27 |
| 95% BCA Bootstrap UCL         | 14.33 |
| 95% Chebyshev(Mean, Sd) UCL   | 17.57 |
| 97.5% Chebyshev(Mean, Sd) UCL | 19.93 |
| 99% Chebyshev(Mean, Sd) UCL   | 24.56 |

# Data appear Normal (0.05)

May want to try Normal UCLs

| F | luo | rar | ۱th | en | e |
|---|-----|-----|-----|----|---|
|   |     |     |     |    |   |

| Total Number of Data      | 10      |
|---------------------------|---------|
| Number of Non-Detect Data | 9       |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.156   |
| Maximum Detected          | 0.156   |
| Percent Non-Detects       | 90.00%  |
| Minimum Non-detect        | 0.00971 |
| Maximum Non-detect        | 0.014   |

Data set has all detected values equal to = 0.156, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.156

\*\* Instead of UCL, EPC is selected to be median = <0.0115 [per recommendation in ProUCL User Guide]

### Indeno(1,2,3-cd)pyrene

| Total Number of Data      | 10     |
|---------------------------|--------|
| Number of Non-Detect Data | 9      |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.417  |
| Maximum Detected          | 0.417  |
| Percent Non-Detects       | 90.00% |
| Minimum Non-detect        | 0.025  |
| Maximum Non-detect        | 0.035  |

Data set has all detected values equal to = 0.417, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.417

\*\* Instead of UCL, EPC is selected to be median = <0.0295
[per recommendation in ProUCL User Guide]

### Lead

| Number of Valid Observations    | 10    |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 11    |
| Maximum                         | 15.2  |
| Mean                            | 13.43 |
| Median                          | 13.35 |

| •                                                                                                                                                                                                                                              |                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| SD                                                                                                                                                                                                                                             | 1.547                                                                                     |
| Variance                                                                                                                                                                                                                                       | 2.393                                                                                     |
| Coefficient of Variation                                                                                                                                                                                                                       | 0.115                                                                                     |
| Skewness                                                                                                                                                                                                                                       | -0.326                                                                                    |
|                                                                                                                                                                                                                                                |                                                                                           |
| Mean of log data                                                                                                                                                                                                                               | 2.591                                                                                     |
| SD of log data                                                                                                                                                                                                                                 | 0.118                                                                                     |
| Danataga Persegerang processor paka norma processor resembly garage respectively and processor security.                                                                                                                                       | na na matana na kata.                                                                     |
| 95% Useful UCLs                                                                                                                                                                                                                                |                                                                                           |
| Student's-t UCL                                                                                                                                                                                                                                | 14.33                                                                                     |
|                                                                                                                                                                                                                                                | •                                                                                         |
| 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                               |                                                                                           |
| 95% Adjusted-CLT UCL                                                                                                                                                                                                                           | 14.18                                                                                     |
| 95% Modified-t UCL                                                                                                                                                                                                                             | 14.32                                                                                     |
|                                                                                                                                                                                                                                                |                                                                                           |
| Non-Parametric UCLs                                                                                                                                                                                                                            |                                                                                           |
| 95% CLT UCL                                                                                                                                                                                                                                    | 14.23                                                                                     |
| 95% Jackknife UCL                                                                                                                                                                                                                              | 14.33                                                                                     |
| 95% Standard Bootstrap UCL                                                                                                                                                                                                                     | 14.18                                                                                     |
| 95% Bootstrap-t UCL                                                                                                                                                                                                                            | 14.22                                                                                     |
| ·                                                                                                                                                                                                                                              | 14.22                                                                                     |
| 95% Hall's Bootstrap UCL                                                                                                                                                                                                                       |                                                                                           |
| 95% Percentile Bootstrap UCL                                                                                                                                                                                                                   | 14.16                                                                                     |
| 95% BCA Bootstrap UCL                                                                                                                                                                                                                          | 14.14                                                                                     |
| 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                    | 15.56                                                                                     |
| 97.5% Chebyshev (Mean, Sd) UCL                                                                                                                                                                                                                 | 16.49                                                                                     |
| 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                    | 18.3                                                                                      |
|                                                                                                                                                                                                                                                |                                                                                           |
|                                                                                                                                                                                                                                                | •                                                                                         |
| Data appear Normal (0.05)                                                                                                                                                                                                                      |                                                                                           |
| Data appear Normal (0.05) May want to try Normal UCLs                                                                                                                                                                                          |                                                                                           |
|                                                                                                                                                                                                                                                |                                                                                           |
|                                                                                                                                                                                                                                                |                                                                                           |
|                                                                                                                                                                                                                                                |                                                                                           |
| May want to try Normal UCLs                                                                                                                                                                                                                    |                                                                                           |
| May want to try Normal UCLs  Lithium                                                                                                                                                                                                           | 10                                                                                        |
| May want to try Normal UCLs  Lithium  Number of Valid Observations                                                                                                                                                                             | 10<br>10                                                                                  |
| May want to try Normal UCLs  Lithium  Number of Valid Observations Number of Distinct Observations                                                                                                                                             | 10                                                                                        |
| May want to try Normal UCLs  Lithium  Number of Valid Observations Number of Distinct Observations Minimum                                                                                                                                     | 10<br>14.4                                                                                |
| May want to try Normal UCLs  Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum                                                                                                                             | 10<br>14.4<br>32.5                                                                        |
| May want to try Normal UCLs  Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean                                                                                                                        | 10<br>14.4<br>32.5<br>21.14                                                               |
| May want to try Normal UCLs  Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median                                                                                                                 | 10<br>14.4<br>32.5<br>21.14<br>19.9                                                       |
| May want to try Normal UCLs  Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD                                                                                                              | 10<br>14.4<br>32.5<br>21.14<br>19.9<br>5.166                                              |
| May want to try Normal UCLs  Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance                                                                                                     | 10<br>14.4<br>32.5<br>21.14<br>19.9<br>5.166<br>26.68                                     |
| May want to try Normal UCLs  Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation                                                                            | 10<br>14.4<br>32.5<br>21.14<br>19.9<br>5.166<br>26.68<br>0.244                            |
| May want to try Normal UCLs  Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness                                                                   | 10<br>14.4<br>32.5<br>21.14<br>19.9<br>5.166<br>26.68<br>0.244<br>1.214                   |
| Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data                                                                               | 10<br>14.4<br>32.5<br>21.14<br>19.9<br>5.166<br>26.68<br>0.244<br>1.214<br>3.027          |
| May want to try Normal UCLs  Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness                                                                   | 10<br>14.4<br>32.5<br>21.14<br>19.9<br>5.166<br>26.68<br>0.244<br>1.214                   |
| Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                | 10 14.4 32.5 21.14 19.9 5.166 26.68 0.244 1.214 3.027 0.229                               |
| Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                | 10<br>14.4<br>32.5<br>21.14<br>19.9<br>5.166<br>26.68<br>0.244<br>1.214<br>3.027          |
| Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                | 10 14.4 32.5 21.14 19.9 5.166 26.68 0.244 1.214 3.027 0.229                               |
| Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                | 10<br>14.4<br>32.5<br>21.14<br>19.9<br>5.166<br>26.68<br>0.244<br>1.214<br>3.027<br>0.229 |
| Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                | 10<br>14.4<br>32.5<br>21.14<br>19.9<br>5.166<br>26.68<br>0.244<br>1.214<br>3.027<br>0.229 |
| Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD display UCLs Student's-t UCL                 | 10<br>14.4<br>32.5<br>21.14<br>19.9<br>5.166<br>26.68<br>0.244<br>1.214<br>3.027<br>0.229 |
| Lithium  Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD of log data  95% Useful UCLs Student's=t UCL | 10 14.4 32.5 21.14 19.9 5.166 26.68 0.244 1.214 3.027 0.229                               |

| Non-Parametric UCLs           |       |
|-------------------------------|-------|
| 95% CLT UCL                   | 23.83 |
| 95% Jackknife UCL             | 24.13 |
| 95% Standard Bootstrap UCL    | 23.69 |
| 95% Bootstrap-t UCL           | 25.68 |
| 95% Hall's Bootstrap UCL      | 40.06 |
| 95% Percentile Bootstrap UCL  | 23.85 |
| 95% BCA Bootstrap UCL         | 24.34 |
| 95% Chebyshev(Mean, Sd) UCL   | 28.26 |
| 97.5% Chebyshev(Mean, Sd) UCL | 31.34 |
| 99% Chebyshev(Mean, Sd) UCL   | 37.39 |

# Data appear Normal (0.05)

May want to try Normal UCLs

| M | an | ga | ne | se |
|---|----|----|----|----|

| Number of Valid Observations     | . 10  |
|----------------------------------|-------|
| Number of Distinct Observations  | 9     |
| Minimum                          | 284   |
| Maximum                          | 551   |
| Mean                             | 377.4 |
| Median                           | 333   |
| SD                               | 93.76 |
| Variance                         | 8791  |
| Coefficient of Variation         | 0.248 |
| Skewness                         | 1.28  |
| Mean of log data                 | 5.909 |
| SD of log data                   | 0.227 |
|                                  |       |
| 95% Useful UCLs                  |       |
| Student's-t UCL                  | 431.8 |
|                                  |       |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 439   |
| 95% Modified-t UCL               | 433.8 |
|                                  |       |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 426.2 |
| 95% Jackknife UCL                | 431.8 |
| 95% Standard Bootstrap UCL       | 424.1 |
| 95% Bootstrap-t UCL              | 499.4 |
| 95% Hall's Bootstrap UCL         | 650.1 |
| 95% Percentile Bootstrap UCL     | 425.8 |
| 95% BCA Bootstrap UCL            | 435.2 |
| 95% Chebyshev(Mean, Sd) UCL      | 506.6 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 562.6 |
| 99% Chebyshev(Mean, Sd) UCL      | 672.4 |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

# Mercury

| Number of Valid Observations    | 10       |
|---------------------------------|----------|
| Number of Distinct Observations | . 8      |
| Minimum                         | 0.015    |
| Maximum                         | 0.03     |
| Mean                            | 0.0213   |
| Median                          | 0.0195   |
| SD                              | 0.00479  |
| Variance                        | 2.29E-05 |
| Coefficient of Variation        | 0.225    |
| Skewness                        | 0.734    |
| Mean of log data                | -3.871   |
| SD of log data                  | 0.217    |
|                                 |          |

| 95% Useful U    |  |        |
|-----------------|--|--------|
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
|                 |  |        |
| Student's-t UCI |  | 0.0241 |
|                 |  |        |

| 95% UCLs (Adjusted for Skewness) |        |
|----------------------------------|--------|
| 95% Adjusted-CLT UCL             | 0.0242 |
| 95% Modified-t UCL               | 0.0241 |
|                                  |        |
| Non-Parametric UCLs              |        |
| 95% CLT UCL                      | 0.0238 |
| 95% Jackknife UCL                | 0.0241 |
| 95% Standard Bootstrap UCL       | 0.0237 |
| 95% Bootstrap-t UCL              | 0.0247 |
| 95% Hall's Bootstrap UCL         | 0.0242 |
| 95% Percentile Bootstrap UCL     | 0.0238 |
| 95% BCA Bootstrap UCL            | 0.0238 |
| 95% Chebyshev(Mean, Sd) UCL      | 0.0279 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 0.0308 |

0.0364

# Data appear Normal (0.05)

May want to try Normal UCLs

99% Chebyshev(Mean, Sd) UCL

# Molybdenum

| Number of Valid Observations    | 10      |
|---------------------------------|---------|
| Number of Distinct Observations | 10      |
| Minimum                         | 0.42    |
| Maximum                         | 0.68    |
| Mean                            | 0.522   |
| Median                          | 0.505   |
| SD                              | 0.0739  |
| Variance                        | 0.00546 |
| Coefficient of Variation        | 0.142   |
| Skewness                        | 0.94    |

| Mean of log data | -0.659 |
|------------------|--------|
| SD of log data   | 0.137  |

| ob of log data                     | 0     |
|------------------------------------|-------|
| 95% Useful UCLs<br>Student's-t UCL | 0.565 |
| 95% UCLs (Adjusted for Skewness)   |       |
| 95% Adjusted-CLT UCL               | 0.568 |
| 95% Modified-t UCL                 | 0.566 |
| Non-Parametric UCLs                |       |
| 95% CLT UCL                        | 0.56  |
| 95% Jackknife UCL                  | 0.565 |
| 95% Standard Bootstrap UCL         | 0.559 |
| 95% Bootstrap-t UCL                | 0.578 |
| 95% Hall's Bootstrap UCL           | 0.582 |
| 95% Percentile Bootstrap UCL       | 0.561 |
| 95% BCA Bootstrap UCL              | 0.563 |
| 95% Chebyshev(Mean, Sd) UCL        | 0.624 |
| 97.5% Chebyshev(Mean, Sd) UCL      | 0.668 |

# Data appear Normal (0.05)

May want to try Normal UCLs

99% Chebyshev(Mean, Sd) UCL

# Phenanthrene

| Total Number of Data      | 10      |
|---------------------------|---------|
| Number of Non-Detect Data | 9       |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.137   |
| Maximum Detected          | 0.137   |
| Percent Non-Detects       | 90.00%  |
| Minimum Non-detect        | 0.00571 |
| Maximum Non-detect        | 0.00803 |

Data set has all detected values equal to = 0.137, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

0.755

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.137

| 设计 经运行证据 医电流管线线性 经                                                | constitution de Marie VIII des 1600 AVIII e |                  | The state of the s |
|-------------------------------------------------------------------|---------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **                                                                | ICI FDC :                                   | l                | < 0.00672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ar instead of t                                                   | UCL, EPC is selected                        | i to be median = | ~U.UU0/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| moderne Beneralite da a ner out to                                |                                             |                  | The first of the company of the con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul><li>(1) 18年 (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本)</li></ul> |                                             | 医雷克氏结合氏征 化抗压剂化剂  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nor rocor                                                         | mmandation in Dra                           | IICI IIcar Guida |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| i pei iecoi                                                       | mmendation in Pro                           | OCT OBEL ORIGE   | 40 F 10 44 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# **Pyrene**

| Total Number of Data      | 10    |
|---------------------------|-------|
| Number of Non-Detect Data | 9     |
| Number of Detected Data   | 1     |
| Minimum Detected          | 0.127 |

| Maximum Detected    | 0.127  |
|---------------------|--------|
| Percent Non-Detects | 90.00% |
| Minimum Non-detect  | 0.017  |
| Maximum Non-detect  | 0.024  |

Data set has all detected values equal to = 0.127, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.127

\*\* Instead of UCL, EPC is selected to be median = <0.0200
[per recommendation in ProUCL User Guide]

| Zinc                                          |        |   |
|-----------------------------------------------|--------|---|
| Number of Valid Observations                  | 10     |   |
| Number of Distinct Observations               | 10     |   |
| Minimum                                       | 36.6   |   |
| Maximum                                       | 969    |   |
| Mean                                          | 247    |   |
| Median                                        | 75.5   |   |
| SD                                            | 364.6  |   |
| Variance                                      | 132938 |   |
| Coefficient of Variation                      | 1.476  |   |
| Skewness                                      | 1.694  |   |
| Mean of log data                              | 4.667  |   |
| SD of log data                                | 1.272  |   |
| Data do not follow a Discernable Distribution | n      |   |
| 95% Useful UCLs                               |        |   |
| Student's-t UCL                               | 458.3  |   |
| 95% UCLs (Adjusted for Skewness)              |        |   |
| 95% Adjusted-CLT UCL                          | 502.6  |   |
| 95% Modified-t UCL                            | 468.6  |   |
| Non-Parametric UCLs                           |        | - |
| 95% CLT UCL                                   | 436.6  |   |
| 95% Jackknife UCL                             | 458.3  |   |
| 95% Standard Bootstrap UCL                    | 424.9  |   |
| 95% Bootstrap-t UCL                           | 1356   |   |
| 95% Hall's Bootstrap UCL                      | 1731   |   |
| 95% Percentile Bootstrap UCL                  | 432.1  |   |
| 95% BCA Bootstrap UCL                         | 507.2  |   |
| 95% Chebyshev(Mean, Sd) UCL                   | 749.5  |   |
| 97.5% Chebyshev(Mean, Sd) UCL                 | 967    |   |
| 99% Chebyshev(Mean, Sd) UCL                   | 1394   |   |
| Potential UCL to Use                          |        |   |
| 99% Chebyshev(Mean, Sd) UCL                   | 1394   |   |

| Recommended UCL exceeds the maximum observation |  |
|-------------------------------------------------|--|
|                                                 |  |

# APPENDIX A-6

INTRACOASTAL WATERWAY SEDIMENT

#### Nonparametric UCL Statistics for Data Sets with Non-Detects

**User Selected Options** 

From File c:\Users\Michael\....\ProUCL data analysis\\CWsed - Just site data\\CWsed - Just site data\_ProUCL sheets.xls

Full Precision

OFF

Confidence Coefficient

95%

**Number of Bootstrap Operations** 

2000

#### 1,2-Dichloroethane

| Total Number of Data      | 16       |
|---------------------------|----------|
| Number of Non-Detect Data | 15       |
| Number of Detected Data   | 1        |
| Minimum Detected          | 0.00302  |
| Maximum Detected          | 0.00302  |
| Percent Non-Detects       | 93.75%   |
| Minimum Non-detect        | 0.000184 |
| Maximum Non-detect        | 0.000877 |

Data set has all detected values equal to = 0.00302, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00302

| TO THE PROPERTY OF THE PROPERT | SEP TENERS BEING BERGER FRANKRISTE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| ** Instead of UCL, EPC is selected to be median =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.000358                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ha herbilda paletak                |
| [per recommendation in ProUCL User Guide]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 中国社会学家 美国巴西亚岛自然                    |

### 1,2-Diphenylhydrazine/Azobenzen

| Total Number of Data      | 16     |
|---------------------------|--------|
| Number of Non-Detect Data | 15     |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.0317 |
| Maximum Detected          | 0.0317 |
| Percent Non-Detects       | 93.75% |
| Minimum Non-detect        | 0.0101 |
| Maximum Non-detect        | 0.0146 |

Data set has all detected values equal to = 0.0317, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0317

| ** Instead of UCL, EPC is selected to be median |           |
|-------------------------------------------------|-----------|
|                                                 | = <0.0110 |
|                                                 |           |
|                                                 |           |
|                                                 |           |
|                                                 |           |
|                                                 |           |
|                                                 |           |
|                                                 |           |
|                                                 |           |
|                                                 |           |
| per recommendation in ProUCL User Guide         |           |
|                                                 |           |
|                                                 |           |
|                                                 |           |

# 2-Methylnaphthalene

| Total Number of Data      | 16     |
|---------------------------|--------|
| Number of Non-Detect Data | 15     |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.0188 |
| Maximum Detected          | 0.0188 |
| Percent Non-Detects       | 93.75% |
| Minimum Non-detect        | 0.0132 |
| Maximum Non-detect        | 0.0191 |

Data set has all detected values equal to = 0.0188, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0188

| ** Instead of UCL, EPC is selected to be median =                 | <0.0146 |
|-------------------------------------------------------------------|---------|
| 一个心态 医性性性 化环烷酸医异戊基乙基 医克克特 医神经病 医神经病 医神经病 网络海绵 化抗毒素抗酶 机多类形式 化异乙基乙基 |         |
| [per recommendation in ProUCL User Guide]                         |         |

#### 3,3'-Dichlorobenzidine

| Total Number of Data      | 16     |
|---------------------------|--------|
| Number of Non-Detect Data | . 15   |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.151  |
| Maximum Detected          | 0.151  |
| Percent Non-Detects       | 93.75% |
| Minimum Non-detect        | 0.0586 |
| Maximum Non-detect        | 0.0846 |

Data set has all detected values equal to = 0.151, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.151

| 明确的对对性关键地位是"指统行"等全点率域从1995年 |                         |                            |
|-----------------------------|-------------------------|----------------------------|
| ** Instead of UCL, EPC      | is selected to be medi- | an = <0.0632               |
|                             |                         |                            |
|                             | ian in Dealict Hear Co  | :1121/04.68.20 CALABOTA CO |
| [per recommendat            | tion in Prouct user Gu  | nue]                       |

#### 4,4'-DDT

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect                                             | 17<br>13<br><b>4</b><br>4.81E-04<br>0.00332<br><b>76.47</b> %<br>1.77E-04       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Maximum Non-detect                                                                                                                                                                          | 6.31E-04                                                                        |
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.00137<br>8.38E-04<br>1.77E-06<br>0.00133<br>0.971<br>1.763<br>-6.905<br>0.874 |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 15
Number treated as Detected 2
Single DL Percent Detection 88.24%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method

N/A

| Kaplan Meier (KM) Method          |          |
|-----------------------------------|----------|
| Mean                              | 6.90E-04 |
| SD                                | 6.73E-04 |
| Standard Error of Mean            | 1.89E-04 |
| 95% KM (t) UCL                    | 0.00102  |
| 95% KM (z) UCL                    | 0.001    |
| 95% KM (BCA) UCL                  | N/A      |
| 95% KM (Percentile Bootstrap) UCL | 0.00136  |
| 95% KM (Chebyshev) UCL            | 0.00151  |
| 97.5% KM (Chebyshev) UCL          | 0.00187  |

Data appear Normal (0.05) May want to try Normal UCLs

99% KM (Chebyshev) UCL

\*\* Instead of UCL, EPC is selected to be median = \$\psi < 0.000203\$

[per recommendation in ProUCL User Guide]

# 4,6-Dinitro-2-methylphenol

| Total Number of Data      | 16     |
|---------------------------|--------|
| Number of Non-Detect Data | 15     |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.0627 |
| Maximum Detected          | 0.0627 |
| Percent Non-Detects       | 93.75% |
| Minimum Non-detect        | 0.0245 |
| Maximum Non-detect        | 0.0353 |

Data set has all detected values equal to = 0.0627, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0627

0.00257

\*\* Instead of UCL, EPC is selected to be median = <0.0264

[per recommendation in ProUCL User Guide]

## Acenaphthene

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect  | 16<br>14<br>2<br>0.0239<br>0.0631<br>87.50%<br>0.0122<br>0.0176  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data | 0.0435<br>0.0435<br>7.68E-04<br>0.0277<br>0.637<br>N/A<br>-3.248 |
| SD of Detected Log data                                                                                                                                             | 0.686                                                            |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

# Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                                      | N/A     |  |
|-----------------------------------------------------------|---------|--|
| Kaplan Meier (KM) Method                                  |         |  |
| Mean                                                      | 0.0264  |  |
| SD                                                        | 0.00949 |  |
| Standard Error of Mean                                    | 0.00335 |  |
| 95% KM (t) UCL                                            | 0.0322  |  |
| 95% KM (z) UCL                                            | 0.0319  |  |
| 95% KM (BCA) UCL                                          | 6.31%   |  |
| 95% KM (Percentile Bootstrap) UCL                         | N/A     |  |
| 95% KM (Chebyshev) UCL                                    | 0.041   |  |
| 97.5% KM (Chebyshev) UCL                                  | 0.0473  |  |
| 99% KM (Chebyshev) UCL                                    | 0.0597  |  |
| Potential UCL to Use                                      |         |  |
| 95% KM (t) UCL                                            | 0.0322  |  |
| 95% KM (% Bootstrap) UCL                                  | N/A     |  |
| ** Instead of UCL, EPC is selected to be median = <0.0135 |         |  |
| [per recommendation in ProUCL User Guide]                 |         |  |

## **Aluminum**

| Number of Valid Observations     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of Distinct Observations  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Minimum                          | 3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Maximum                          | 12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mean                             | 6854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median                           | 6345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SD .                             | 2346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Variance                         | 5502706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Coefficient of Variation         | 0.342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Skewness                         | 0.876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mean of log data                 | 8.781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SD of log data                   | 0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                  | in a composition of the second |
| 95% Useful UCLs                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Student's-t UCL                  | 7882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 95% UCLs (Adjusted for Skewness) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 95% Adjusted-CLT UCL             | 7956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 95% Modified-t UCL               | 7904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 33 /0 IVIOUITIEU-L OOL           | 1304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Non-Parametric UCLs           |       |
|-------------------------------|-------|
| 95% CLT UCL                   | 7819  |
| 95% Jackknife UCL             | 7882  |
| 95% Standard Bootstrap UCL    | 7734  |
| 95% Bootstrap-t UCL           | 8049  |
| 95% Hail's Bootstrap UCL      | 8144  |
| 95% Percentile Bootstrap UCL  | 7782  |
| 95% BCA Bootstrap UCL         | 7899  |
| 95% Chebyshev(Mean, Sd) UCL   | 9411  |
| 97.5% Chebyshev(Mean, Sd) UCL | 10517 |
| 99% Chebyshev(Mean, Sd) UCL   | 12689 |

# Data appear Normal (0.05)

May want to try Normal UCLs

### Anthracene

| Total Number of Data      | 16       |
|---------------------------|----------|
| Number of Non-Detect Data | 10       |
| Number of Detected Data   | 6        |
| Minimum Detected          | 0.0236   |
| Maximum Detected          | 0.0753   |
| Percent Non-Detects       | 62.50%   |
| Minimum Non-detect        | 0.0134   |
| Maximum Non-detect        | 0.019    |
| Mean of Detected Data     | 0.0407   |
| Median of Detected Data   | 0.0333   |
| Variance of Detected Data | 4.37E-04 |
| SD of Detected Data       | 0.0209   |
| CV of Detected Data       | 0.513    |
| Skewness of Detected Data | 1.021    |
| Mean of Detected log data | -3.304   |
| SD of Detected Log data   | 0.487    |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Distribution Test with Detected Values Only

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.03    |
| SD                                | 0.0143  |
| Standard Error of Mean            | 0.00392 |
| 95% KM (t) UCL                    | 0.0369  |
| 95% KM (z) UCL                    | 0.0365  |
| 95% KM (BCA) UCL                  | 0.0431  |
| 95% KM (Percentile Bootstrap) UCL | 0.0397  |
| 95% KM (Chebyshev) UCL            | 0.0471  |
| 97.5% KM (Chebyshev) UCL          | 0.0545  |
| 99% KM (Chebyshev) UCL            | 0.069   |

Data appear Normal (0.05)

| Antimony                                                           |                |
|--------------------------------------------------------------------|----------------|
| Number of Valid Observations                                       | 16             |
| Number of Distinct Observations                                    | 16             |
| Minimum                                                            | 0.74           |
| Maximum                                                            | 8.14           |
| Mean                                                               | 2.245          |
| Median                                                             | 1.75           |
| SD                                                                 | 1.751          |
| /ariance                                                           | 3.066          |
| Coefficient of Variation                                           | 0.78           |
|                                                                    | 2,813          |
| Skewness                                                           |                |
| Mean of log data                                                   | 0.629          |
| SD of log data                                                     | 0.57           |
| 95% Useful UCLs                                                    |                |
| Student's-t UCL                                                    | 3.012          |
| 95% LICLs (Adjusted for Skawness)                                  |                |
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL           | 3,294          |
| 95% Adjusted-CLT OCL<br>95% Modified-t UCL                         | 3.294<br>3.064 |
| 95% Wodified-t OCL                                                 | 3.004          |
| Non-Parametric UCLs                                                |                |
| 95% CLT UCL                                                        | 2.965          |
| 95% Jackknife UCL                                                  | 3.012          |
| 95% Standard Bootstrap UCL                                         | 2.932          |
| 95% Bootstrap-t UCL                                                | 3.876          |
| 95% Hall's Bootstrap UCL                                           | 5.819          |
| 95% Percentile Bootstrap UCL                                       | 3.012          |
| 95% BCA Bootstrap UCL                                              | 3.276          |
| 95% Chebyshev(Mean, Sd) UCL                                        | 4.153          |
| 7.5% Chebyshev(Mean, Sd) UCL                                       | 4.979          |
| 99% Chebyshev(Mean, Sd) UCL                                        | 6.601          |
| D. J. J. J. (2005)                                                 |                |
| Data appear Gamma Distributed (0.05)<br>May want to try Gamma UCLs |                |
| nay want to try Gamma GOLS                                         |                |
| Arsenic                                                            |                |
|                                                                    |                |
| Number of Valid Observations                                       | 16             |
| Number of Distinct Observations                                    | 16             |
| <i>f</i> linimum                                                   | 2.41           |
| Maximum                                                            | 7.62           |
| Mean                                                               | 4.026          |
| Median                                                             | 3.805          |
| SD                                                                 | 1.4            |
| /ariance                                                           | 1.96           |
| Coefficient of Variation                                           | 0.348          |
| Skewness                                                           | 1.175          |
| Mean of log data                                                   | 1.341          |
| SD of log data                                                     | 0.327          |

| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL<br>95% Modified-t UCL | 4.712<br>4.657 |
|--------------------------------------------------------------------------------|----------------|
| Non-Parametric UCLs                                                            |                |
| 95% CLT UCL                                                                    | 4.602          |
| 95% Jackknife UCL                                                              | 4.64           |
| 95% Standard Bootstrap UCL                                                     | 4.577          |
| 95% Bootstrap-t UCL                                                            | 4.825          |
| 95% Hall's Bootstrap UCL                                                       | 4.993          |
| 95% Percentile Bootstrap UCL                                                   | 4.638          |
| 95% BCA Bootstrap UCL                                                          | 4.73           |
| 95% Chebyshev(Mean, Sd) UCL                                                    | 5.552          |
| 97.5% Chebyshev(Mean, Sd) UCL                                                  | 6.212          |
| 99% Chebyshev(Mean, Sd) UCL                                                    | 7.508          |
| Data appear Normal (0.05)<br>May want to try Normal UCLs                       |                |

## Atrazine (Aatrex)

| Total Number of Data      | 16     |
|---------------------------|--------|
| Number of Non-Detect Data | 15     |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.0814 |
| Maximum Detected          | 0.0814 |
| Percent Non-Detects       | 93.75% |
| Minimum Non-detect        | 0.024  |
| Maximum Non-detect        | 0.0346 |

Data set has all detected values equal to = 0.0814, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UTLs, UTLs are all less than the maximum detection limit = 0.0814

| ** Instead of UC |                 | = <0.0259 |
|------------------|-----------------|-----------|
|                  |                 |           |
|                  |                 |           |
|                  |                 |           |
|                  |                 |           |
|                  |                 |           |
|                  |                 |           |
|                  |                 |           |
|                  |                 |           |
|                  |                 |           |
|                  |                 |           |
|                  | oUCL User Guide |           |
|                  |                 |           |

#### **Barium**

| Number of Valid Observations     | 16    |
|----------------------------------|-------|
| Number of Distinct Observations  | 14    |
| Minimum                          | 116   |
| Maximum                          | 377   |
| Mean                             | 215.3 |
| Median                           | 198   |
| SD                               | 59.65 |
| Variance                         | 3558  |
| Coefficient of Variation         | 0.277 |
| Skewness                         | 1.296 |
| Mean of log data                 | 5.339 |
| SD of log data                   | 0.263 |
|                                  |       |
| 95% Useful UCLs                  |       |
| Student's-t UCL                  | 241.4 |
|                                  | •     |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 244.9 |
| 95% Modified-t UCL               | 242.2 |

| Non-Parametric UCLs           |       |
|-------------------------------|-------|
| 95% CLT UCL                   | 239.8 |
| 95% Jackknife UCL             | 241.4 |
| 95% Standard Bootstrap UCL    | 238.7 |
| 95% Bootstrap-t UCL           | 250   |
| 95% Hail's Bootstrap UCL      | 263.8 |
| 95% Percentile Bootstrap UCL  | 241.7 |
| 95% BCA Bootstrap UCL         | 244.2 |
| 95% Chebyshev(Mean, Sd) UCL   | 280.3 |
| 97.5% Chebyshev(Mean, Sd) UCL | 308.4 |
| 99% Chebyshev(Mean, Sd) UCL   | 363.6 |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

#### Benzo(a)anthracene

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 16<br>13<br>3<br>0.0675<br>0.395<br>81.25%<br>0.0125<br>0.018         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.212<br>0.172<br>0.028<br>0.167<br>0.791<br>1.003<br>-1.795<br>0.884 |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0945 |
| SD                                | 0.0816 |
| Standard Error of Mean            | 0.025  |
| 95% KM (t) UCL                    | 0.138  |
| 95% KM (z) UCL                    | 0.136  |
| 95% KM (BCA) UCL                  | 0.395  |
| 95% KM (Percentile Bootstrap) UCL | N/A    |
| 95% KM (Chebyshev) UCL            | 0.203  |

97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL

0.251 0.343

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = < <0.0138 [per recommendation in ProUCL User Guide]

## Benzo(a)pyrene

| Total Number of Data      | 16     |
|---------------------------|--------|
| Number of Non-Detect Data | 10     |
| Number of Detected Data   | 6      |
| Minimum Detected          | 0.0525 |
| Maximum Detected          | 0.445  |
| Percent Non-Detects       | 62.50% |
| Minimum Non-detect        | 0.0124 |
| Maximum Non-detect        | 0.0176 |
|                           |        |
| Mean of Detected Data     | 0.165  |
| Median of Detected Data   | 0.122  |
| Variance of Detected Data | 0.0209 |
| SD of Detected Data       | 0.145  |
| CV of Detected Data       | 0.879  |
| Skewness of Detected Data | 1.933  |
| Mean of Detected log data | -2.063 |
| SD of Detected Log data   | 0.755  |

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

N/A

| Kaplan Meier (KM) Method          |        |
|-----------------------------------|--------|
| Mean                              | 0.0946 |
| SD                                | 0.0974 |
| Standard Error of Mean            | 0.0267 |
| 95% KM (t) UCL                    | 0.141  |
| 95% KM (z) UCL                    | 0,138  |
| 95% KM (BCA) UCL                  | 0.189  |
| 95% KM (Percentile Bootstrap) UCL | 0.158  |
| 95% KM (Chebyshev) UCL            | 0.211  |
| 97.5% KM (Chebyshev) UCL          | 0.261  |
| 99% KM (Chebyshev) UCL            | 0.36   |
|                                   |        |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.0158

#### Benzo(b)fluoranthene

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect | 16<br>7<br><b>9</b><br>0.0324<br>0.611<br><b>43.75</b> %<br>0.00865 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Maximum Non-detect                                                                                                                              | 0.0123                                                              |
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data       | 0.174<br>0.131<br>0.0321<br>0.179<br>1.028<br>2.123                 |
| Mean of Detected log data SD of Detected Log data                                                                                               | -2.149<br>0.957                                                     |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

N/A

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method  |  |
|-----------------------|--|
| vvinsorization wethod |  |

| Kaplan Meier (KM) Method          |        |
|-----------------------------------|--------|
| Mean                              | 0.112  |
| SD                                | 0.145  |
| Standard Error of Mean            | 0.0384 |
| 95% KM (t) UCL                    | 0.18   |
| 95% KM (z) UCL                    | 0.175  |
| 95% KM (BCA) UCL                  | 0.196  |
| 95% KM (Percentile Bootstrap) UCL | 0.185  |
| 95% KM (Chebyshev) UCL            | 0.28   |
| 97.5% KM (Chebyshev) UCL          | 0.352  |
| 99% KM (Chebyshev) UCL            | 0.495  |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

## Benzo(g,h,i)perylene

| Total Number of Data      | 16     |
|---------------------------|--------|
| Number of Non-Detect Data | 9      |
| Number of Detected Data   | 7      |
| Minimum Detected          | 0.0173 |
| Maximum Detected          | 0.442  |
| Percent Non-Detects       | 56.25% |
| Minimum Non-detect        | 0.0124 |
| Maximum Non-detect        | 0.0176 |

| Mean of Detected Data     | 0.142  |
|---------------------------|--------|
| Median of Detected Data   | 0.069  |
| Variance of Detected Data | 0.0221 |
| SD of Detected Data       | 0.149  |
| CV of Detected Data       | 1.046  |
| Skewness of Detected Data | 1.69   |
| Mean of Detected log data | -2.409 |
| SD of Detected Log data   | 1.064  |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 10
Number treated as Detected 6
Single DL Percent Detection 62.50%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0719 |
| SD                                | 0.11   |
| Standard Error of Mean            | 0.0297 |
| 95% KM (t) UCL                    | 0.124  |
| 95% KM (z) UCL                    | 0.121  |
| 95% KM (BCA) UCL                  | 0.162  |
| 95% KM (Percentile Bootstrap) UCL | 0.136  |
| 95% KM (Chebyshev) UCL            | 0.202  |
| 97.5% KM (Chebyshev) UCL          | 0.258  |
| 99% KM (Chebyshev) UCL            | 0.368  |

Data appear Normal (0.05) May want to try Normal UCLs

| · Entropy Controlling with the Control of the Controlling Controlling Control of Controlling Controll | NGRESSE OF ES    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| ** Instead of UCL, EPC is selected to be median =   [per recommendation in ProUCL User Guide]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>೧ ೧17</b> 2 - |
| mistedu of oct, erc is selected to be median –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0172           |
| - 하루 9번 하는 도둑하는 요즘 10일은 본다는 문학들로 하는데 이번 경험을 하고 있다는 사람들은 학학에 되었다. 그렇지 않는데 모든                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000年1月2日        |
| Inor recommendation in ProJICI Hear Guidel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 Tay 1- 11 Tay |
| The Marie Dell' Lecolli Helingrion in Linder Oper Concel and the second and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |

## Benzo(k)fluoranthene

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect | 16<br>10<br><b>6</b><br>0.0474<br>0.318<br><b>62.50%</b><br>0.0191<br>0.0272 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data                          | 0.139<br>0.118<br>0.00945<br>0.0972<br>0.699<br>1.495                        |

| Mean of Detected log data | -2.16 |
|---------------------------|-------|
| SD of Detected Log data   | 0.666 |

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0818 |
| SD                                | 0.0702 |
| Standard Error of Mean            | 0.0192 |
| 95% KM (t) UCL                    | 0.115  |
| 95% KM (z) UCL                    | 0.113  |
| 95% KM (BCA) UCL                  | 0.159  |
| 95% KM (Percentile Bootstrap) UCL | 0.142  |
| 95% KM (Chebyshev) UCL            | 0.166  |
| 97.5% KM (Chebyshev) UCL          | 0.202  |
| 99% KM (Chebyshev) UCL            | 0.273  |
| Data appear Normal (0.05)         |        |
| May want to try Normal UCLs       |        |

\*\* Instead of UCL, EPC is selected to be median = ...
[per recommendation in ProUCL User Guide]

| TO GRADUS TRANSPORTER | 1 1 12 | 2.540.254 | NALIPARA L | . No. 1844 | - N- V- 15 | <br> | 1.1.10 | **** | 11/2/15/19 | <br>· C. | 5 | 12112 |  |
|-----------------------|--------|-----------|------------|------------|------------|------|--------|------|------------|----------|---|-------|--|
|                       |        |           |            | _          | _          | <br> |        |      |            | <br>     | _ |       |  |

| Beryllium                                                                                                                                                              |                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data | 16<br>12<br>0.29<br>0.82<br>0.463<br>0.42<br>0.149<br>0.0222<br>0.322<br>0.894<br>-0.815<br>0.307 |
| 95% Useful UCLs<br>Student's-t UCL                                                                                                                                     | 0.528                                                                                             |
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL<br>95% Modified-t UCL                                                                                         | 0.533<br>0.53                                                                                     |
| Non-Parametric UCLs<br>95% CLT UCL<br>95% Jackknife UCL<br>95% Standard Bootstrap UCL<br>95% Bootstrap-t UCL                                                           | 0.524<br>0.528<br>0.524<br>0.54                                                                   |

| 95% Hall's Bootstrap UCL                                     | 0.54                |
|--------------------------------------------------------------|---------------------|
| 95% Percentile Bootstrap UCL                                 | 0.524               |
| 95% BCA Bootstrap UCL                                        | 0.533<br>0.625      |
| 95% Chebyshev(Mean, Sd) UCL<br>97.5% Chebyshev(Mean, Sd) UCL | 0.696               |
| 99% Chebyshev(Mean, Sd) UCL                                  | 0.834               |
| 39 % Chebyshev(Mean, 3d) GOL                                 | 0.004               |
| Data appear Normal (0.05)                                    |                     |
| May want to try Normal UCLs                                  |                     |
|                                                              |                     |
| Boron                                                        |                     |
| T. (1)                                                       | 40                  |
| Total Number of Data                                         | 16                  |
| Number of Non-Detect Data                                    | 6                   |
| Number of Detected Data                                      | 10                  |
| Minimum Detected                                             | 12.5                |
| Maximum Detected                                             | 27.2                |
| Percent Non-Detects                                          | 37.50%              |
| Minimum Non-detect                                           | 1.35                |
| Maximum Non-detect                                           | 1.92                |
| Mean of Detected Data                                        | 18.82               |
| Median of Detected Data                                      | 19.7                |
| Variance of Detected Data                                    | 27.9                |
|                                                              | 5.282               |
| SD of Detected Data                                          |                     |
| CV of Detected Data                                          | 0.281               |
| Skewness of Detected Data                                    | 0.171               |
| Mean of Detected log data                                    | 2.898               |
| SD of Detected Log data                                      | 0.287               |
| Note: Data have multiple DLs - Use of KM Me                  | thod is recommended |
| For all methods (except KM, DL/2, and ROS Met                |                     |
| the Largest DL value is used for all NDs                     | ,                   |
| Data Dsitribution Test with Detected Values Only             |                     |
| Data appear Normal at 5% Significance Level                  |                     |
| Data appear troiling access organization = 1 to              |                     |
| Winsorization Method                                         | 0.287               |
| Mean                                                         | 13.19               |
| SD                                                           | 0.643               |
| 95% Winsor (t) UCL                                           | 13.57               |
| (4)                                                          |                     |
| Kaplan Meier (KM) Method                                     |                     |
| Mean                                                         | 16.45               |
| SD                                                           | 5.006               |
| Standard Error of Mean                                       | 1.319               |
| 95% KM (t) UCL                                               | 18.76               |
| 95% KM (z) UCL                                               | 18.62               |
| 95% KM (BCA) UCL                                             | 19.25               |
| 95% KM (Percentile Bootstrap) UCL                            | 18.86               |
| 95% KM (Chebyshev) UCL                                       | 22.2                |
| 97.5% KM (Chebyshev) UCL                                     | 24.69               |
| 99% KM (Chebyshev) UCL                                       | 29.58               |
| ,                                                            |                     |
| Data appear Normal (0.05)                                    |                     |
| May want to try Normal UCLs                                  |                     |
|                                                              |                     |
| Butyl benzyl phthalate                                       |                     |
| Total Number of Data                                         | 16                  |
| Number of Nep Detect Data                                    | 15                  |

15

Number of Non-Detect Data

| Number of Detected Data | 1      |
|-------------------------|--------|
| Minimum Detected        | 0.202  |
| Maximum Detected        | 0.202  |
| Percent Non-Detects     | 93.75% |
| Minimum Non-detect      | 0.0153 |
| Maximum Non-detect      | 0.0221 |

Data set has all detected values equal to = 0.202, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.202

| ,我就是我就看到他们,这多点的时候,但是我们的时候,但是这样,只是这种时间。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 그 마음 하는 돈을 하는 것이 없는 사람들은 것이다.         | international designation (SA)           | and the contract poster of the                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|------------------------------------------------|
| ** 122522 2 25 1101 FDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :I                                    |                                          | A A A A A A A A A C F                          |
| ** Instead of UCL, EPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | is selected to b                      | e median =                               | < 0.0165                                       |
| - 200 90 90 90 0 November 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the strangers of the part of a strain | The first the second control of the Park | The fact of the second section and             |
| <ul> <li>A contract the second of the se</li></ul> |                                       |                                          | er rest in electric la contract de la contract |
| [per recommenda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion in DrallCL I                     | Icar Cindalas                            | il tro despris mentrolitativativativ           |
| i bei recommenda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LIUII III PI UUCL (                   | Jsei Guidei 😘                            | Acceptance of the second                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 1 Pr. T. A. & T. & Fried S. T            | 在1996年,1996年,1996年,1996年,1996年                 |

| ^   |     |      |
|-----|-----|------|
| Lаг | haz | nie. |

| Total Number of Data      | 16      |
|---------------------------|---------|
| Number of Non-Detect Data | 13      |
| Number of Detected Data   | 3       |
| Minimum Detected          | 0.0195  |
| Maximum Detected          | 0.0861  |
| Percent Non-Detects       | 81.25%  |
| Minimum Non-detect        | 0.0121  |
| Maximum Non-detect        | 0.0174  |
| Mean of Detected Data     | 0.0504  |
| Median of Detected Data   | 0.0457  |
|                           |         |
| Variance of Detected Data | 0.00113 |
| SD of Detected Data       | 0.0336  |
| CV of Detected Data       | 0.665   |
| Skewness of Detected Data | 0.622   |
| Mean of Detected log data | -3.158  |
| SD of Detected Log data   | 0.745   |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          | •       |
| Mean                              | 0.0253  |
| SD                                | 0.0169  |
| Standard Error of Mean            | 0.00518 |
| 95% KM (t) UCL                    | 0.0344  |
| 95% KM (z) UCL                    | 0.0338  |
| 95% KM (BCA) UCL                  | 0.0861  |
| 95% KM (Percentile Bootstrap) UCL | N/A     |
| 95% KM (Chebyshev) UCL            | 0.0479  |

| 97.5% KM (Chebyshev) UCL |  |
|--------------------------|--|
| 99% KM (Chebyshev) UCL   |  |

Data appear Normal (0.05) May want to try Normal UCLs

| THE PERSON OF THE PROPERTY AND ADMINISTRAL PROPERTY. |                                        | The state of the s | A STATE OF THE STA | and the state of t |
|------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ** Instead of                                        |                                        | and the second s | 140 E 10 ■ E 10 E 10 E 10 E 10 E 10 E 10 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TT INCTOOM AT                                        | III L LDI IC COI                       | IOCTOR TO NO P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | neman =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.0138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| III III Cau OI                                       | OCL. LI C 13 3C                        | iccica to be i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | neululi — and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TELECOT STATES TO STATE AND ASSESSED.                |                                        | ratio I Program and the major recording                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | What make the species in the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 有可能的 表面的 经外的复数 经基本股份 化氯化二甲醇二二                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - なにかの はが (人・な) 方面 ずりかば                              | 321 k 1921 - 15 ( WER' 19 ) PROME      | Committee of the commit | Carry Service Contract Contract Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the same of th |
|                                                      | The state of the state of the state of | 2007 Policy Control of the Control o |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 经国际经济企业 医静态性医神经衰竭 计二键图式 电流电影                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Inorrocol                                            | mmendation i                           | IN PROFILE LICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or Callings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the contract of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PCITCO                                               | Innichadoloni                          | III I I O O CE O SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J. Calacj.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The state of the s |
|                                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Chloroform

| Total Number of Data      | 16       |
|---------------------------|----------|
| Number of Non-Detect Data | 14       |
| Number of Detected Data   | 2        |
| Minimum Detected          | 0.00504  |
| Maximum Detected          | 0.00527  |
| Percent Non-Detects       | 87.50%   |
| Minimum Non-detect        | 2.28E-04 |
| Maximum Non-detect        | 0.00108  |
| Mean of Detected Data     | 0.00516  |
| Median of Detected Data   | 0.00516  |
| Variance of Detected Data | 2.65E-08 |
| SD of Detected Data       | 1.63E-04 |
| CV of Detected Data       | 0.0315   |
| Skewness of Detected Data | N/A      |
| Mean of Detected log data | -5.268   |
| SD of Detected Log data   | 0.0316   |
|                           |          |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

0.0577 0.0769

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          | ÷        |
| Mean                              | 0.00505  |
| SD                                | 5.57E-05 |
| Standard Error of Mean            | 1.97E-05 |
| 95% KM (t) UCL                    | 0.00509  |
| 95% KM (z) UCL                    | 0.00509  |
| 95% KM (BCA) UCL                  | 0.00527  |
| 95% KM (Percentile Bootstrap) UCL | 0.00527  |
| 95% KM (Chebyshev) UCL            | 0.00514  |
| 97.5% KM (Chebyshev) UCL          | 0.00518  |

| 99% KM (Chebyshev) UCL                                                       | 0.00525            |  |
|------------------------------------------------------------------------------|--------------------|--|
| D-4                                                                          |                    |  |
| Potential UCL to Use                                                         | 0.00500            |  |
| 95% KM (t) UCL<br>95% KM (% Bootstrap) UCL                                   | 0.00509<br>0.00527 |  |
| 33 % NW (% Bootstrap) OCL                                                    | 0.00321            |  |
| ** Instead of UCL, EPC is selected to be<br>[per recommendation in ProUCL Us |                    |  |
|                                                                              |                    |  |
| Chromium                                                                     |                    |  |
| Number of Valid Observations                                                 | 16                 |  |
| Number of Distinct Observations                                              | 15                 |  |
| Minimum                                                                      | 5.01               |  |
| Maximum                                                                      | 14.4               |  |
| Mean                                                                         | 9.214              |  |
| Median                                                                       | 10.19              |  |
| SD                                                                           | 2.644              |  |
| Variance                                                                     | 6.989              |  |
| Coefficient of Variation                                                     | 0.287              |  |
| Skewness                                                                     | -0.17              |  |
| Mean of log data                                                             | 2.177              |  |
| SD of log data                                                               | 0.314              |  |
| 95% Useful UCLs<br>Student's-t UCL                                           | 10.37              |  |
| 95% UCLs (Adjusted for Skewness)                                             |                    |  |
| 95% Adjusted-CLT UCL                                                         | 10.27              |  |
| 95% Modified-t UCL                                                           | 10.37              |  |
| 0070 1110411104 ( 0001                                                       |                    |  |
| Non-Parametric UCLs                                                          |                    |  |
| 95% CLT UCL                                                                  | 10.3               |  |
| 95% Jackknife UCL                                                            | 10.37              |  |
| 95% Standard Bootstrap UCL                                                   | 10.29              |  |
| 95% Bootstrap-t UCL                                                          | 10.31              |  |
| 95% Hall's Bootstrap UCL                                                     | 10.31              |  |
| 95% Percentile Bootstrap UCL                                                 | 10.29              |  |
| 95% BCA Bootstrap UCL                                                        | 10.16              |  |
| 95% Chebyshev(Mean, Sd) UCL                                                  | 12.09              |  |
| 97.5% Chebyshev(Mean, Sd) UCL                                                | 13.34              |  |
| 99% Chebyshev(Mean, Sd) UCL                                                  | 15.79              |  |
| Data appear Normal (0.05) May want to try Normal UCLs                        |                    |  |
|                                                                              |                    |  |
| Chrysene                                                                     |                    |  |
| Total Number of Data                                                         | 16                 |  |
| Number of Non-Detect Data                                                    | 6                  |  |
| Number of Detected Data                                                      | 10                 |  |
| Minimum Detected                                                             | 0.0137             |  |
| Maximum Detected                                                             | 0.475              |  |
| Percent Non-Detects                                                          | 37.50%             |  |
| Minimum Non-detect                                                           | 0.0109             |  |
| Maximum Non-detect                                                           | 0.0151             |  |
| Mann of Detacted Deta                                                        | 0.40               |  |
| Mean of Detected Data                                                        | 0.12               |  |
| Median of Detected Data                                                      | 0.0825             |  |
| Variance of Detected Data                                                    | 0.0196             |  |

| •                                                                                                                                                                                                                                                                               |                                                                                          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| SD of Detected Data<br>CV of Detected Data<br>Skewness of Detected Data<br>Mean of Detected log data<br>SD of Detected Log data                                                                                                                                                 | 0.14<br>1.166<br>2.074<br>-2.711<br>1.199                                                |  |
| Note: Data have multiple DLs - Use of KM Me<br>For all methods (except KM, DL/2, and ROS Me<br>Observations < Largest DL are treated as NDs<br>Number treated as Non-Detect<br>Number treated as Detected<br>Single DL Percent Detection                                        | ethod is recommended<br>ethods),<br>8<br>8<br>50.00%                                     |  |
| Data Dsitribution Test with Detected Values On<br>Data appear Gamma Distributed at 5% Significa                                                                                                                                                                                 | ly<br>ance Level                                                                         |  |
| Winsorization Method                                                                                                                                                                                                                                                            | N/A                                                                                      |  |
| Kaplan Meier (KM) Method Mean SD Standard Error of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Data appear Gamma Distributed (0.05) May want to try Gamma UCLs | 0.0803<br>0.117<br>0.0308<br>0.134<br>0.131<br>0.141<br>0.135<br>0.215<br>0.273<br>0.387 |  |
| Cobalt                                                                                                                                                                                                                                                                          |                                                                                          |  |
| Number of Valid Observations Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness                                                                                                                                          | 16<br>16<br>3.05<br>7.16<br>4.385<br>4.06<br>1.131<br>1.279<br>0.258<br>0.956            |  |

| Mean of log data<br>SD of log data                                                                                                                     | 1.449<br>0.245                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 95% Useful UCLs<br>Student's-t UCL                                                                                                                     | 4.881                                            |
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL<br>95% Modified-t UCL                                                                         | 4.922<br>4.892                                   |
| Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL | 4.85<br>4.881<br>4.83<br>4.957<br>5.007<br>4.847 |

| 95% BCA Bootstrap UCL         | 4.876 |
|-------------------------------|-------|
| 95% Chebyshev(Mean, Sd) UCL   | 5.618 |
| 97.5% Chebyshev(Mean, Sd) UCL | 6.151 |
| 99% Chebyshev(Mean, Sd) UCL   | 7.198 |

# Data appear Normal (0.05) May want to try Normal UCLs

-----

| Number of Valid Observations    | 16    |
|---------------------------------|-------|
| Number of Distinct Observations | 16    |
| Mińimum                         | 3.28  |
| Maximum                         | 12.6  |
| Mean                            | 7.112 |
| Median                          | 6.655 |
| SD                              | 2.997 |
| Variance                        | 8.98  |
| Coefficient of Variation        | 0.421 |
| Skewness                        | 0.299 |
| Mean of log data                | 1.87  |
| SD of log data                  | 0.456 |
|                                 |       |

| 95% Useful                                   | UCLs    | 3  |
|----------------------------------------------|---------|----|
| Princip and the second of the second         |         | 별( |
| Student's-t U                                | CL 8.42 | 5≥ |
| Control of the Bull of Change of the Control |         |    |

| 95% UCLs (Adjusted for Skewness) |       |
|----------------------------------|-------|
| 95% Adjusted-CLT UCL             | 8.404 |
| 95% Modified-t UCL               | 8.435 |

## Non-Parametric UCLs

| 95% CLT UCL                   | 8.344 |
|-------------------------------|-------|
| 95% Jackknife UCL             | 8.425 |
| 95% Standard Bootstrap UCL    | 8.306 |
| 95% Bootstrap-t UCL           | 8.514 |
| 95% Hall's Bootstrap UCL      | 8.371 |
| 95% Percentile Bootstrap UCL  | 8.295 |
| 95% BCA Bootstrap UCL         | 8.335 |
| 95% Chebyshev(Mean, Sd) UCL   | 10.38 |
| 97.5% Chebyshev(Mean, Sd) UCL | 11.79 |
| 99% Chebyshey(Mean, Sd) UCI   | 14.57 |

## Data appear Normal (0.05)

May want to try Normal UCLs

## Cyclohexane

| Total Number of Data      | 16      |
|---------------------------|---------|
| Number of Non-Detect Data | 15      |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.00192 |
| Maximum Detected          | 0.00912 |
| Percent Non-Detects       | 93.75%  |
| Minimum Non-detect        | 0.00179 |
| Maximum Non-detect        | 0.00851 |

Data set has all detected values equal to = 0.00192, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00192

## \*\* Instead of UCL, EPC is selected to be median = <0.00329 [per recommendation in ProUCL User Guide]

## Dibenz(a,h)anthracene

| Total Number of Data      | 16      |
|---------------------------|---------|
| Number of Non-Detect Data | 10      |
| Number of Detected Data   | 6       |
| Minimum Detected          | 0.0511  |
| Maximum Detected          | 0.235   |
| Percent Non-Detects       | 62.50%  |
| Minimum Non-detect        | 0.0118  |
| Maximum Non-detect        | 0.0168  |
| Mean of Detected Data     | 0.105   |
| Median of Detected Data   | 0.0659  |
| Variance of Detected Data | 0.00541 |
| SD of Detected Data       | 0.0735  |
| CV of Detected Data       | 0.701   |
| Skewness of Detected Data | 1.464   |
| Mean of Detected log data | -2.428  |
| SD of Detected Log data   | 0.612   |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

N/A

Data Dsitribution Test with Detected Values Only

Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method |  |
|----------------------|--|
|                      |  |

| 0.0712 |
|--------|
| 0.0486 |
| 0.0133 |
| 0.0946 |
| 0.0932 |
| 0.111  |
| 0.0989 |
| 0.129  |
| 0.154  |
| 0.204  |
|        |

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

| ** In | stead        | of UC          | L, EPC                   | is sele | cted to | be med   | lian =  | <0.015 |
|-------|--------------|----------------|--------------------------|---------|---------|----------|---------|--------|
|       | STATE OF THE | 5 (F. 1887) 1. | ીક કેવી માટે કે કે કરો છ | 1900    | 100     | l User ( | 5. 等世级的 |        |

#### Dibenzofuran

| Total Number of Data      | 16 |
|---------------------------|----|
| Number of Non-Detect Data | 14 |
| Number of Detected Data   | 2  |

| Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                                                                                                 | 0.0268<br>0.0305<br><b>87.50%</b><br>0.0173<br>0.025                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.0287<br>0.0287<br>6.85E-06<br>0.00262<br>0.0913<br>N/A<br>-3.555<br>0.0914 |

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                        | N/A                                                            |  |
|---------------------------------------------|----------------------------------------------------------------|--|
| Kaplan Meier (KM) Method                    |                                                                |  |
| Mean                                        | 0.027                                                          |  |
| SD                                          | 8.96E-04                                                       |  |
| Standard Error of Mean                      | 3.17E-04                                                       |  |
| 95% KM (t) UCL                              | 0.0276                                                         |  |
| 95% KM (z) UCL                              | 0.0276                                                         |  |
| 95% KM (BCA) UCL                            | 0.0305                                                         |  |
| 95% KM (Percentile Bootstrap) UCL           | 0.0305                                                         |  |
| 95% KM (Chebyshev) UCL                      | 0.0284                                                         |  |
| 97.5% KM (Chebyshev) UCL                    | 0.029                                                          |  |
| 99% KM (Chebyshev) UCL                      | 0.0302                                                         |  |
| Potential UCL to Use                        |                                                                |  |
| 95% KM (t) UCL                              | 0.0276                                                         |  |
| 95% KM (% Bootstrap) UCL                    | 0.0305                                                         |  |
| ** Instead of UCL, EPC is selected to be mo | edian = <0.0192                                                |  |
| [per recommendation in ProUCL User          | #1.00% (Mr. 15) + 2.5% (Mr. 15) 11 (Mr. 4-6) 54/65 (Mr. 15) 55 |  |
|                                             |                                                                |  |
| Diethyl phthalate                           |                                                                |  |
| Total Number of Data                        | 16                                                             |  |
| Number of Non-Detect Data                   | 15                                                             |  |

1

**Number of Detected Data** 

| Minimum Detected    | 0.0389 |
|---------------------|--------|
| Maximum Detected    | 0.0389 |
| Percent Non-Detects | 93.75% |
| Minimum Non-detect  | 0.0208 |
| Maximum Non-detect  | 0.03   |

Data set has all detected values equal to = 0.0389, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0389

\*\* Instead of UCL, EPC is selected to be median = <0.0224

[per recommendation in ProUCL User Guide]

## Di-n-octyl phthalate

| 16   |
|------|
| 14   |
| 2    |
| 0147 |
| .192 |
| 50%  |
| 0102 |
| 0147 |
| .103 |
| .103 |
| 0157 |
| .125 |
| .213 |
|      |
| .935 |
| .817 |
|      |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method     | N/A    |  |  |
|--------------------------|--------|--|--|
| Kaplan Meier (KM) Method |        |  |  |
| Mean                     | 0.0258 |  |  |
| SD                       | 0.0429 |  |  |
| Standard Error of Mean   | 0.0152 |  |  |
| 95% KM (t) UCL           | 0.0524 |  |  |

| 95% KM (z) UCL                    | 0.0507 |
|-----------------------------------|--------|
| 95% KM (BCA) UCL                  | 0.192  |
| 95% KM (Percentile Bootstrap) UCL | 0.192  |
| 95% KM (Chebyshev) UCL            | 0.0919 |
| 97.5% KM (Chebyshev) UCL          | 0.121  |
| 99% KM (Chebyshev) UCL            | 0.177  |

Potential UCL to Use

\*\* Instead of UCL, EPC is selected to be median = \*\*\*\*\*<0.0113
[per recommendation in ProUCL User Guide]

#### **Fluoranthene**

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 16<br>8<br>8<br>0.0222<br>0.804<br><b>50.00</b> %<br>0.0137<br>0.0196  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.218<br>0.161<br>0.0618<br>0.249<br>1.143<br>2.315<br>-2.036<br>1.143 |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only
Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.12   |
| SD                                | 0.191  |
| Standard Error of Mean            | 0.0511 |
| 95% KM (t) UCL                    | 0.209  |
| 95% KM (z) UCL                    | 0.204  |
| 95% KM (BCA) UCL                  | 0.251  |
| 95% KM (Percentile Bootstrap) UCL | 0.223  |
| 95% KM (Chebyshev) UCL            | 0.343  |
| 97.5% KM (Chebyshev) UCL          | 0.439  |
| 99% KM (Chebyshev) UCL            | 0.628  |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

| FI | 'n | n | re | n | A |
|----|----|---|----|---|---|
|    |    |   |    |   |   |

| Total Number of Data      | . 16     |
|---------------------------|----------|
| Number of Non-Detect Data | 12       |
| Number of Detected Data   | 4        |
| Minimum Detected          | 0.0124   |
| Maximum Detected          | 0.046    |
| Percent Non-Detects       | 75.00%   |
| Minimum Non-detect        | 0.012    |
| Maximum Non-detect        | 0.0173   |
|                           |          |
| Mean of Detected Data     | 0.0276   |
| Median of Detected Data   | 0.0259   |
| Variance of Detected Data | 1.94E-04 |
| SD of Detected Data       | 0.0139   |
| CV of Detected Data       | 0.506    |
| Skewness of Detected Data | 0.682    |
| Mean of Detected log data | -3.695   |
| SD of Detected Log data   | 0.54     |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect13Number treated as Detected3Single DL Percent Detection81.25%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |  |  |
|-----------------------------------|---------|--|--|
| Kaplan Meier (KM) Method          |         |  |  |
| Mean                              | 0.0162  |  |  |
| SD                                | 0.00891 |  |  |
| Standard Error of Mean            | 0.00257 |  |  |
| 95% KM (t) UCL                    | 0.0207  |  |  |
| 95% KM (z) UCL                    | 0.0204  |  |  |
| 95% KM (BCA) UCL                  | N/A     |  |  |
| 95% KM (Percentile Bootstrap) UCL | 0.03    |  |  |
| 95% KM (Chebyshev) UCL            | 0.0274  |  |  |
| 97.5% KM (Chebyshev) UCL          | 0.0323  |  |  |
| 99% KM (Chebyshev) UCL            | 0.0418  |  |  |
|                                   |         |  |  |

Data appear Normal (0.05) May want to try Normal UCLs

| 1000  | SUL STREET     |                              |                 |                | the state of the s | The second second  |                                               |         |          |
|-------|----------------|------------------------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------|---------|----------|
|       |                | LICE FRO                     |                 |                | be med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                               | 0       | 0138     |
| TTINE | TOOK OT        | 111 1                        | IC COIO         | CTON TO        | ne men                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an = -             | the particular of the                         | - CII-I | DISX.    |
| 1113  | LEGU UI        | OCL, LI C                    | 13 3616         | CLCU LU        | DC IIICU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a                  | 2 10 3 10 10 10 10 10 10 10 10 10 10 10 10 10 |         | <u> </u> |
| 4     | 24 5 5 102 112 | All the second second second | the property of | さいたたいしゅう うかがんり | 计通讯 化多次电路 医阿克里氏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | read the least the | 20 30 10 10 10 10 10                          |         | 7        |
|       |                |                              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                               |         |          |
|       |                |                              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                               |         |          |
|       |                |                              |                 |                | L User G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                               |         |          |
|       |                |                              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                               |         |          |
|       |                |                              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                               |         |          |

## gamma-Chlordane

| Total Number of Data      | 16 |
|---------------------------|----|
| Number of Non-Detect Data | 12 |

| Number of Detected Data   | 4        |
|---------------------------|----------|
| Minimum Detected          | 6.38E-04 |
| Maximum Detected          | 8.26E-04 |
| Percent Non-Detects       | 75.00%   |
| Minimum Non-detect        | 3.19E-04 |
| Maximum Non-detect        | 4.51E-04 |
|                           |          |
| Mean of Detected Data     | 7.02E-04 |
| Median of Detected Data   | 6.72E-04 |
| Variance of Detected Data | 7.22E-09 |
| SD of Detected Data       | 8.50E-05 |
| CV of Detected Data       | 0.121    |
| Skewness of Detected Data | 1.69     |
| Mean of Detected log data | -7.267   |
| SD of Detected Log data   | 0.116    |

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          | •        |
| Mean                              | 6.54E-04 |
| SD                                | 4.61E-05 |
| Standard Error of Mean            | 1.33E-05 |
| 95% KM (t) UCL                    | 6.77E-04 |
| 95% KM (z) UCL                    | 6.76E-04 |
| 95% KM (BCA) UCL                  | 8.26E-04 |
| 95% KM (Percentile Bootstrap) UCL | 7.04E-04 |
| 95% KM (Chebyshev) UCL            | 7.12E-04 |
| 97.5% KM (Chebyshev) UCL          | 7.37E-04 |
| 99% KM (Chebyshev) UCL            | 7.86E-04 |
| Data appear Normal (0.05)         |          |
| May want to try Normal UCLs       |          |

| 化环烷酸化物 医无足术性畸形的现在分词 经证券 化二氯甲二乙酰胺 医动物 化二十二烷基 网络海岸海岸海岸海 电电路电路                                                    | 经价值 化电子电子联合 医多形的 整備 医抗胆病 化氯酸二甲基酚 经股份股份 医二十二十二十二十二十二甲基酚基苯基                                                      |  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| ** Instead of UCL, EPC is selected t                                                                           | o be median = <0.000391                                                                                        |  |
| TT INSTEAD OF LICE FPC IS SELECTED T                                                                           | n ne menian =                                                                                                  |  |
| Thistead of Oct, in Clasticated t                                                                              | o pe mealan                                                                                                    |  |
| 【大学系统 大学的主题 (Carl Strain ) 在 15 , 大学者 18 , 大学者 18 , 18 , 18 , 18 , 18 的 18 第二章 - 19 6年 18 第二章 18 第二章 18 第二章 18 | ann ag an an agus agus agus agus agus agus an mar agus an an agus an an agus agus an an an agus agus an agus a |  |
| 拉克特拉维亚亚多洲山脉 医肠皮肤 强力的复数 医阿里克斯特氏氏病毒性抗病                                                                           | N.A. D. T.S NACHELLE DE LEVEL LE COMBRESSON DE COMPLEXANTE LES DE LE COMPLEXANTE DE LE COMPLEXANTE DE LE CO    |  |
|                                                                                                                | CI III                                                                                                         |  |
| [per recommendation in ProU                                                                                    | CL USEL GUIDEL - SOLLANDO MARKA                                                                                |  |
|                                                                                                                |                                                                                                                |  |

#### Hexachlorobenzene

| Total Number of Data      | 16     |
|---------------------------|--------|
| Number of Non-Detect Data | 15     |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.0319 |
| Maximum Detected          | 0.0319 |
| Percent Non-Detects       | 93.75% |
| Minimum Non-detect        | 0.015  |
| Maximum Non-detect        | 0.0217 |

Data set has all detected values equal to = 0.0319, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

## Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0319

| 그는 아내는 그 이 아니는 아니는 아는 아내는 아내는 아내는 아내는 아내는 아내는 아내는 아내는 아내는                | \$10 Per 1 Pe     |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ** Instead of UCL, EPC is selected to be median =                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TT instead of Lic Larrows is selected to be median a                     | = <0.0162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| instead of oct, the bottested to be incuran.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 그는 이 교육 전에 가져왔다는 항상 선생님은 내가 소설하는 물로 내가 있다면 중요한 바로 하는 것이다.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 그들이 가득하는 그리지 않아야 한 한 전에 하나 되었다면 사람들이 되었다면 들었다는 말이 살고 살고 살고 살고 살아 하는 것이다. | <ul> <li>Control of the Control of the Control</li></ul> |
| [per recommendation in ProUCL User Guide                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| i dei l'econninendation in Frodet datae                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Indeno(1,2,3-cd)pyrene    |        |
|---------------------------|--------|
| Total Number of Data      | 16     |
| Number of Non-Detect Data | 10     |
| Number of Detected Data   | 6      |
| Minimum Detected          | 0.0556 |
| Maximum Detected          | 0.405  |
| Percent Non-Detects       | 62.50% |
| Minimum Non-detect        | 0.0198 |
| Maximum Non-detect        | 0.0282 |
| Mean of Detected Data     | 0.174  |
| Median of Detected Data   | 0.147  |
| Variance of Detected Data | 0.0169 |
| SD of Detected Data       | 0.13   |
| CV of Detected Data       | 0.747  |
| Skewness of Detected Data | 1.29   |
| Mean of Detected log data | -1.976 |
|                           |        |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

SD of Detected Log data

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

0.739

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method                           | N/A     |  |
|------------------------------------------------|---------|--|
| Kaplan Meier (KM) Method                       |         |  |
| Mean                                           | 0.0999  |  |
| SD                                             | 0.0925  |  |
| Standard Error of Mean                         | 0.0253  |  |
| 95% KM (t) UCL                                 | 0.144   |  |
| 95% KM (z) UCL                                 | 0.142   |  |
| 95% KM (BCA) UCL                               | 0.225   |  |
| 95% KM (Percentile Bootstrap) UCL              | 0.167   |  |
| 95% KM (Chebyshev) UCL                         | 0.21    |  |
| 97.5% KM (Chebyshev) UCL                       | 0.258   |  |
| 99% KM (Chebyshev) UCL                         | 0.352   |  |
| Data appear Normal (0.05)                      |         |  |
| May want to try Normal UCLs                    |         |  |
| ** Instead of UCL, EPC is selected to be media | 2000 DO |  |
|                                                |         |  |
| [per recommendation in ProUCL User Gu          | [de]    |  |
|                                                |         |  |
| Iron                                           |         |  |

iron

Number of Valid Observations

16

| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness | 16<br>6750<br>28200<br>13352<br>13200<br>5546<br>30754190<br>0.415<br>1.341 |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Mean of log data<br>SD of log data                                                                        | 9.427<br>0.389                                                              |
| 95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness)                                          | 15782                                                                       |
| 95% Adjusted-CLT UCL                                                                                      | 16129                                                                       |
| 95% Modified-t UCL                                                                                        | 15860                                                                       |
| Non-Parametric UCLs                                                                                       |                                                                             |
| 95% CLT UCL                                                                                               | 15632                                                                       |
| 95% Jackknife UCL                                                                                         | 15782                                                                       |
| 95% Standard Bootstrap UCL                                                                                | 15594                                                                       |
| 95% Bootstrap-t UCL                                                                                       | 16690<br>18534                                                              |
| 95% Hall's Bootstrap UCL<br>95% Percentile Bootstrap UCL                                                  | 15569                                                                       |
| 95% BCA Bootstrap UCL                                                                                     | 16013                                                                       |
| 95% Chebyshev(Mean, Sd) UCL                                                                               | 19395                                                                       |
| 97.5% Chebyshev(Mean, Sd) UCL                                                                             | 22010                                                                       |
| 99% Chebyshev(Mean, Sd) UCL                                                                               | 27146                                                                       |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

## Isopropylbenzene (Cumene)

| Total Number of Data      | 16       |
|---------------------------|----------|
| Number of Non-Detect Data | 14       |
| Number of Detected Data   | 2        |
| Minimum Detected          | 0.00464  |
| Maximum Detected          | 0.00704  |
| Percent Non-Detects       | 87.50%   |
| Minimum Non-detect        | 2.48E-04 |
| Maximum Non-detect        | 0.00118  |
| Mean of Detected Data     | 0.00584  |
| Median of Detected Data   | 0.00584  |
| Variance of Detected Data | 2.88E-06 |
| SD of Detected Data       | 0.0017   |
| CV of Detected Data       | 0.291    |
| Skewness of Detected Data | N/A      |
| Mean of Detected log data | -5.165   |
| SD of Detected Log data   | 0.295    |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods. However, results obtained using 4 to 9 distinct values may not be reliable. It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                            | N/A         |
|-------------------------------------------------|-------------|
| Kaplan Meier (KM) Method                        | •           |
| Mean                                            | 0.00479     |
| SD                                              | 5.81E-04    |
| Standard Error of Mean                          | 2.05E-04    |
| 95% KM (t) UCL                                  | 0.00515     |
| 95% KM (z) UCL                                  | 0.00513     |
| 95% KM (BCA) UCL                                | 0.00704     |
| 95% KM (Percentile Bootstrap) UCL               | N/A         |
| 95% KM (Chebyshev) UCL                          | 0.00569     |
| 97.5% KM (Chebyshev) UCL                        | 0.00607     |
| 99% KM (Chebyshev) ÚCL                          | 0.00683     |
| Potential UCL to Use                            |             |
| 95% KM (t) UCL                                  | 0.00515     |
| 95% KM (% Bootstrap) UCL                        | N/A         |
| ** Instead of UCL, EPC is selected to be median | = <0.000480 |

[per recommendation in ProUCL User Guide]

\_\_\_\_\_

| Lead                             | •     |
|----------------------------------|-------|
| Number of Valid Observations     | 16    |
| Number of Distinct Observations  | 16    |
| Minimum                          | 5     |
| Maximum                          | 32.3  |
| Mean                             | 11.56 |
| Median                           | 10.03 |
| SD                               | 7.161 |
| Variance                         | 51.28 |
| Coefficient of Variation         | 0.62  |
| Skewness                         | 2.013 |
| Mean of log data                 | 2.311 |
| SD of log data                   | 0.512 |
| 95% Useful UCLs                  |       |
| Student's-t UCL                  | 14.69 |
| Olddon (3 t OOL                  | 14.00 |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 15.46 |
| 95% Modified-t UCL               | 14.84 |
|                                  |       |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 14.5  |
| 95% Jackknife UCL                | 14.69 |
| 95% Standard Bootstrap UCL       | 14.34 |
| 95% Bootstrap-t UCL              | 18.14 |
| 95% Hall's Bootstrap UCL         | 31.58 |

| 95% Percentile Bootstrap UCL<br>95% BCA Bootstrap UCL<br>95% Chebyshev(Mean, Sd) UCL<br>97.5% Chebyshev(Mean, Sd) UCL<br>99% Chebyshev(Mean, Sd) UCL | 14.62<br>15.47<br>19.36<br>22.74<br>29.37 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Data appear Gamma Distributed (0.05)<br>May want to try Gamma UCLs                                                                                   |                                           |
|                                                                                                                                                      |                                           |
| Lithium                                                                                                                                              |                                           |
| Number of Valid Observations                                                                                                                         | 16                                        |
| Number of Distinct Observations                                                                                                                      | 15                                        |
| Minimum                                                                                                                                              | 6.4                                       |
| Maximum                                                                                                                                              | 20                                        |
| Mean<br>Median                                                                                                                                       | 10.53<br>9.88                             |
| SD                                                                                                                                                   | 3.559                                     |
| Variance                                                                                                                                             | 12.67                                     |
| Coefficient of Variation                                                                                                                             | 0.338                                     |
| Skewness                                                                                                                                             | 1.247                                     |
| Mean of log data                                                                                                                                     | 2.306                                     |
| SD of log data                                                                                                                                       | 0.314                                     |
| 95% Useful UCLs<br>Student's-t UCL                                                                                                                   | 12.09                                     |
| 95% UCLs (Adjusted for Skewness)                                                                                                                     |                                           |
| 95% Adjusted-CLT UCL                                                                                                                                 | 12.29                                     |
| 95% Modified-t UCL                                                                                                                                   | 12.14                                     |
| Non Developin IIOI n                                                                                                                                 |                                           |
| Non-Parametric UCLs<br>95% CLT UCL                                                                                                                   | 12                                        |
| 95% Jackknife UCL                                                                                                                                    | 12.09                                     |
| 95% Standard Bootstrap UCL                                                                                                                           | 11.96                                     |
| 95% Bootstrap-t UCL                                                                                                                                  | 12.73                                     |
| 95% Hall's Bootstrap UCL                                                                                                                             | 12.79                                     |
| 95% Percentile Bootstrap UCL                                                                                                                         | 12.04                                     |
| 95% BCA Bootstrap UCL<br>95% Chebyshev(Mean, Sd) UCL                                                                                                 | 12.17<br>14.41                            |
| 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                        | 16.09                                     |
| 99% Chebyshev(Mean, Sd) UCL                                                                                                                          | 19.39                                     |
| Data appear Normal (0.05) May want to try Normal UCLs                                                                                                |                                           |
|                                                                                                                                                      |                                           |
| Manganese                                                                                                                                            |                                           |
| Number of Valid Observations                                                                                                                         | 16                                        |
| Number of Distinct Observations                                                                                                                      | 15                                        |
| Minimum<br>Maximum                                                                                                                                   | 192                                       |
| Mean Mean                                                                                                                                            | 474<br>283.3                              |
| Median                                                                                                                                               | 275                                       |
| SD                                                                                                                                                   | 87.59                                     |
| Variance                                                                                                                                             | 7673                                      |
| Coefficient of Variation                                                                                                                             | 0.309                                     |
| Skewness<br>Mean of lead data                                                                                                                        | 0.667                                     |
| Mean of log data<br>SD of log data                                                                                                                   | 5.603<br>0.301                            |
| op or log data                                                                                                                                       | 0.001                                     |

| 95% Useful UCLs<br>Student's-t UCL                       | 321.6             |  |
|----------------------------------------------------------|-------------------|--|
| 95% UCLs (Adjusted for Skewness)                         |                   |  |
| 95% Adjusted-CLT UCL                                     | 323.2             |  |
| 95% Modified-t UCL                                       | 322.2             |  |
|                                                          |                   |  |
| Non-Parametric UCLs                                      | 040.0             |  |
| 95% CLT UCL                                              | 319.3             |  |
| 95% Jackknife UCL<br>95% Standard Bootstrap UCL          | 321.6<br>317.6    |  |
| 95% Bootstrap-t UCL                                      | 331.6             |  |
| 95% Hall's Bootstrap UCL                                 | 322.6             |  |
| 95% Percentile Bootstrap UCL                             | 322.1             |  |
| 95% BCA Bootstrap UCL                                    | 324               |  |
| 95% Chebyshev(Mean, Sd) UCL                              | 378.7             |  |
| 97.5% Chebyshev(Mean, Sd) UCL                            | 420               |  |
| 99% Chebyshev(Mean, Sd) UCL                              | 501.1             |  |
| Data appear Normal (0.05) May want to try Normal UCLs    |                   |  |
| Mercury                                                  |                   |  |
| Number of Valid Observations                             | 16                |  |
| Number of Distinct Observations                          | 13                |  |
| Minimum                                                  | 0.011             |  |
| Maximum                                                  | 0.036             |  |
| Mean .                                                   | 0.0201            |  |
| Median                                                   | 0.02              |  |
| SD                                                       | 0.00739           |  |
| Variance Coefficient of Variation                        | 5.46E-05<br>0.368 |  |
| Skewness                                                 | 0.618             |  |
| Mean of log data                                         | -3.972            |  |
| SD of log data                                           | 0.367             |  |
| 95% Useful UCL's<br>Student's-t UCL                      | 0.0233            |  |
| 95% UCLs (Adjusted for Skewness)                         |                   |  |
| 95% Adjusted-CLT UCL                                     | 0.0234            |  |
| 95% Modified-t UCL                                       | 0.0233            |  |
| Non-Parametric UCLs                                      |                   |  |
| 95% CLT UCL                                              | 0.0231            |  |
| 95% Jackknife UCL<br>95% Standard Bootstrap UCL          | 0.0233            |  |
| •                                                        | 0.023<br>0.0236   |  |
| 95% Bootstrap-t UCL<br>95% Hall's Bootstrap UCL          | 0.0236            |  |
| 95% Percentile Bootstrap UCL                             | 0.0230            |  |
| 95% BCA Bootstrap UCL                                    | 0.023             |  |
| 95% Chebyshev(Mean, Sd) UCL                              | 0.0281            |  |
| 97.5% Chebyshev(Mean, Sd) UCL                            | 0.0316            |  |
| 99% Chebyshev(Mean, Sd) UCL                              | 0.0384            |  |
| Data appear Normal (0.05)<br>May want to try Normal UCLs |                   |  |
|                                                          |                   |  |

| Total Number of Data      | 16       |
|---------------------------|----------|
| Number of Non-Detect Data | 15       |
| Number of Detected Data   | 1        |
| Minimum Detected          | 0.0037   |
| Maximum Detected          | 0.0037   |
| Percent Non-Detects       | 93.75%   |
| Minimum Non-detect        | 0.000599 |
| Maximum Non-detect        | 0.00285  |

Data set has all detected values equal to = 0.0037, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects. Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0037

| ** Instead of UC | L. EPC is selected | l to be median | = <0.00117 |
|------------------|--------------------|----------------|------------|
|                  |                    |                | e]         |

| Molybdenum                                    |         |  |
|-----------------------------------------------|---------|--|
| Number of Valid Observations                  | 16      |  |
| Number of Distinct Observations               | 15      |  |
| Minimum                                       | 0.14    |  |
| Maximum                                       | 5.66    |  |
| Mean                                          | 0.667   |  |
| Median                                        | 0.24    |  |
| SD                                            | 1.358   |  |
| Variance                                      | 1.843   |  |
| Coefficient of Variation                      | 2.036   |  |
| Skewness                                      | 3.761   |  |
| Mean of log data                              | -1.108  |  |
| SD of log data                                | 0.95    |  |
| Data do not follow a Discernable Distribution |         |  |
| 95% Useful UCLs                               |         |  |
| Student's-t UCL                               | 1.262   |  |
| 95% UCLs (Adjusted for Skewness)              |         |  |
| 95% Adjusted-CLT UCL                          | 1.566   |  |
| 95% Modified-t UCL                            | 1.315 - |  |
| Non-Parametric UCLs                           |         |  |
| 95% CLT UCL                                   | 1.225   |  |
| 95% Jackknife UCL                             | 1.262   |  |
| 95% Standard Bootstrap UCL                    | 1.206   |  |
| 95% Bootstrap-t UCL                           | 4.6     |  |
| 95% Hall's Bootstrap UCL                      | 3.351   |  |
| 95% Percentile Bootstrap UCL                  | 1.312   |  |
| 95% BCA Bootstrap UCL                         | 1.703   |  |
| 95% Chebyshev(Mean, Sd) UCL                   | 2.146   |  |
| 97.5% Chebyshev(Mean, Sd) UCL                 | 2.786   |  |
| 99% Chebyshev(Mean, Sd) ÚCL                   | 4.044   |  |
| Potential UCL to Use                          |         |  |
| Use 95% Chebyshev (Mean, Sd) UCL              | 2.146   |  |

## Nickel

| Number of Valid Observations    | 16 |
|---------------------------------|----|
| Number of Distinct Observations | 15 |

| Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.8                                              |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---|
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.7                                             |   |
| Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.589                                            |   |
| Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.93                                             |   |
| SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.741                                            |   |
| Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.512                                            |   |
| Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.286                                            |   |
| Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.821                                            |   |
| Mean of log data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.223                                            | - |
| SD of log data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.283                                            |   |
| 95% Useful UCLs<br>Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10:79                                            |   |
| State College (A. State College American) (18 a. w. o. 2 of 1 mars 1 7 a. State College State College (A. State College State Co | a fregue the coulding to the of North Country of |   |
| 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |   |
| 95% Adjusted-CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.87                                            |   |
| 95% Modified-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.81                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |   |
| Non-Parametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |   |
| 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.72                                            |   |
| 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.79                                            |   |
| 95% Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.68                                            |   |
| 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.9                                             |   |
| 95% Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.23                                            |   |
| 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.74                                            |   |
| 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.87                                            |   |
| 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.58                                            |   |
| 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.87                                            |   |
| 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.41                                            |   |
| Data annear Narmal (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |   |
| Data appear Normal (0.05) May want to try Normal UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                |   |
| way want to try Normal OCLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |   |
| n-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |   |
| n-ma occarpneny tanàna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |   |

| 16     |
|--------|
| 15     |
| 1      |
| 0.0434 |
| 0.0434 |
| 93.75% |
| 0.0139 |
| 0.0201 |
|        |

Data set has all detected values equal to = 0.0434, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0434

| ** Instead of UCL, EI | C is selected | to be mediar  | <0.0150 |
|-----------------------|---------------|---------------|---------|
|                       |               |               |         |
| [per recommend        | lation in Pro | UCL User Guid | le]     |

## Phenanthrene

| Total Number of Data      | 16     |
|---------------------------|--------|
| Number of Non-Detect Data | 8      |
| Number of Detected Data   | 8      |
| Minimum Detected          | 0.0311 |
| Maximum Detected          | 0.508  |
| Percent Non-Detects       | 50.00% |

| Minimum Non-detect        | 0.0152 |
|---------------------------|--------|
| Maximum Non-detect        | 0.0216 |
| Mean of Detected Data     | 0.14   |
| Median of Detected Data   | 0.0953 |
| Variance of Detected Data | 0.0242 |
| SD of Detected Data       | 0.155  |
| CV of Detected Data       | 1.107  |
| Skewness of Detected Data | 2.358  |
| Mean of Detected log data | -2.349 |
| SD of Detected Log data   | 0.892  |

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method   | N/A    |
|------------------------|--------|
| TTITION LANGIN MICHIGA | 14// \ |

| Kaplan | Meier | (KM) | Method |  |
|--------|-------|------|--------|--|
|        |       |      |        |  |

| wean                              | 0.0858 |
|-----------------------------------|--------|
| SD                                | 0.116  |
| Standard Error of Mean            | 0.0311 |
| 95% KM (t) UCL                    | 0.14   |
| 95% KM (z) UCL                    | 0.137  |
| 95% KM (BCA) UCL                  | 0.159  |
| 95% KM (Percentile Bootstrap) UCL | 0.142  |
| 95% KM (Chebyshev) UCL            | 0.221  |
| 97.5% KM (Chebyshev) UCL          | √0.28  |
| 99% KM (Chebyshev) UCL            | 0.396  |
|                                   |        |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

#### Pyrene

| Total Number of Data      | 16     |
|---------------------------|--------|
| Number of Non-Detect Data | 6      |
| Number of Detected Data   | 10     |
| Minimum Detected          | 0.0176 |
| Maximum Detected          | 0.862  |
| Percent Non-Detects       | 37.50% |
| Minimum Non-detect        | 0.0146 |
| Maximum Non-detect        | 0.0202 |
| Mean of Detected Data     | 0.203  |
| Median of Detected Data   | 0.146  |
| Variance of Detected Data | 0.0652 |
| SD of Detected Data       | 0.255  |
| CV of Detected Data       | 1.258  |
| Skewness of Detected Data | 2.208  |
| Mean of Detected log data | -2.308 |
| SD of Detected Log data   | 1.341  |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest DL are treated as NDs
Number treated as Non-Detect - 7
Number treated as Detected 9
Single DL Percent Detection 43.75%

Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| vvinsorization ivietnod           | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.133  |
| SD                                | 0.211  |
| Standard Error of Mean            | 0.0557 |
| 95% KM (t) UCL                    | 0.231  |
| 95% KM (z) UCL                    | 0.225  |
| 95% KM (BCA) UCL                  | 0.248  |
| 95% KM (Percentile Bootstrap) UCL | 0.231  |
| 95% KM (Chebyshev) UCL            | 0.376  |
| 97.5% KM (Chebyshev) UCL          |        |
| 99% KM (Chebyshev) UCL            | 0.688  |
|                                   |        |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

#### Silver

| Total Number of Data      | 16              |
|---------------------------|-----------------|
| Number of Non-Detect Data | 10              |
| Number of Detected Data   | 6               |
| Minimum Detected          | 0.3             |
| Maximum Detected          | 0.54            |
| Percent Non-Detects       | 62.50%          |
| Minimum Non-detect        | 0.067           |
| Maximum Non-detect        | 0.094           |
| Mean of Detected Data     | 0.393           |
| Median of Detected Data   | 0.39            |
| Variance of Detected Data | 0.00695         |
| SD of Detected Data       | 0.0833          |
| CV of Detected Data       | 0.212           |
|                           |                 |
| Skewness of Detected Data | 1.083           |
| Mean of Detected log data | 1.083<br>-0.951 |
|                           |                 |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Winsorization Method N/A

Kaplan Meier (KM) Method

Mean 0.335

| SD                                             | 0.0649     |   |
|------------------------------------------------|------------|---|
| Standard Error of Mean                         | 0.0178     |   |
| 95% KM (t) UCL                                 | 0.366      |   |
| 95% KM (z) UCL                                 | 0.364      |   |
| 95% KM (BCA) UCL                               | 0.418      |   |
| 95% KM (Percentile Bootstrap) UCL              | 0.401      |   |
| 95% KM (Chebyshev) UCL                         | 0.412      |   |
| 97.5% KM (Chebyshev) UCL                       | 0.446      |   |
| 99% KM (Chebyshev) UCL                         | 0.512      |   |
| Data appear Normal (0.05)                      |            |   |
| May want to try Normal UCLs                    |            |   |
| ** Instead of UCL, EPC is selected to be media | n= <0.0895 |   |
| [per recommendation in ProUCL User Gui         |            |   |
|                                                |            |   |
| Strontium                                      |            | - |
| Number of Valid Observations                   | 16         |   |
| Number of Distinct Observations                | 15         |   |
| Minimum                                        | 32.8       |   |
| Maximum                                        | 81.7       |   |
| Mean                                           | 44.86      |   |
| Median                                         | 39.85      |   |
| SD                                             | 14.43      |   |
| Variance                                       | 208.3      |   |
| Coefficient of Variation                       | 0.322      |   |
| Skewness                                       | 1.805      |   |
| Mean of log data                               | 3.765      |   |
| SD of log data                                 | 0.274      |   |
| Data do not follow a Discernable Distribution  | ,          |   |
| 95% Useful UCLs                                |            |   |
| Student's-t UCL                                | 51.19      |   |
| 95% UCLs (Adjusted for Skewness)               |            |   |
| 95% Adjusted-CLT UCL                           | 52.54      |   |
| 95% Modified-t UCL                             | 51.46      |   |
| Non-Parametric UCLs                            |            |   |
| OFN/ CLT LICE                                  | 50.8       |   |

50.8

51.19

50.5

56.98

82.31

51.29

51.61 60.59

67.4 80.77

51.19

| Or 95% Modified-t | UCL |
|-------------------|-----|
|                   | •   |
|                   |     |

Titanium

95% CLT UCL

95% Jackknife UCL

95% Bootstrap-t UCL 95% Hall's Bootstrap UCL

95% Standard Bootstrap UCL

95% Percentile Bootstrap UCL

95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL

99% Chebyshev(Mean, Sd) UCL

Potential UCL to Use Use 95% Student's-t UCL

95% BCA Bootstrap UCL

| •                               |    |
|---------------------------------|----|
| Number of Valid Observations    | 16 |
| Number of Distinct Observations | 16 |

| Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data | 19.1<br>36.6<br>25.58<br>23.95<br>5.051<br>25.51<br>0.198<br>1.084<br>3.225<br>0.186 |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 95% Useful UCLs<br>Student's-t UCL                                                                        | 27.79                                                                                |
| 95% UCLs (Adjusted for Skewness)                                                                          |                                                                                      |
| 95% Adjusted-CLT UCL                                                                                      | 28.02                                                                                |
| 95% Modified-t UCL                                                                                        | 27.85                                                                                |
| Non-Parametric UCLs                                                                                       |                                                                                      |
| 95% CLT UCL                                                                                               | 27.65                                                                                |
| 95% Jackknife UCL                                                                                         | 27.79                                                                                |
| 95% Standard Bootstrap UCL                                                                                | 27.55                                                                                |
| 95% Bootstrap-t UCL                                                                                       | 28.62                                                                                |
| 95% Hall's Bootstrap UCL                                                                                  | 28.98                                                                                |
| 95% Percentile Bootstrap UCL                                                                              | 27.63                                                                                |
| 95% BCA Bootstrap UCL                                                                                     | 27.97                                                                                |
| 95% Chebyshev(Mean, Sd) UCL                                                                               | 31.08                                                                                |
| 97.5% Chebyshev(Mean, Sd) UCL                                                                             | 33.46                                                                                |
| 99% Chebyshev(Mean, Sd) UCL                                                                               | 38.14                                                                                |
| Data appear Normal (0.05) May want to try Normal UCLs                                                     |                                                                                      |
| Toluene                                                                                                   |                                                                                      |

| Total Number of Data      | 16      |
|---------------------------|---------|
| Number of Non-Detect Data | 15      |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.00581 |
| Maximum Detected          | 0.00581 |
| Percent Non-Detects       | 93.75%  |
| Minimum Non-detect        | 0.00089 |
| Maximum Non-detect        | 0.00423 |

Data set has all detected values equal to = 0.00581, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00581

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the first of the second |                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| ** Inctood of UCL EDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ic colocted to be media:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ・ニー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                               |
| Instead of oct. crc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | is selected to be median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 = <b>&lt;0.00173</b>                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Control of the Contro | Color of Color State (No. No. No. No. No. 1, 1992).                  |
| the state of the s       | STATE OF THE ENGINEERING CONTRACTOR OF THE PROPERTY OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul><li>● (1) ■ (1) 数数数据 图 1、 数数数数 (2) 数数数 (2) 数据 (3)</li></ul>      |
| Inor recommends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion in Profit I Hear fallic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | □ 1 14 5 15 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 |
| PEL LECORRILLERIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion in ProUCL User Guid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |
| <ul> <li>Control of the second of the se</li></ul> | 1976年1987年1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月1日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | als - 1、4.45.11 (10 Median) - 1 - 12 Median Africa (12 Median)       |

## Vanadium

| Number of Valid Observations    | 16    |
|---------------------------------|-------|
| Number of Distinct Observations | 16    |
| Minimum                         | 9.06  |
| Maximum                         | 21.2  |
| Mean                            | 13.86 |
| Median                          | 13.45 |

| SD                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.523                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Variance                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.41                                                                                                                                                                            |
| Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.254                                                                                                                                                                            |
| Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.54                                                                                                                                                                             |
| Mean of log data                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.599                                                                                                                                                                            |
| SD of log data                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.251                                                                                                                                                                            |
| 95% Useful UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |
| Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.4                                                                                                                                                                             |
| 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                  |
| 95% Adjusted-CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.44                                                                                                                                                                            |
| 95% Modified-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.42                                                                                                                                                                            |
| 33 % Modified-t OOL                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.42                                                                                                                                                                            |
| Non-Parametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |
| 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.31                                                                                                                                                                            |
| 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.4                                                                                                                                                                             |
| 95% Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.23                                                                                                                                                                            |
| 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.63                                                                                                                                                                            |
| 95% Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.38                                                                                                                                                                            |
| 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.29                                                                                                                                                                            |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.29                                                                                                                                                                            |
| 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |
| 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.7                                                                                                                                                                             |
| 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.36                                                                                                                                                                            |
| 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.62                                                                                                                                                                            |
| Data appear Normal (0.05) May want to try Normal UCLs                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |
| Number of Valid Observations                                                                                                                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                               |
| Number of Valid Observations Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                   | 16<br>15                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |
| Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                               |
| Number of Distinct Observations<br>Minimum                                                                                                                                                                                                                                                                                                                                                                                                     | 15<br>18                                                                                                                                                                         |
| Number of Distinct Observations<br>Minimum<br>Maximum                                                                                                                                                                                                                                                                                                                                                                                          | 15<br>18<br>92.6                                                                                                                                                                 |
| Number of Distinct Observations<br>Minimum<br>Maximum<br>Mean                                                                                                                                                                                                                                                                                                                                                                                  | 15<br>18<br>92.6<br>45.36                                                                                                                                                        |
| Number of Distinct Observations<br>Minimum<br>Maximum<br>Mean<br>Median                                                                                                                                                                                                                                                                                                                                                                        | 15<br>18<br>92.6<br>45.36<br>43.6                                                                                                                                                |
| Number of Distinct Observations Minimum Maximum Mean Median SD                                                                                                                                                                                                                                                                                                                                                                                 | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88                                                                                                                                       |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance                                                                                                                                                                                                                                                                                                                                                                        | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3                                                                                                                              |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data                                                                                                                                                                                                                                                                                                                     | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3                                                                                                                              |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness                                                                                                                                                                                                                                                                                                                                      | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438                                                                                                                     |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data                                                                                                                                                                                                                                                                                                                     | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722                                                                                                   |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL                                                                                                                                                                                                                                                      | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454                                                                                          |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                     | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454                                                                                          |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL                                                                                                                                                                                                                                                      | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454                                                                                          |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL                                                                                                                                                                                               | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454                                                                                          |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL                                                                                                                                                                                               | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454                                                                                          |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL                                                                                                                                                                            | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454                                                                                          |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs                                                                                                                                                       | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454                                                                                          |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL                                                                                              | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454<br>54.07                                                                                 |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL                                                                                                                         | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454<br>54.07                                                                                 |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL                                                                                              | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454<br>54.07<br>54.44<br>54.21                                                               |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL                                                                          | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454<br>54.07<br>54.44<br>54.21                                                               |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL                                                 | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454<br>54.07<br>54.44<br>54.21<br>53.53<br>54.07<br>53.02<br>55.22<br>55.11                  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Percentile Bootstrap UCL                               | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454<br>54.07<br>54.44<br>54.21<br>53.53<br>54.07<br>53.02<br>55.22<br>55.11<br>53.7          |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL                                                 | 15 18 92.6 45.36 43.6 19.88 395.3 0.438 0.681 3.722 0.454  54.44 54.21  53.53 54.07 53.02 55.22 55.11 53.7 54.66                                                                 |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL | 15<br>18<br>92.6<br>45.36<br>43.6<br>19.88<br>395.3<br>0.438<br>0.681<br>3.722<br>0.454<br>54.44<br>54.21<br>53.53<br>54.07<br>53.02<br>55.22<br>55.11<br>53.7<br>54.66<br>67.02 |

Data appear Normal (0.05) May want to try Normal UCLs

## **APPENDIX A-7**

BACKGROUND SEDIMENT INTERCOASTAL WATERWAY

## Nonparametric UCL Statistics for Data Sets with Non-Detects

**User Selected Options** 

From File C:\Users\Michael\\...\ProUCL data analysis\ICWsed - JUST BACKGROUND\ICWsed data - JUST BACKGROUND\_ProUCL input.wst

Full Precision

OFF

Confidence Coefficient

95%

Number of Bootstrap Operations

2000

#### 1,2,4-Trimethylbenzene

| Total Number of Data      | 9       |
|---------------------------|---------|
| Number of Non-Detect Data | 8       |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.00391 |
| Maximum Detected          | 0.00391 |
| Percent Non-Detects       | 88.89%  |
| Minimum Non-detect        | 0.00032 |
| Maximum Non-detect        | 0.00308 |

Data set has all detected values equal to = 0.00391, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00391

\*\* Instead of UCL, EPC is selected to be median = 1400 <0.000724 [per recommendation in ProUCL User Guide]

#### 1,4-Dichlorobenzene

| Total Number of Data      | 9        |
|---------------------------|----------|
| Number of Non-Detect Data | 8        |
| Number of Detected Data   | 1        |
| Minimum Detected          | 0.00411  |
| Maximum Detected          | 0.00411  |
| Percent Non-Detects       | 88.89%   |
| Minimum Non-detect        | 0.000681 |
| Maximum Non-detect        | 0.00352  |
|                           |          |

Data set has all detected values equal to = 0.00411, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00411

\*\* Instead of UCL, EPC is selected to be median = <0.00154
[per recommendation in ProUCL User Guide]

### 2-Butanone

| Total Number of Data      | 9        |
|---------------------------|----------|
| Number of Non-Detect Data | 7        |
| Number of Detected Data   | 2        |
| Minimum Detected          | 0.002    |
| Maximum Detected          | 0.00216  |
| Percent Non-Detects       | 77.78%   |
| Minimum Non-detect        | 5.05E-04 |
| Maximum Non-detect        | 0.00486  |
| Mean of Detected Data     | 0.00208  |
| Median of Detected Data   | 0.00208  |

| Variance of Detected Data | 1.28E-08 |
|---------------------------|----------|
| SD of Detected Data       | 1.13E-04 |
| CV of Detected Data       | 0.0544   |
| Skewness of Detected Data | N/A      |
| Mean of Detected log data | -6.176   |
| SD of Detected Log data   | 0.0544   |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect9Number treated as Detected0Single DL Percent Detection100.00%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                              | N/A      |
|---------------------------------------------------|----------|
| Kaplan Meier (KM) Method                          |          |
| Mean                                              | 0.00203  |
| SD                                                | 5.96E-05 |
| Standard Error of Mean                            | 3.44E-05 |
| 95% KM (t) UCL                                    | 0.00209  |
| 95% KM (z) UCL                                    | 0.00208  |
| 95% KM (BCA) UCL                                  | N/A      |
| 95% KM (Percentile Bootstrap) UCL                 | 0.00216  |
| 95% KM (Chebyshev) UCL                            | 0.00218  |
| 97.5% KM (Chebyshev) UCL                          | 0.00224  |
| 99% KM (Chebyshev) UCL                            | 0.00237  |
| Potential UCL to Use                              |          |
| 95% KM (t) UCL                                    | 0.00209  |
| 95% KM (% Bootstrap) UCL                          | 0.00216  |
| ** Instead of UCL, EPC is selected to be median = | <0.00200 |

## 4,4'-DDT

| Total Number of Data      | , 9     |
|---------------------------|---------|
| Number of Non-Detect Data | . 8     |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.00057 |
| Maximum Detected          | 0.00057 |
| Percent Non-Detects       | 88.89%  |
| Minimum Non-detect        | 0.00018 |

[per recommendation in ProUCL User Guide]

Data set has all detected values equal to = 5.7000E-4, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.09057

\_.\_.\_.

#### Aluminum

| Number of Valid Observations    | 9        |
|---------------------------------|----------|
| Number of Distinct Observations | 9        |
| Minimum                         | 4730     |
| Maximum                         | 21800    |
| Mean                            | 12213    |
| Median                          | 10800    |
| SD                              | 6892     |
| Variance                        | 47504575 |
| Coefficient of Variation        | 0.564    |
| Skewness                        | 0.403    |
| Mean of log data                | 9.255    |
| SD of log data                  | 0.604    |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95%         | Use   | tul L  | JCL | S   |
|-------------|-------|--------|-----|-----|
| 3 Tay 3 Tay | 5 F - | 10 4 6 |     | 270 |

| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL<br>95% Modified-t UCL | 16322<br>16537 |
|--------------------------------------------------------------------------------|----------------|
| Non-Parametric UCLs                                                            |                |
| 95% CLT UCL                                                                    | 15992          |
| 95% Jackknife UCL                                                              | 16486          |
| 95% Standard Bootstrap UCL                                                     | 15840          |
| 95% Bootstrap-t UCL                                                            | 16940          |
| 95% Hall's Bootstrap UCL                                                       | 15693          |
| 95% Percentile Bootstrap UCL                                                   | 15956          |
| 95% BCA Bootstrap UCL                                                          | 15922          |
| 95% Chebyshev(Mean, Sd) UCL                                                    | 22228          |
| 97.5% Chebyshev(Mean, Sd) UCL                                                  | 26561          |
| 99% Chebyshev(Mean, Sd) UCL                                                    | 35073          |

### Data appear Normal (0.05)

May want to try Normal UCLs

**Antimony** 

| Number of Valid Observations    | 9     |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 1.68  |
| Maximum                         | 7.33  |
| Mean                            | 4.023 |

| Median                   | 2.83  |
|--------------------------|-------|
| SD                       | 2.215 |
| Variance                 | 4.905 |
| Coefficient of Variation | 0.55  |
| Skewness                 | 0.488 |
| Mean of log data         | 1.251 |
| SD of log data           | 0.568 |

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs<br>Student's-t UCL                       | 5.396 |
|----------------------------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL | 5.366 |
| 95% Modified-t UCL                                       | 5.416 |
| Non-Parametric UCLs                                      |       |
| 95% CLT UCL                                              | 5.238 |
| 95% Jackknife UCL                                        | 5.396 |
| 95% Standard Bootstrap UCL                               | 5.197 |
| 95% Bootstrap-t UCL                                      | 5.622 |
| 95% Hall's Bootstrap UCL                                 | 5.022 |
| 95% Percentile Bootstrap UCL                             | 5.148 |
| 95% BCA Bootstrap UCL                                    | 5.33  |
| 95% Chebyshev(Mean, Sd) UCL                              | 7.241 |
| 97.5% Chebyshev(Mean, Sd) UCL                            | 8.634 |
| 99% Chebyshev(Mean, Sd) ÚCL                              | 11.37 |

### Data appear Normal (0.05)

May want to try Normal UCLs

### Arsenic

| Number of Valid Observations    | 9     |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 2.36  |
| Maximum                         | 9.62  |
| Mean                            | 5.813 |
| Median                          | 4.63  |
| SD                              | 3.107 |
| Variance                        | 9.653 |
| Coefficient of Variation        | 0.534 |
| Skewness                        | 0.351 |
| Mean of log data                | 1.623 |
| SD of log data                  | 0.566 |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL

7.646

| 95% Modified-t UCL            | 7.759 |
|-------------------------------|-------|
| Non-Parametric UCLs           |       |
| 95% CLT UCL                   | 7.517 |
| 95% Jackknife UCL             | 7.739 |
| 95% Standard Bootstrap UCL    | 7.405 |
| 95% Bootstrap-t UCL           | 8.015 |
| 95% Hall's Bootstrap UCL      | 7.142 |
| 95% Percentile Bootstrap UCL  | 7.431 |
| 95% BCA Bootstrap UCL         | 7.597 |
| 95% Chebyshev(Mean, Sd) UCL   | 10.33 |
| 97.5% Chebyshev(Mean, Sd) UCL | 12.28 |
| 99% Chebyshev(Mean, Sd) UCL   | 16.12 |

## Data appear Normal (0.05)

May want to try Normal UCLs

### **Barium**

| Number of Valid Observations    | <b>9</b> |
|---------------------------------|----------|
| Number of Distinct Observations | 9        |
| Minimum                         | 111      |
| Maximum                         | 280      |
| Mean                            | 209.7    |
| Median                          | 201      |
| SD                              | 47.73    |
| Variance                        | 2278     |
| Coefficient of Variation        | 0.228    |
| Skewness                        | -0.775   |
| Mean of log data                | 5.318    |
| SD of log data                  | 0.263    |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs<br>Student's-t UCL         | 239.2          |
|--------------------------------------------|----------------|
| 95% UCLs (Adjusted for Skewness)           | 024.4          |
| 95% Adjusted-CLT UCL<br>95% Modified-t UCL | 231.4<br>238.6 |
| Non-Parametric UCLs                        |                |
| 95% CLT UCL                                | 235.8          |
| 95% Jackknife UCL                          | 239.2          |
| 95% Standard Bootstrap UCL                 | 234.1          |
| 95% Bootstrap-t UCL                        | 235.4          |
| 95% Hall's Bootstrap UCL                   | 235.3          |
| 95% Percentile Bootstrap UCL               | 233.7          |
| 95% BCA Bootstrap UCL                      | 231.4          |
| 95% Chebyshev(Mean, Sd) UCL                | 279            |
| 97.5% Chebyshev(Mean, Sd) UCL              | 309            |
| 99% Chebyshev(Mean, Sd) UCL                | 368            |
| Data appear Normal (0.05)                  |                |
| May want to try Normal UCLs                |                |

## Benzo(b)fluoranthene

| Total Number of Data      | 9       |
|---------------------------|---------|
| Number of Non-Detect Data | 8       |
| Number of Detected Data   | . 1     |
| Minimum Detected          | 0.0369  |
| Maximum Detected          | 0.0369  |
| Percent Non-Detects       | 88.89%  |
| Minimum Non-detect        | 0.00909 |
| Maximum Non-detect        | 0.0115  |

Data set has all detected values equal to = 0.0369, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0369

| ** Instead of | UCL. EPC   | is selecte | d to be med | ian=      | <0.0109 |
|---------------|------------|------------|-------------|-----------|---------|
|               |            |            |             |           |         |
| . lper rec    | commendati | on in Pro  | UCL User G  | ulaej 🐃 🦠 |         |

### Beryllium

| Number of Valid Observations    | 9      |
|---------------------------------|--------|
| Number of Distinct Observations | 9      |
| Minimum                         | 0.32   |
| Maximum                         | 1.32   |
| Mean                            | 0.766  |
| Median                          | 0.69   |
| SD                              | 0.403  |
| Variance                        | 0.163  |
| Coefficient of Variation        | 0.527  |
| Skewness                        | 0.315  |
| Mean of log data                | -0.403 |
| SD of log data                  | 0.566  |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs<br>Student's-t UCL 1 | 016  |
|--------------------------------------|------|
| atudent's-t ucl                      | טוט: |

| 95% UCLs (Adjusted for Skewness) |       |
|----------------------------------|-------|
| 95% Adjusted-CLT UCL             | 1.002 |
| 95% Modified-t UCL               | 1.018 |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 0.987 |
| 95% Jackknife UCL                | 1.016 |
| 95% Standard Bootstrap UCL       | 0.975 |
| 95% Bootstrap-t UCL              | 1.053 |
| 95% Hall's Bootstrap UCL         | 0.946 |
| 95% Percentile Bootstrap UCL     | 0.977 |
| 95% BCA Bootstrap UCL            | 0.981 |
| 95% Chebyshev(Mean, Sd) UCL      | 1.351 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 1.605 |
| 99% Chebyshev(Mean, Sd) UCL      | 2.103 |

## Data appear Normal (0.05)

May want to try Normal UCLs

### **Boron**

| Number of Valid Observations    | 9     |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 13.3  |
| Maximum                         | 47.9  |
| Mean                            | 27.64 |
| Median                          | 26    |
| SD                              | 12.82 |
| Variance                        | 164.2 |
| Coefficient of Variation        | 0.464 |
| Skewness                        | 0.532 |
| Mean of log data                | 3.222 |
| SD of log data                  | 0.472 |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs<br>Student's-t UCL                                                                                   | 35.59                   |
|----------------------------------------------------------------------------------------------------------------------|-------------------------|
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL<br>95% Modified-t UCL                                       | 35.48<br>35.71          |
| Non-Parametric UCLs 95% CLT UCL                                                                                      | 34.67                   |
| 95% Jackknife UCL<br>95% Standard Bootstrap UCL<br>95% Bootstrap-t UCL                                               | 35.59<br>34.23<br>36.73 |
| 95% Hall's Bootstrap UCL<br>95% Percentile Bootstrap UCL                                                             | 35.45<br>34.46<br>35.3  |
| 95% BCA Bootstrap UCL<br>95% Chebyshev(Mean, Sd) UCL<br>97.5% Chebyshev(Mean, Sd) UCL<br>99% Chebyshev(Mean, Sd) UCL | 46.26<br>54.32<br>70.15 |
| • • •                                                                                                                |                         |

# Data appear Normal (0.05)

May want to try Normal UCLs

## Carbon disulfide

| Total Number of Data      | . 9      |
|---------------------------|----------|
| Number of Non-Detect Data | 7        |
| Number of Detected Data   | 2        |
| Minimum Detected          | 0.00341  |
| Maximum Detected          | 0.00841  |
| Percent Non-Detects       | 77.78%   |
| Minimum Non-detect        | 1.76E-04 |
| Maximum Non-detect        | 0.0017   |
| Mean of Detected Data     | 0.00591  |
| Median of Detected Data   | 0.00591  |
| Variance of Detected Data | 1.25E-05 |
| SD of Detected Data       | 0.00354  |
| CV of Detected Data       | 0.598    |

| Skewness of Detected Data | N/A   |
|---------------------------|-------|
| Mean of Detected log data | -5.23 |
| SD of Detected Log data   | 0.638 |

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00397  |
| SD                                | 0.00157  |
| Standard Error of Mean            | 7.41E-04 |
| 95% KM (t) UCL                    | 0.00534  |
| 95% KM (z) UCL                    | 0.00518  |
| 95% KM (BCA) UCL                  | 0.00841  |
| 95% KM (Percentile Bootstrap) UCL | N/A      |
| 95% KM (Chebyshev) UCL            | 0.00719  |
| 97.5% KM (Chebyshev) UCL          | 0.00859  |
| 99% KM (Chebyshev) UCL            | 0.0113   |
| Potential UCL to Use              |          |
| 95% KM (t) UCL                    | 0.00534  |
| 95% KM (% Bootstrap) UCL          | N/A      |

| ** Instead of UC | FPC is selected                              | d to be media                       | ın = <0.000810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------|----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | tan'i baona 2014 ao amin'ny faritr'i Amerika | A Process Control of the Section of | indirection of the contract of |
| per recomr       | nendation in Pro                             | UCL User Gu                         | idel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### Chromium

| Number of Valid Observations    | 9     |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 5.81  |
| Maximum                         | 22.5  |
| Mean                            | 12.81 |
| Median                          | 11.1  |
| SD                              | 6.512 |
| Variance                        | 42.41 |
| Coefficient of Variation        | 0.508 |
| Skewness                        | 0.444 |
| Mean of log data                | 2.43  |
| SD of log data                  | 0.527 |

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs                  |       |
|----------------------------------|-------|
| Student's-t UCL                  | 16.85 |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 16.73 |
| 95% Modified-t UCL               | 16.9  |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 16.38 |
| 95% Jackknife UCL                | 16.85 |
| 95% Standard Bootstrap UCL       | 16.23 |
| 95% Bootstrap-t UCL              | 17.33 |
| 95% Hall's Bootstrap UCL         | 16.09 |
| 95% Percentile Bootstrap UCL     | 16.17 |
| 95% BCA Bootstrap UCL            | 16.4  |
| 95% Chebyshev(Mean, Sd) UCL      | 22.28 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 26.37 |
| 99% Chebyshev(Mean, Sd) ÚCL      | 34.41 |
| Data annear Normal (0.05)        | -     |

### Data appear Normal (0.05)

May want to try Normal UCLs

#### cis-1,2-Dichloroethene

| Total Number of Data      | 9        |
|---------------------------|----------|
| Number of Non-Detect Data | 8        |
| Number of Detected Data   | 1        |
| Minimum Detected          | 0.0284   |
| Maximum Detected          | 0.0284   |
| Percent Non-Detects       | 88.89%   |
| Minimum Non-detect        | 0.000204 |
| Maximum Non-detect        | 0.00196  |

Data set has all detected values equal to = 0.0284, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0284

| ** Instead of UCL, EPC is selected to be median =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < < 0.000461             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| - Principal Control of the Control o | 化原物 阿德德亚德斯 网络海绵属 网络特别人人名 |
| [per recommendation in ProUCL User Guide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |

### Cobalt

| Number of Valid Observations    | 9     |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 3.32  |
| Maximum                         | 11.8  |
| Mean                            | 6.698 |
| Median                          | 5.92  |
| SD                              | 3.165 |
| Variance                        | 10.02 |
| Coefficient of Variation        | 0.473 |
| Skewness                        | 0.508 |
| Mean of log data                | 1.8   |

0.481

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs                  |       |
|----------------------------------|-------|
| Student's-t UCL                  | 8.66  |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 8.624 |
| 95% Modified-t UCL               | 8.69  |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 8.433 |
| 95% Jackknife UCL                | 8.66  |
| 95% Standard Bootstrap UCL       | 8.334 |
| 95% Bootstrap-t UCL              | 8.982 |
| 95% Hall's Bootstrap UCL         | 8.445 |
| 95% Percentile Bootstrap UCL     | 8.349 |
| 95% BCA Bootstrap UCL            | 8.547 |
| 95% Chebyshev(Mean, Sd) UCL      | 11.3  |
| 97.5% Chebyshev(Mean, Sd) UCL    | 13.29 |
| 99% Chebyshev(Mean, Sd) UCL      | 17.2  |

## Data appear Normal (0.05)

May want to try Normal UCLs

### Copper

| Number of Valid Observations    | 9     |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 2.68  |
| Maximum                         | 16.8  |
| Mean                            | 8.138 |
| Median                          | 6.87  |
| SD                              | 5.165 |
| Variance                        | 26.67 |
| Coefficient of Variation        | 0.635 |
| Skewness                        | 0.626 |
| Mean of log data                | 1.902 |
| SD of log data                  | 0.676 |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs<br>Student's-t UCL |
|------------------------------------|
|------------------------------------|

| Bit of the Cartest Control of the Cartest Con | PROMITE OF MERCONSIDER AND |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |
| 95% Adjusted-CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.35                                                          |
| 95% Modified-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.4                                                           |
| Non-Parametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |
| 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.97                                                          |
| 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.34                                                          |
| 95% Standard Bootstran LICI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.78                                                          |

| 95% Bootstrap-t UCL           | 11.68 |
|-------------------------------|-------|
| 95% Hall's Bootstrap UCL      | 11.18 |
| 95% Percentile Bootstrap UCL  | 11.05 |
| 95% BCA Bootstrap UCL         | 11.25 |
| 95% Chebyshev(Mean, Sd) UCL   | 15.64 |
| 97.5% Chebyshev(Mean, Sd) UCL | 18.89 |
| 99% Chebyshev(Mean, Sd) UCL   | 25.27 |

## Data appear Normal (0.05)

May want to try Normal UCLs

Iron

| Number of Valid Observations    | 9        |
|---------------------------------|----------|
| Number of Distinct Observations | 9        |
| Minimum                         | 7440     |
| Maximum                         | 27900    |
| Mean                            | 16496    |
| Median                          | 15000    |
| SD                              | 8097     |
| Variance                        | 65563178 |
| Coefficient of Variation        | 0.491    |
| Skewness                        | 0.325    |
| Mean of log data                | 9.596    |
| SD of log data                  | 0.518    |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs<br>Student's-t UCL                    | 21515   |  |
|-------------------------------------------------------|---------|--|
| 95% UCLs (Adjusted for Skewness)                      |         |  |
| 95% Adjusted-CLT UCL                                  | 21247   |  |
| 95% Modified-t UCL                                    | 21563   |  |
| Non-Parametric UCLs                                   |         |  |
| 95% CLT UCL                                           | 20935   |  |
| 95% Jackknife UCL                                     | 21515   |  |
| 95% Standard Bootstrap UCL                            | 20708   |  |
| 95% Bootstrap-t UCL                                   | 22126   |  |
| 95% Hall's Bootstrap UCL                              | 19940   |  |
| 95% Percentile Bootstrap UCL                          | 20869   |  |
| 95% BCA Bootstrap UCL                                 | 21036   |  |
| 95% Chebyshev(Mean, Sd) UCL                           | 28260   |  |
| 97.5% Chebyshev(Mean, Sd) UCL                         | 33351   |  |
| 99% Chebyshev(Mean, Sd) UCL                           | . 43351 |  |
| Data appear Normal (0.05) May want to try Normal UCLs |         |  |
| Lead                                                  |         |  |
| Number of Valid Observations                          | 9       |  |
| Number of Distinct Observations                       | 9       |  |
| Minimum                                               | 5.34    |  |
| Maximum                                               | 14.5    |  |

| Mean                     | 9.587 |
|--------------------------|-------|
| Median                   | 9.2   |
| SD                       | 3.603 |
| Variance                 | 12.98 |
| Coefficient of Variation | 0.376 |
| Skewness                 | 0.161 |
| Mean of log data         | 2.194 |
| SD of log data           | 0.393 |

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs                  |       |
|----------------------------------|-------|
| Student's t UCL                  | 11.82 |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 11.63 |
| 95% Modified-t UCL               | 11.83 |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 11.56 |
| 95% Jackknife UCL                | 11.82 |
| 95% Standard Bootstrap UCL       | 11.44 |
| 95% Bootstrap-t UCL              | 11.9  |
| 95% Hall's Bootstrap UCL         | 11.24 |
| 95% Percentile Bootstrap UCL     | 11.42 |
| 95% BCA Bootstrap UCL            | 11.65 |
| 95% Chebyshev(Mean, Sd) UCL      | 14.82 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 17.09 |
| 99% Chebyshev(Mean, Sd) ÚCL      | 21.54 |

# Data appear Normal (0.05)

May want to try Normal UCLs

### Lithium

| Number of Valid Observations    | 9     |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 7.29  |
| Maximum                         | 44.6  |
| Mean                            | 21.4  |
| Median                          | 17.1  |
| SD                              | 14.41 |
| Variance                        | 207.6 |
| Coefficient of Variation        | 0.673 |
| Skewness                        | 0.724 |
| Mean of log data                | 2.852 |
| SD of log data                  | 0.697 |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs Student's-t UCL 30.3:

95% UCLs (Adjusted for Skewness)

| 95% Adjusted-CLT UCL<br>95% Modified-t UCL | 30.54<br>30.52 |
|--------------------------------------------|----------------|
| Non-Parametric UCLs                        |                |
| 95% CLT UCL                                | 29.3           |
| 95% Jackknife UCL                          | 30.33          |
| 95% Standard Bootstrap UCL                 | 28.78          |
| 95% Bootstrap-t UCL                        | 33.66          |
| 95% Hall's Bootstrap UCL                   | 30.44          |
| 95% Percentile Bootstrap UCL               | 29             |
| 95% BCA Bootstrap UCL                      | 29.67          |
| 95% Chebyshev(Mean, Sd) UCL                | 42.33          |
| 97.5% Chebyshev(Mean, Sd) UCL              | 51.39          |
| 99% Chebyshev(Mean, Sd) UCL                | 69.18          |

## Data appear Normal (0.05)

May want to try Normal UCLs

## Manganese

| Number of Valid Observations    | 9      |
|---------------------------------|--------|
| Number of Distinct Observations | 9      |
| Minimum                         | 212    |
| Maximum                         | 442    |
| Mean                            | 330.7  |
| Median                          | 321    |
| SD                              | 88.99  |
| Variance                        | 7920   |
| Coefficient of Variation        | 0.269  |
| Skewness                        | -0.147 |
| Mean of log data                | 5.767  |
| SD of log data                  | 0.284  |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

625.8

| 95% Useful UCLs<br>Student's-f UCL | 385.8 |
|------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)   |       |
| 95% Adjusted-CLT UCL               | 377.9 |
| 95% Modified-t UCL                 | 385.6 |

| Non-Parametric UCLs           |       |
|-------------------------------|-------|
| 95% CLT UCL                   | 379.5 |
| 95% Jackknife UCL             | 385.8 |
| 95% Standard Bootstrap UCL    | 376.3 |
| 95% Bootstrap-t UCL           | 385.8 |
| 95% Hall's Bootstrap UCL      | 371.9 |
| 95% Percentile Bootstrap UCL  | 376.9 |
| 95% BCA Bootstrap UCL         | 373.4 |
| 95% Chebyshev(Mean, Sd) UCL   | 460   |
| 97.5% Chebyshev(Mean, Sd) UCL | 515.9 |

# Data appear Normal (0.05)

99% Chebyshev(Mean, Sd) UCL

May want to try Normal UCLs

### Mercury

| Number of Valid Observations    | 9        |
|---------------------------------|----------|
| Number of Distinct Observations | 8        |
| Minimum                         | 0.0065   |
| Maximum                         | 0.05     |
| Mean                            | 0.0176   |
| Median                          | 0.016    |
| SD                              | 0.0132   |
| Variance                        | 1.75E-04 |
| Coefficient of Variation        | 0.753    |
| Skewness                        | 2.163    |
| Mean of log data                | -4.227   |
| SD of log data                  | 0.613    |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

0.0452

0.0615

| 95% | Useful | <b>UCLs</b> |
|-----|--------|-------------|
|-----|--------|-------------|

| Student's-t UCL                  | 0.0258 |
|----------------------------------|--------|
| 95% UCLs (Adjusted for Skewness) |        |
| 95% Adjusted-CLT UCL             | 0.0282 |
| 95% Modified-t UCL               | 0.0263 |
| Non-Parametric UCLs              |        |
| 95% CLT UCL                      | 0.0248 |
| 95% Jackknife UCL                | 0.0258 |
| 95% Standard Bootstrap UCL       | 0.0247 |
| 95% Bootstrap-t UCL              | 0.0349 |
| 95% Hail's Bootstrap UCL         | 0.0567 |
| 95% Percentile Bootstrap UCL     | 0.025  |
| 95% BCA Bootstrap UCL            | 0.0277 |
| 95% Chebyshev(Mean, Sd) UCL      | 0.0368 |

Data appear Gamma Distributed (0.05)

97.5% Chebyshev(Mean, Sd) UCL

99% Chebyshev(Mean, Sd) UCL

May want to try Gamma UCLs

## Molybdenum

| Number of Valid Observations    | 9       |
|---------------------------------|---------|
| Number of Distinct Observations | 9       |
| Minimum                         | 0.16    |
| Maximum                         | 0.35    |
| Mean                            | 0.241   |
| Median                          | 0.24    |
| SD                              | 0.0675  |
| Variance                        | 0.00456 |
| Coefficient of Variation        | 0.28    |
| Skewness                        | 0.35    |
| Mean of log data                | -1.458  |
| SD of log data                  | 0.282   |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs<br>Student's-t UCL                       | 0.283 |
|----------------------------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL | 0.281 |
| 95% Modified-t UCL                                       | 0.283 |
| Non-Parametric UCLs                                      |       |
| 95% CLT UCL                                              | 0.278 |
| 95% Jackknife UCL                                        | 0.283 |
| 95% Standard Bootstrap UCL                               | 0.277 |
| 95% Bootstrap-t UCL                                      | 0.287 |
| 95% Hall's Bootstrap UCL                                 | 0.276 |
| 95% Percentile Bootstrap UCL                             | 0.276 |
| 95% BCA Bootstrap UCL                                    | 0.276 |
| 95% Chebyshev(Mean, Sd) UCL                              | 0.339 |
| 97.5% Chebyshev(Mean, Sd) UCL                            | 0.382 |
| 99% Chebyshev(Mean, Sd) ÚCL                              | 0.465 |
|                                                          |       |

## Data appear Normal (0.05)

May want to try Normal UCLs

| Number of Valid Observations    | 9     |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 6.31  |
| Maximum                         | 27.3  |
| Mean                            | 14.91 |
| Median                          | 13    |
| SD                              | 8.111 |
| Variance                        | 65.79 |
| Coefficient of Variation        | 0.544 |
| Skewness                        | 0.452 |
| Mean of log data                | 2.562 |
| SD of log data                  | 0.571 |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs<br>Student's-t UCL | 19.94 |
|------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)   |       |
| 95% Adjusted-CLT UCL               | 19.79 |
| 95% Modified-t UCL                 | 20.01 |
| Non-Parametric UCLs                |       |
| 95% CLT UCL                        | 19.36 |
| 95% Jackknife UCL                  | 19.94 |
| 95% Standard Bootstrap UCL         | 19.13 |
| 95% Bootstrap-t UCL                | 20.56 |
| 95% Hall's Bootstrap UCL           | 19.13 |
| 95% Percentile Bootstrap UCL       | 19.09 |
| 95% BCA Bootstrap UCL              | 19.63 |

| 95% Chebyshev(Mean, Sd) UCL   | 26.7  |
|-------------------------------|-------|
| 97.5% Chebyshev(Mean, Sd) UCL | 31.8  |
| 99% Chebyshev(Mean, Sd) UCL   | 41.81 |

## Data appear Normal (0.05)

May want to try Normal UCLs

| o | τΓ | 0 | n | τı | u | n | 1 |
|---|----|---|---|----|---|---|---|
|   |    |   |   |    |   |   |   |

| Number of Valid Observations    | 9     |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 34.8  |
| Maximum                         | 87.4  |
| Mean                            | 59.17 |
| Median                          | 59.3  |
| SD                              | 22.06 |
| Variance                        | 486.7 |
| Coefficient of Variation        | 0.373 |
| Skewness                        | 0.141 |
| Mean of log data                | 4.015 |
| SD of log data                  | 0.388 |

Warning: There are only 9 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

# 95% Useful UCLs

| Student 2-1 | OCT FINE S | endiatestada | 11.04 |
|-------------|------------|--------------|-------|
|             |            |              |       |
|             |            |              |       |

| 95% UCLs (Adjusted for Skewness) |       |
|----------------------------------|-------|
| 95% Adjusted-CLT UCL             | 71.63 |
| 95% Modified-t UCL               | 72.9  |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 71.26 |
| 95% Jackknife UCL                | 72.84 |
| 95% Standard Bootstrap UCL       | 70.42 |
| 95% Bootstrap-t UCL              | 73.24 |
| 95% Hall's Bootstrap UCL         | 68.5  |
| 95% Percentile Bootstrap UCL     | 70.59 |
| 95% BCA Bootstrap UCL            | 70.8  |
| 95% Chebyshev(Mean, Sd) UCL      | 91.22 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 105.1 |
| 99% Chebyshev(Mean, Sd) UCL      | 132.3 |

## Data appear Normal (0.05)

May want to try Normal UCLs

#### Titanium

| Number of Valid Observations    | 9     |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 21.1  |
| Maximum                         | 54.5  |
| Mean                            | 31.79 |
| Median                          | 28.6  |
| SD                              | 10.49 |
| Variance                        | 110   |

| Coefficient of Variation | 0.33  |
|--------------------------|-------|
| Skewness                 | 1.471 |
| Mean of log data         | 3.417 |
| SD of log data           | 0.297 |

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs                  | X.U.  |
|----------------------------------|-------|
| Student's-t UCL                  | 38.29 |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 39.37 |
| 95% Modified-t UCL               | 38.58 |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 37.54 |
| 95% Jackknife UCL                | 38.29 |
| 95% Standard Bootstrap UCL       | 37.28 |
| 95% Bootstrap-t UCL              | 44.61 |
| 95% Hall's Bootstrap UCL         | 71.75 |
| 95% Percentile Bootstrap UCL     | 37.58 |
| 95% BCA Bootstrap UCL            | 39.1  |
| 95% Chebyshev(Mean, Sd) UCL      | 47.03 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 53.62 |
| 99% Chebyshev(Mean, Sd) ÚCL      | 66.58 |

# Data appear Normal (0.05)

May want to try Normal UCLs

#### Trichloroethene

| Total Number of Data      | 9        |
|---------------------------|----------|
| Number of Non-Detect Data | 8        |
| Number of Detected Data   | 1        |
| Minimum Detected          | 0.0159   |
| Maximum Detected          | 0.0159   |
| Percent Non-Detects       | 88.89%   |
| Minimum Non-detect        | 0.000286 |
| Maximum Non-detect        | 0.00276  |

Data set has all detected values equal to = 0.0159, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0159

\*\* Instead of UCL, EPC is selected to be median = <0.000647
[per recommendation in ProUCL User Guide]

#### Vanadium

| Number of Valid Observations    | 9     |
|---------------------------------|-------|
| Number of Distinct Observations | 9     |
| Minimum                         | 10.2  |
| Maximum                         | 34.2  |
| Mean                            | 20.21 |
| Median                          | 19.1  |

| SD                       | 9.135 |
|--------------------------|-------|
| Variance                 | 83.45 |
| Coefficient of Variation | 0.452 |
| Skewness                 | 0.468 |
| Mean of log data         | 2.913 |
| SD of log data           | 0.461 |

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs                  |       |
|----------------------------------|-------|
| Student's-t UCL                  | 25.87 |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 25.73 |
| 95% Modified-t UCL               | 25.95 |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 25.22 |
| 95% Jackknife UCL                | 25.87 |
| 95% Standard Bootstrap UCL       | 24.81 |
| 95% Bootstrap-t UCL              | 26.97 |
| 95% Hall's Bootstrap UCL         | 25.22 |
| 95% Percentile Bootstrap UCL     | 24.93 |
| 95% BCA Bootstrap UCL            | 25    |
| 95% Chebyshev(Mean, Sd) UCL      | 33.48 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 39.23 |
| 99% Chebyshev(Mean, Sd) UCL      | 50.51 |

# Data appear Normal (0.05)

May want to try Normal UCLs

## Xylene (total)

| Total Number of Data      | 9        |
|---------------------------|----------|
| Number of Non-Detect Data | 8        |
| Number of Detected Data   | 1        |
| Minimum Detected          | 0.00335  |
| Maximum Detected          | 0.00335  |
| Percent Non-Detects       | 88.89%   |
| Minimum Non-detect        | 0.000925 |
| Maximum Non-detect        | 0.00891  |

Data set has all detected values equal to = 0.00335, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00335

| ** Instead of UCL. EP | C is selected to be med | lian = <0.00209 |
|-----------------------|-------------------------|-----------------|
| Inor rocommond        | ation in ProUCL User G  |                 |
| Thei iecommend        | audii iii Fiduct User c | inine!          |

### Zinc

| Number of Valid Observations    | 9    |
|---------------------------------|------|
| Number of Distinct Observations | 9    |
| Minimum                         | 19.3 |
| Maximum                         | 54.1 |

| Mean                     | 36.04  |
|--------------------------|--------|
| Median                   | 34.1   |
| SD                       | 13.68  |
| Variance                 | 187    |
| Coefficient of Variation | 0.379  |
| Skewness                 | 0.0735 |
| Mean of log data         | 3.515  |
| SD of log data           | 0.404  |

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs<br>Student's-t:UCL | 44,52 |
|------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)   |       |
| 95% Adjusted-CLT UCL               | 43.66 |
| 95% Modified-t UCL                 | 44.54 |
| Non-Parametric UCLs                |       |
| 95% CLT UCL                        | 43.54 |
| 95% Jackknife UCL                  | 44.52 |
| 95% Standard Bootstrap UCL         | 43.06 |
| 95% Bootstrap-t UCL                | 44.65 |
| 95% Hall's Bootstrap UCL           | 42.22 |
| 95% Percentile Bootstrap UCL       | 43.54 |
| 95% BCA Bootstrap UCL              | 43.28 |
| 95% Chebyshev(Mean, Sd) UCL        | 55.91 |
| 97.5% Chebyshev(Mean, Sd) UCL      | 64.51 |
| 99% Chebyshev(Mean, Sd) ÚCL        | 81.4  |

Data appear Normal (0.05)

May want to try Normal UCLs

# **APPENDIX A-8**

NORTH OF MARLIN SEDIMENT

#### Nonparametric UCL Statistics for Data Sets with Non-Detects

**User Selected Options** 

From File

C:\Users\Michael\....\Guifco Superfund Site\revised HHRA\N Wetland-May09 data\Guifco N Wetland-May09 data\_ProUCL input.wst

**Full Precision** 

OFF

Confidence Coefficient

95%

**Number of Bootstrap Operations** 

2000

## 1,2-Dichloroethane

| 48       |
|----------|
| 45       |
| •-       |
| 3        |
| 0.00183  |
| 0.0024   |
| 93.75%   |
| 1.23E-04 |
| 0.00265  |
| 0.00218  |
| 0.00232  |
| 9.52E-08 |
| 3.09E-04 |
| 0.141    |
| -1.602   |
| -6.134   |
| 0.148    |
|          |

### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect48Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

Winsorization Method

N/A

Kaplan Meier (KM) Method

Mean 0.00185 SD 1.07E-04

| Standard Error of Mean            | 1.92E-05 |
|-----------------------------------|----------|
| 95% KM (t) UCL                    | 0.00188  |
| 95% KM (z) UCL                    | 0.00188  |
| 95% KM (BCA) UCL                  | 0.0024   |
| 95% KM (Percentile Bootstrap) UCL | N/A      |
| 95% KM (Chebyshev) UCL            | 0.00194  |
| 97.5% KM (Chebyshev) UCL          | 0.00197  |
| 99% KM (Chebyshev) UCL            | 0.00204  |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median <0.00015 [per recommendation in ProUCL User Guide]

### 2-Methylnaphthalene

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 44      |
| Number of Detected Data   | 4       |
| Minimum Detected          | 0.0122  |
| Maximum Detected          | 0.43    |
| Percent Non-Detects       | 91.67%  |
| Minimum Non-detect        | 0.00851 |
| Maximum Non-detect        | 0.173   |
|                           |         |
| Mean of Detected Data     | 0.134   |
| Median of Detected Data   | 0.0463  |
| Variance of Detected Data | 0.0393  |
| SD of Detected Data       | 0.198   |
| CV of Detected Data       | 1.483   |
| Skewness of Detected Data | 1.956   |
| Mean of Detected log data | -2.854  |
| SD of Detected Log data   | 1.483   |
|                           |         |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

47 Number treated as Non-Detect Number treated as Detected 97.92% Single DL Percent Detection

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0225  |
| SD                                | 0.0599  |
| Standard Error of Mean            | 0.00999 |
| 95% KM (t) UCL                    | 0.0393  |
| 95% KM (z) UCL                    | 0.039   |
| 95% KM (BCA) UCL                  | N/A     |
| 95% KM (Percentile Bootstrap) UCL | N/A     |
| 95% KM (Chebyshev) UCL            | 0.0661  |
| 97.5% KM (Chebyshev) UCL          | 0.0849  |
| 99% KM (Chebyshev) UCL            | 0.122   |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

| ** Instead of LICL - EDC is select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ed to be median<0.01200                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| <ul> <li>- 40 februar 14 februar 16 februar 16 februar 16 februar 17 febr</li></ul> | 是是这种的现在分词是对对对对对对对对对对对对对对对对对对对对对对对对对对对对对对对对对对对对 |
| [per recommendation in Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oUCL User Guide]                               |

| 4,4' | -DDT |
|------|------|
|------|------|

| ·                         | •        |
|---------------------------|----------|
| Total Number of Data      | 56       |
| Number of Non-Detect Data | 40       |
| Number of Detected Data   | 16       |
| Minimum Detected          | 9.29E-04 |
| Maximum Detected          | 0.00922  |
| Percent Non-Detects       | 71.43%   |
| Minimum Non-detect        | 1.54E-04 |
| Maximum Non-detect        | 0.00498  |
| Mean of Detected Data     | 0.00254  |
| Median of Detected Data   | 0.00192  |
| Variance of Detected Data | 4.33E-06 |
| SD of Detected Data       | 0.00208  |
| CV of Detected Data       | 0.821    |
| Skewness of Detected Data | 2.555    |
| Mean of Detected log data | -6.177   |
| SD of Detected Log data   | 0.594    |
|                           |          |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 55
Number treated as Detected 1
Single DL Percent Detection 98.21%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00139  |
| SD                                | 0.0013   |
| Standard Error of Mean            | 1.80E-04 |
| 95% KM (t) UCL                    | 0.0017   |
| 95% KM (z) UCL                    | 0.00169  |
| 95% KM (BCA) UCL                  | 0.00198  |
| 95% KM (Percentile Bootstrap) UCL | 0.00184  |
| 95% KM (Chebyshev) UCL            | 0.00218  |
| 97.5% KM (Chebyshev) UCL          | 0.00252  |
| 99% KM (Chebyshev) UCL            | 0.00319  |

Data appear Lognormal (0.05)
May want to try Lognormal UCLs

.

# Acenaphthene

| Total Number of Data           | 48   |
|--------------------------------|------|
| Number of Non-Detect Data      | 44   |
| Number of Detected Data        | 4    |
| Minimum Detected 0             | .016 |
| Maximum Detected 0             | .133 |
| Percent Non-Detects 91.        | 67%  |
| Minimum Non-detect 0.00        | 0851 |
| Maximum Non-detect 0           | .173 |
|                                |      |
| Mean of Detected Data 0.0      | 748  |
| Median of Detected Data 0      | .075 |
| Variance of Detected Data 0.00 | )324 |
| SD of Detected Data 0          | .057 |
| CV of Detected Data 0          | .762 |
| Skewness of Detected Data -0.0 | 107  |
| Mean of Detected log data -2   | .907 |
| SD of Detected Log data 0      | .997 |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect

Number treated as Detected

Single DL Percent Detection

100.00%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0213  |
| SD                                | 0.0224  |
| Standard Error of Mean            | 0.00387 |
| 95% KM (t) UCL                    | 0.0278  |
| 95% KM (z) UCL                    | 0.0277  |
| 95% KM (BCA) UCL                  | 0.133   |
| 95% KM (Percentile Bootstrap) UCL | 0.114   |
| 95% KM (Chebyshev) UCL            | 0.0382  |
| 97.5% KM (Chebyshev) UCL          | 0.0455  |
| 99% KM (Chebyshev) UCL            | 0.0598  |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median < <0.01105 [per recommendation in ProUCL User Guide]

# Acenaphthylene

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 44      |
| Number of Detected Data   | 4       |
| Minimum Detected          | 0.0291  |
| Maximum Detected          | 0.545   |
| Percent Non-Detects       | 91.67%  |
| Minimum Non-detect        | 0.00746 |
| Maximum Non-detect        | 0.174   |
|                           |         |
| Mean of Detected Data     | 0.265   |
| Median of Detected Data   | 0.243   |
| Variance of Detected Data | 0.0522  |
| SD of Detected Data       | 0.228   |
| CV of Detected Data       | 0.863   |
| Skewness of Detected Data | 0.418   |
| Mean of Detected log data | -1.795  |
| SD of Detected Log data   | 1.293   |
|                           |         |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

46 Number treated as Non-Detect 2 Number treated as Detected 95.83% Single DL Percent Detection

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0488 |
| SD                                | 0.0866 |
| Standard Error of Mean            | 0.0144 |
| 95% KM (t) UCL                    | 0.073  |
| 95% KM (z) UCL                    | 0.0726 |
| 95% KM (BCA) UCL                  | 0.545  |
| 95% KM (Percentile Bootstrap) UCL | 0.545  |
| 95% KM (Chebyshev) UCL            | 0.112  |
| 97.5% KM (Chebyshev) UCL          | 0.139  |
| 99% KM (Chebyshev) UCL            | 0.193  |

Data appear Normal (0.05)
May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median <0.01270 [per recommendation in ProUCL User Guide]

## Aluminum

| Number of Valid Observations    | 48      |
|---------------------------------|---------|
| Number of Distinct Observations | 38      |
| Minimum                         | 3400    |
| Maximum                         | 19200   |
| Mean                            | 13229   |
| Median                          | 13650   |
| SD                              | 3162    |
| Variance                        | 9999496 |
| Coefficient of Variation        | 0.239   |
| Skewness                        | -0.611  |
| Mean of log data                | 9.454   |
| SD of log data                  | 0.296   |

| 95% Usefu     | UCLs  |
|---------------|-------|
| Student's-t l | ICI . |
| Student 5-t c | JCL   |

95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL

13936

| 13988 |
|-------|
|       |
| 13980 |
| 13995 |
| 13984 |
| 13961 |
| 13944 |
| 13956 |
| 13934 |
| 15218 |
| 16079 |
| 17770 |
|       |

## Data appear Normal (0.05)

May want to try Normal UCLs

#### Anthracene

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 40      |
| Number of Detected Data   | 8       |
| Minimum Detected          | 0.00838 |
| Maximum Detected          | 0.334   |
| Percent Non-Detects       | 83.33%  |
| Minimum Non-detect        | 0.00593 |
| Maximum Non-detect        | 0.12    |
|                           |         |
| Mean of Detected Data     | 0.137   |
| Median of Detected Data   | 0.111   |
| Variance of Detected Data | 0.0176  |
| SD of Detected Data       | 0.133   |
| CV of Detected Data       | 0.972   |
| Skewness of Detected Data | 0.321   |
| Mean of Detected log data | -2.761  |
| SD of Detected Log data   | 1.525   |
|                           |         |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect

Number treated as Detected

Single DL Percent Detection

91.67%

Warning: There are only 8 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          |        |
| Mean                              | 0.0299 |
| SD                                | 0.0696 |
| Standard Error of Mean            | 0.0107 |
| 95% KM (t) UCL                    | 0.0479 |
| 95% KM (z) UCL                    | 0.0476 |
| 95% KM (BCA) UCL                  | 0.0746 |
| 95% KM (Percentile Bootstrap) UCL | 0.0547 |
| 95% KM (Chebyshev) UCL            | 0.0767 |
| 97.5% KM (Chebyshev) UCL          | 0.097  |
| 99% KM (Chebyshev) UCL            | 0.137  |
|                                   |        |

Data appear Normal (0.05) May want to try Normal UCLs

## Antimony

| Total Number of Data      | 47     |
|---------------------------|--------|
| Number of Non-Detect Data | 8      |
| Number of Detected Data   | 39     |
| Minimum Detected          | 0.65   |
| Maximum Detected          | 4.24   |
| Percent Non-Detects       | 17.02% |
| Minimum Non-detect        | 0.24   |
| Maximum Non-detect        | 0.26   |
| Mean of Detected Data     | 1.365  |
| Median of Detected Data   | 1.25   |
| Variance of Detected Data | 0.366  |
| SD of Detected Data       | 0.605  |
| CV of Detected Data       | 0.443  |
| Skewness of Detected Data | 3.054  |
| Mean of Detected log data | 0.245  |
| SD of Detected Log data   | 0.347  |

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method | 0.347 |
|----------------------|-------|
| Mean                 | 1.124 |
| SD                   | 0.317 |

| 95% Winsor (t) UCL                             | 1.203              |   |
|------------------------------------------------|--------------------|---|
| ‰aplan Meier (KM) Method                       |                    |   |
| Mean                                           | 1.243              |   |
| SD                                             | 0.607              |   |
| Standard Error of Mean                         | 0.0897             |   |
| 95% KM (t) UCL                                 | 1.394              |   |
| 95% KM (z) UCL                                 | 1.391              |   |
| 95% KM (BCA) UCL                               | 1.417              |   |
| 95% KM (Percentile Bootstrap) UCL              | 1.411              | • |
| 95% KM (Chebyshev) UCL                         | 1.634              |   |
| 97.5% KM (Chebyshev) UCL                       | 1.803              |   |
| 99% KM (Chebyshev) UCL                         | 2.136              |   |
| Data appear Lognormal (0.05)                   |                    |   |
| May want to try Lognormal UCLs                 |                    |   |
| ,,                                             |                    |   |
|                                                |                    |   |
| Arsenic                                        |                    |   |
| Total Number of Data                           | 48                 |   |
| Number of Non-Detect Data                      | 15                 |   |
| Number of Detected Data                        | 33                 |   |
| Minimum Detected                               | 1                  |   |
| Maximum Detected                               | 12.8               |   |
| Percent Non-Detects                            | 31.25%             |   |
| Minimum Non-detect                             | 0.12               |   |
| Maximum Non-detect                             | 1.55               |   |
| Mean of Detected Data                          | 3.58               |   |
| Median of Detected Data                        | 2.83               |   |
| Variance of Detected Data                      | 5.289              |   |
| SD of Detected Data                            | 2.3                |   |
| CV of Detected Data                            | 0.642              |   |
| Skewness of Detected Data                      | 2.191              |   |
| Mean of Detected log data                      | 1.114              |   |
| SD of Detected Log data                        | 0.569              |   |
| Note: Data have multiple DLs - Use of KM Met   | hod is recommended |   |
| For all methods (except KM, DL/2, and ROS Met  | thods),            |   |
| Observations < Largest DL are treated as NDs   |                    |   |
| Number treated as Non-Detect                   | 19                 |   |
| Number treated as Detected                     | 29                 |   |
| Single DL Percent Detection                    | 39.58%             |   |
| Data Dsitribution Test with Detected Values On | ·                  |   |
| Data appear Gamma Distributed at 5% Significa  | nce Level          |   |
| Winsorization Method                           | 39.58%             |   |
| Mean                                           | 2.191              |   |
| SD                                             | 0.434              |   |

| 95% Winsor (t) UCL                            | 2.306        |  |
|-----------------------------------------------|--------------|--|
| Kaplan Meier (KM) Method                      |              |  |
| Mean                                          | 2.775        |  |
| SD                                            | 2.226        |  |
| Standard Error of Mean                        | 0.326        |  |
| 95% KM (t) UCL                                | 3.322        |  |
| • •                                           | 3.312        |  |
| 95% KM (z) UCL                                | 3.433        |  |
| 95% KM (BCA) UCL                              |              |  |
| 95% KM (Percentile Bootstrap) UCL             | 3.376        |  |
| 95% KM (Chebyshev) UCL                        | <b>4.197</b> |  |
| 97.5% KM (Chebyshev) UCL                      | 4.812        |  |
| 99% KM (Chebyshev) UCL                        | 6.021        |  |
| Data appear Gamma Distributed (0.05)          |              |  |
| May want to try Gamma UCLs                    |              |  |
|                                               |              |  |
| Barium                                        |              |  |
|                                               | 40           |  |
| Number of Valid Observations                  | 48           |  |
| Number of Distinct Observations               | 46           |  |
| Minimum                                       | 36           |  |
| Maximum                                       | 820          |  |
| Mean                                          | 151.7        |  |
| Median                                        | 102.5        |  |
| SD                                            | 136.5        |  |
| Variance                                      | 18624        |  |
| Coefficient of Variation                      | 0.899        |  |
| Skewness                                      | 3.09         |  |
| Mean of log data                              | 4.792        |  |
| SD of log data                                | 0.623        |  |
| Data do not follow a Discernable Distribution |              |  |
| Data do not follow a Discernable Distribution |              |  |
| 95% Useful UCLs                               |              |  |
| Student's-t UCL                               | 184.8        |  |
| 95% UCLs (Adjusted for Skewness)              |              |  |
| 95% Adjusted-CLT UCL                          | 193.5        |  |
| 95% Modified-t UCL                            | 186.2        |  |
| N . B                                         |              |  |
| Non-Parametric UCLs                           | 404.4        |  |
| 95% CLT UCL                                   | 184.1        |  |
| 95% Jackknife UCL                             | 184.8        |  |
| 95% Standard Bootstrap UCL                    | 184.1        |  |
| 95% Bootstrap-t UCL                           | 203.7        |  |
| 95% Hall's Bootstrap UCL                      | 214.8        |  |

185.5

197.5

237.6

95% Percentile Bootstrap UCL

95% Chebyshev(Mean, Sd) UCL

95% BCA Bootstrap UCL

| 97.5% Chebyshev(Mean, Sd) UCL      | 274.7     |
|------------------------------------|-----------|
| 99% Chebyshev(Mean, Sd) UCL        | 347.7     |
|                                    |           |
| Potential UCL to Use               | Pagations |
| Use 95% Chebyshev (Mean, Sd) UCL   | 237.6     |
| use 95% Chepysnev (iviean, 3u) UCL | 237.0     |

| Benze | -/-\- |       |       |
|-------|-------|-------|-------|
| Kenz  | าเลเล | ntnra | 10606 |

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 43      |
| Number of Detected Data   | 5       |
| Minimum Detected          | 0.0546  |
| Maximum Detected          | 0.993   |
| Percent Non-Detects       | 89.58%  |
| Minimum Non-detect        | 0.00506 |
| Maximum Non-detect        | 0.142   |
| Mean of Detected Data     | 0.413   |
| Median of Detected Data   | 0.199   |
| Variance of Detected Data | 0.177   |
| SD of Detected Data       | 0.421   |
| CV of Detected Data       | 1.019   |
| Skewness of Detected Data | 0.765   |
| Mean of Detected log data | -1.442  |
| SD of Detected Log data   | 1.258   |
|                           |         |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect45Number treated as Detected3Single DL Percent Detection93.75%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method     | N/A    |
|--------------------------|--------|
| Kaplan Meier (KM) Method |        |
| Mean                     | 0.092  |
| SD                       | 0.164  |
| Standard Error of Mean   | 0.0264 |
| 95% KM (t) UCL           | 0.136  |
| 95% KM (z) UCL           | 0.135  |

| 95% KM (BCA) UCL                  | 0.724 |
|-----------------------------------|-------|
| 95% KM (Percentile Bootstrap) UCL | 0.254 |
| 95% KM (Chebyshev) UCL            | 0.207 |
| 97.5% KM (Chebyshev) UCL          | 0.257 |
| 99% KM (Chebyshev) UCL            | 0.355 |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median < <0.01135 [per recommendation in ProUCL User Guide]

## Benzo(a)pyrene

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 33      |
| Number of Detected Data   | 15      |
| Minimum Detected          | 0.0176  |
| Maximum Detected          | 1.3     |
| Percent Non-Detects       | 68.75%  |
| Minimum Non-detect        | 0.00862 |
| Maximum Non-detect        | 0.132   |
| Mean of Detected Data     | 0.313   |
| Median of Detected Data   | 0.133   |
| Variance of Detected Data | 0.157   |
| SD of Detected Data       | 0.397   |
| CV of Detected Data       | 1.269   |
| Skewness of Detected Data | 1.521   |
| Mean of Detected log data | -2.11   |
| SD of Detected Log data   | 1.557   |
|                           |         |

## Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 39 Number treated as Detected Single DL Percent Detection 81.25%

Data Dsitribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

| Winsorization Method     | N/A   |
|--------------------------|-------|
| Kaplan Meier (KM) Method |       |
| Mean                     | 0.11  |
| SD                       | 0.254 |
| Standard Error of Mean   | 0.038 |
| 95% KM (t) UCL           | 0.173 |
| 95% KM (z) UCL           | 0.172 |

| 95% KM (BCA) UCL                  | 0.178 |
|-----------------------------------|-------|
| 95% KM (Percentile Bootstrap) UCL | 0.178 |
| 95% KM (Chebyshev) UCL            | 0.275 |
| 97.5% KM (Chebyshev) UCL          | 0.347 |
| 99% KM (Chebyshev) UCL            | 0.487 |

Data appear Gamma Distributed (0.05) May want to try Gamma UCLs

## Benzo(b)fluoranthene

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 29      |
| Number of Detected Data   | 19      |
| Minimum Detected          | 0.0162  |
| Maximum Detected          | 1.36    |
| Percent Non-Detects       | 60.42%  |
| Minimum Non-detect        | 0.00754 |
| Maximum Non-detect        | 0.153   |
| Mean of Detected Data     | 0.206   |
| Median of Detected Data   | 0.0474  |
| Variance of Detected Data | 0.123   |
| SD of Detected Data       | 0.35    |
| CV of Detected Data       | 1.697   |
| Skewness of Detected Data | 2.497   |
| Mean of Detected log data | -2.563  |
| SD of Detected Log data   | 1.342   |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect42Number treated as Detected6Single DL Percent Detection87.50%

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          | -      |
| Mean                              | 0.0923 |
| SD                                | 0.233  |
| Standard Error of Mean            | 0.0346 |
| 95% KM (t) UCL                    | 0.15   |
| 95% KM (z) UCL                    | 0.149  |
| 95% KM (BCA) UCL                  | 0.159  |
| 95% KM (Percentile Bootstrap) UCL | 0.152  |
| 95% KM (Chebyshev) UCL            | 0.243  |

| 97.5% KM (Chebyshev) UCL<br>99% KM (Chebyshev) UCL                                                       | 0.309<br>0.437 |  |
|----------------------------------------------------------------------------------------------------------|----------------|--|
| Potential UCL to Use<br>95% KM (BCA) UCL                                                                 | 0.159          |  |
| Benzo(g,h,i)perylene                                                                                     |                |  |
| Total Number of Data                                                                                     | 48             |  |
| Number of Non-Detect Data                                                                                | 24             |  |
| Number of Detected Data                                                                                  | 24             |  |
| Minimum Detected                                                                                         | 0.044          |  |
| Maximum Detected                                                                                         | 1.94           |  |
| Percent Non-Detects                                                                                      | 50.00%         |  |
| Minimum Non-detect                                                                                       | 0.00863        |  |
| Maximum Non-detect                                                                                       | 0.644          |  |
| Mean of Detected Data                                                                                    | 0.365          |  |
| Median of Detected Data                                                                                  | 0.144          |  |
| Variance of Detected Data                                                                                | 0.244          |  |
| SD of Detected Data                                                                                      | 0.494          |  |
| CV of Detected Data                                                                                      | 1.355          |  |
| Skewness of Detected Data                                                                                | 2.159          |  |
| Mean of Detected log data                                                                                | -1.648         |  |
| SD of Detected Log data                                                                                  | 1.076          |  |
| Note: Data have multiple DLs - Use of KM Method is For all methods (except KM, DL/2, and ROS Methods)    |                |  |
| Observations < Largest DL are treated as NDs                                                             |                |  |
| Number treated as Non-Detect                                                                             | 43             |  |
| Number treated as Detected                                                                               | 5              |  |
| Single DL Percent Detection                                                                              | 89.58%         |  |
| Data Dsitribution Test with Detected Values Only<br>Data do not follow a Discernable Distribution (0.05) |                |  |
| Winsorization Method                                                                                     | N/A            |  |
| Kaplan Meier (KM) Method                                                                                 |                |  |
| Mean                                                                                                     | 0.206          |  |
| SD                                                                                                       | 0.377          |  |
| Standard Error of Mean                                                                                   | 0.0557         |  |
| 95% KM (t) UCL                                                                                           | 0.3            |  |
| 95% KM (z) UCL                                                                                           | 0.298          |  |
| 95% KM (BCA) UCL                                                                                         | 0.331          |  |
| 95% KM (Percentile Bootstrap) UCL                                                                        | 0.302          |  |
| 95% KM (Chebyshev) UCL                                                                                   | 0.449          |  |
| 97.5% KM (Chebyshev) UCL                                                                                 | 0.554          |  |
| 99% KM (Chebyshev) UCL                                                                                   | 0.76           |  |

| Benzo(k)fluoranthene                                                                                                                                        |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Total Number of Data                                                                                                                                        | 48         |
| Number of Non-Detect Data                                                                                                                                   | 34         |
| Number of Detected Data                                                                                                                                     | 14         |
| Minimum Detected                                                                                                                                            | 0.0692     |
| Maximum Detected                                                                                                                                            | 0.73       |
| Percent Non-Detects                                                                                                                                         | 70.83%     |
| Minimum Non-detect                                                                                                                                          | 0.01       |
| Maximum Non-detect                                                                                                                                          | 0.216      |
| Mean of Detected Data                                                                                                                                       | 0.174      |
| Median of Detected Data                                                                                                                                     | 0.128      |
| Variance of Detected Data                                                                                                                                   | 0.0312     |
| SD of Detected Data                                                                                                                                         | 0.177      |
| CV of Detected Data                                                                                                                                         | 1.013      |
| Skewness of Detected Data                                                                                                                                   | 2.806      |
| Mean of Detected log data                                                                                                                                   | -2.016     |
| SD of Detected Log data                                                                                                                                     | 0.67       |
| Note: Data have multiple DLs - Use of KM Method is r<br>For all methods (except KM, DL/2, and ROS Methods),<br>Observations < Largest DL are treated as NDs | ecommended |
| Number treated as Non-Detect                                                                                                                                | 46         |
| Number treated as Detected                                                                                                                                  | 2          |
| Single DL Percent Detection                                                                                                                                 | 95.83%     |
| Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)                                                       |            |
| Winsorization Method                                                                                                                                        | N/A        |
| Kaplan Meier (KM) Method                                                                                                                                    |            |
| Mean                                                                                                                                                        | 0.101      |
| SD                                                                                                                                                          | 0.104      |
| Standard Error of Mean                                                                                                                                      | 0.0156     |
| 95% KM (t) UCL                                                                                                                                              | 0.127      |
| 95% KM (z) UCL                                                                                                                                              | 0.127      |
| 95% KM (BCA) UCL                                                                                                                                            | 0.135      |
| 95% KM (Percentile Bootstrap) UCL                                                                                                                           | 0.131      |
| 95% KM (Chebyshev) UCL                                                                                                                                      | 0.169      |
| 97.5% KM (Chebyshev) UCL                                                                                                                                    | 0.198      |
| 99% KM (Chebyshev) UCL                                                                                                                                      | 0.256      |
| Potential UCL to Use                                                                                                                                        |            |
| 95% KM (t) UCL                                                                                                                                              | 0.127      |
| 95% KM (% Bootstrap) UCL                                                                                                                                    | 0.131      |

| Beryllium                          |        |
|------------------------------------|--------|
| Number of Valid Observations       | 48     |
| Number of Distinct Observations    | 36     |
| Minimum                            | 0.28   |
| Maximum                            | 1.37   |
| Mean                               | 0.894  |
| Median                             | 0.93   |
| SD                                 | 0.206  |
| Variance                           | 0.0424 |
| Coefficient of Variation           | 0.23   |
| Skewness                           | -0.364 |
| Mean of log data                   | -0.144 |
| SD of log data                     | 0.269  |
| 35 of log data                     | 0.205  |
| 95% Useful UCLs<br>Student's-t UCL | 0.943  |
| 95% UCLs (Adjusted for Skewness)   |        |
| 95% Adjusted-CLT UCL               | 0.941  |
| 95% Modified-t UCL                 | 0.943  |
|                                    |        |
| Non-Parametric UCLs                |        |
| 95% CLT UCL                        | 0.942  |
| 95% Jackknife UCL                  | 0.943  |
| 95% Standard Bootstrap UCL         | 0.942  |
| 95% Bootstrap-t UCL                | 0.944  |
| 95% Hall's Bootstrap UCL           | 0.942  |
| 95% Percentile Bootstrap UCL       | 0.941  |
| 95% BCA Bootstrap UCL              | 0.942  |
| 95% Chebyshev(Mean, Sd) UCL        | 1.023  |
| 97.5% Chebyshev(Mean, Sd) UCL      | 1.079  |
| 99% Chebyshev(Mean, Sd) UCL        | 1.189  |
| Data appear Normal (0.05)          |        |
| May want to try Normal UCLs        |        |
|                                    |        |
| Boron                              |        |
| Total Number of Data               | 48     |
| Number of Non-Detect Data          | 23     |
| Number of Detected Data            | 25     |
| Minimum Detected                   | 5.17   |
| Maximum Detected                   | 46.2   |
| Percent Non-Detects                | 47.92% |
| Minimum Non-detect                 | 1.16   |
| Maximum Non-detect                 | 40.9   |
| maximum from detect                | 10.0   |

| Mean of Detected Data     | 22.7  |
|---------------------------|-------|
| Median of Detected Data   | 20.4  |
| Variance of Detected Data | 118.8 |
| SD of Detected Data       | 10.9  |
| CV of Detected Data       | 0.48  |
| Skewness of Detected Data | 0.557 |
| Mean of Detected log data | 2.997 |
| SD of Detected Log data   | 0.54  |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 46
Number treated as Detected 2
Single DL Percent Detection 95.83%

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method N/A                           | ٨     |
|----------------------------------------------------|-------|
| Kaplan Meier (KM) Method                           |       |
| Mean                                               | 15.27 |
| \$D                                                | 11.35 |
| Standard Error of Mean                             | 1.729 |
| 95% KM (t) UCL                                     | 18.17 |
| 95% KM (z) UCL                                     | 18.12 |
| 95% KM (BCA) UCL                                   | 20.12 |
| 95% KM (Percentile Bootstrap) UCL                  | 19.07 |
| 95% KM (Chebyshev) UCL                             | 22.81 |
| 97.5% KM (Chebyshev) UCL                           | 26.07 |
| 99% KM (Chebyshev) UCL                             | 32.48 |
| 95% KM (Chebyshev) UCL<br>97.5% KM (Chebyshev) UCL | 26.07 |

Data appear Normal (0.05) May want to try Normal UCLs

### Cadmium

| Total Number of Data      | 48     |
|---------------------------|--------|
| Number of Non-Detect Data | 29     |
| Number of Detected Data   | 19     |
| Minimum Detected          | 0.033  |
| Maximum Detected          | 0.48   |
| Percent Non-Detects       | 60.42% |
| Minimum Non-detect        | 0.0058 |
| Maximum Non-detect        | 0.039  |
|                           |        |
| Mean of Detected Data     | 0.243  |
| Median of Detected Data   | 0.23   |
| Variance of Detected Data | 0.0216 |

| SD of Detected Data       | 0.147  |
|---------------------------|--------|
| CV of Detected Data       | 0.606  |
| Skewness of Detected Data | 0.272  |
| Mean of Detected log data | -1.645 |
| SD of Detected Log data   | 0.761  |
|                           |        |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect30Number treated as Detected18Single DL Percent Detection62.50%

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.116   |
| SD                                | 0.136   |
| Standard Error of Mean            | 0.0202  |
| 95% KM (t) UCL                    | 0.15    |
| 95% KM (z) UCL                    | 0.149   |
| 95% KM (BCA) UCL                  | 0.175   |
| 95% KM (Percentile Bootstrap) UCL | 0.167   |
| 95% KM (Chebyshev) UCL            | 0.204   |
| 97.5% KM (Chebyshev) UCL          | 」 0.242 |
| 99% KM (Chebyshev) UCL            | 0.317   |

Data appear Normal (0.05) May want to try Normal UCLs

#### Carbazole

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 43      |
| Number of Detected Data   | 5       |
| Minimum Detected          | 0.0158  |
| Maximum Detected          | 0.141   |
| Percent Non-Detects       | 89.58%  |
| Minimum Non-detect        | 0.00812 |
| Maximum Non-detect        | 0.165   |
| Mean of Detected Data     | 0.0644  |
| Median of Detected Data   | 0.0262  |
| Variance of Detected Data | 0.00376 |
| SD of Detected Data       | 0.0613  |
| CV of Detected Data       | 0.952   |
| Skewness of Detected Data | 0.651   |

| Mean of Detected log data | -3.1 | L76 |
|---------------------------|------|-----|
| SD of Detected Log data   | 1.0  | )59 |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect

Number treated as Detected

Single DL Percent Detection

100.00%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0212  |
| SD                                | 0.0238  |
| Standard Error of Mean            | 0.00397 |
| 95% KM (t) UCL                    | 0.0279  |
| 95% KM (z) UCL                    | 0.0278  |
| 95% KM (BCA) UCL                  | 0.141   |
| 95% KM (Percentile Bootstrap) UCL | 0.0362  |
| 95% KM (Chebyshev) UCL            | 0.0385  |
| 97.5% KM (Chebyshev) UCL          | 0.046   |
| 99% KM (Chebyshev) UCL            | 0.0607  |

Data appear Normal (0.05) May want to try Normal UCLs

| ** Instead of UCL, EPC is selected to be median | < 0.01100                |
|-------------------------------------------------|--------------------------|
| instead of OCL, EPC is selected to be median    | ٠٠٠٠ ١ ٠٠٠٠              |
|                                                 |                          |
| [per recommendation in ProUCL User Guide]       | f santi da hikasaf at is |

#### Carbon disulfide

| Total Number of Data      | 48       |
|---------------------------|----------|
| Number of Non-Detect Data | 44       |
| Number of Detected Data   | 4        |
| Minimum Detected          | 0.00334  |
| Maximum Detected          | 0.00699  |
| Percent Non-Detects       | 91.67%   |
| Minimum Non-detect        | 1.18E-04 |
| Maximum Non-detect        | 0.00253  |
|                           |          |

| Mean of Detected Data     | 0.00507  |
|---------------------------|----------|
| Median of Detected Data   | 0.00497  |
| Variance of Detected Data | 2.23E-06 |
| SD of Detected Data       | 0.00149  |
| CV of Detected Data       | 0.295    |
| Skewness of Detected Data | 0.389    |
| Mean of Detected log data | -5.318   |
| SD of Detected Log data   | 0.302    |

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00348  |
| SD                                | 6.06E-04 |
| Standard Error of Mean            | 1.01E-04 |
| 95% KM (t) UCL                    | 0.00365  |
| 95% KM (z) UCL                    | 0.00365  |
| 95% KM (BCA) UCL                  | 0.00699  |
| 95% KM (Percentile Bootstrap) UCL | 0.00513  |
| 95% KM (Chebyshev) UCL            | 0.00392  |
| 97.5% KM (Chebyshev) UCL          | 0.00411  |
| 99% KM (Chebyshev) UCL            | 0.00449  |
|                                   |          |

Data appear Normal (0.05)
May want to try Normal UCLs

|      |         |      |        | 萨德克 化氯磺磺基 線点 | and the second |          | 1.00       | 1000  | A fee age of |                   | 200     |        |
|------|---------|------|--------|--------------|----------------|----------|------------|-------|--------------|-------------------|---------|--------|
| 146. | * Inste |      |        |              |                |          | . A. S ■ . |       |              | THE STATE OF      |         | 0004   |
| -    | Incto   | 24.0 |        |              | 660            | $\alpha$ | to b       | n maa | IION .       | of the section in |         | .0001  |
| 131  | HISTE   | au u | I UUL. | EFGI         | 3 361          | ecteu    | LUU        |       |              |                   | · ~ U . | .vvv.i |
|      |         |      |        |              |                |          |            |       |              |                   |         |        |
|      |         |      |        |              |                |          |            |       |              |                   |         |        |
|      |         |      |        |              |                |          |            |       |              |                   |         |        |
|      |         |      |        |              |                |          |            |       |              |                   |         |        |
|      |         |      | commo  |              |                |          |            |       |              |                   |         |        |
|      |         |      |        |              |                |          |            |       |              |                   |         |        |
|      |         |      |        |              |                |          |            |       |              |                   |         |        |

# Chromium

| Number of Valid Observations    | 48    |
|---------------------------------|-------|
| Number of Distinct Observations | 42    |
| Minimum                         | 8.96  |
| Maximum                         | 44.6  |
| Mean                            | 15.07 |
| Median                          | 14.1  |

| SD                                            | 5.536  |  |
|-----------------------------------------------|--------|--|
| Variance                                      | 30.64  |  |
| Coefficient of Variation                      | 0.367  |  |
| Skewness                                      | 3.399  |  |
| Mean of log data                              | 2.667  |  |
| SD of log data                                | 0.286  |  |
| 3D of log data                                | 0.200  |  |
| Data do not follow a Discernable Distribution | 1      |  |
| 95% Useful UCLs                               |        |  |
| Student's-t UCL                               | 16.41  |  |
| Stage.nes room                                | 20.12  |  |
| 95% UCLs (Adjusted for Skewness)              |        |  |
| 95% Adjusted-CLT UCL                          | 16.81  |  |
| 95% Modified-t UCL                            | 16.48  |  |
|                                               |        |  |
| Non-Parametric UCLs                           |        |  |
| 95% CLT UCL                                   | 16.39  |  |
| 95% Jackknife UCL                             | 16.41  |  |
| 95% Standard Bootstrap UCL                    | 16.38  |  |
| 95% Bootstrap-t UCL                           | 17.12  |  |
| 95% Hall's Bootstrap UCL                      | 22.5   |  |
| 95% Percentile Bootstrap UCL                  | 16.55  |  |
| 95% BCA Bootstrap UCL                         | 16.98  |  |
| 95% Chebyshev(Mean, Sd) UCL                   | 18.56  |  |
|                                               | 20.06  |  |
| 97.5% Chebyshev (Mean, Sd) UCL                | 23.02  |  |
| 99% Chebyshev(Mean, Sd) UCL                   | 25.02  |  |
| Potential UCL to Use                          |        |  |
| Use 95% Student's-t UCL                       | 16.41  |  |
| Or 95% Modified-t UCL                         | 16.48  |  |
|                                               |        |  |
|                                               |        |  |
| Chromium VI                                   |        |  |
| Total Number of Data                          | 25     |  |
| Number of Non-Detect Data                     | 19     |  |
| Number of Detected Data                       | 6      |  |
| Minimum Detected                              | 1.3    |  |
| Maximum Detected                              | 4.04   |  |
| Percent Non-Detects                           | 76.00% |  |
| Minimum Non-detect                            | 0.361  |  |
|                                               |        |  |
| Maximum Non-detect                            | 2.98   |  |
| Mean of Detected Data                         | 2.667  |  |
| Median of Detected Data                       | 2.585  |  |
| Variance of Detected Data                     | 1.786  |  |
| SD of Detected Data                           | 1.337  |  |
| CV of Detected Data                           | 0.501  |  |
| Skewness of Detected Data                     | 0.0422 |  |
|                                               | 0.864  |  |
| Mean of Detected log data                     | 0.004  |  |

SD of Detected Log data

Winsorization Method

0.542

22

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect Number treated as Detected

3 Single DL Percent Detection 88.00%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

 $\Delta \setminus M$ 

Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level

| N/A   |
|-------|
|       |
| 1.631 |
| 0.835 |
| 0.183 |
| 1.944 |
| 1.932 |
| 3.616 |
| 2.136 |
| 2.429 |
| 2.774 |
| 3.452 |
|       |

Data follow Appr. Gamma Distribution (0.05) May want to try Gamma UCLs

\*\* Instead of UCL, EPC is selected to be median

[per recommendation in ProUCL User Guide]

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 29      |
| Number of Detected Data   | 19      |
| Minimum Detected          | 0.011   |
| Maximum Detected          | 4.05    |
| Percent Non-Detects       | 60.42%  |
| Minimum Non-detect        | 0.00755 |
| Maximum Non-detect        | 0.253   |
|                           |         |
| Mean of Detected Data     | 0 525   |

| Median of Detected Data   | 0.0813 |
|---------------------------|--------|
| Variance of Detected Data | 1.167  |
| SD of Detected Data       | 1.08   |
| CV of Detected Data       | 2.059  |
| Skewness of Detected Data | 2.633  |
| Mean of Detected log data | -2.274 |
| SD of Detected Log data   | 1.773  |
|                           |        |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 43
Number treated as Detected 5
Single DL Percent Detection 89.58%

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 0.215 |
| SD                                | 0.708 |
| Standard Error of Mean            | 0.105 |
| 95% KM (t) UCL                    | 0.391 |
| 95% KM (z) UCL                    | 0.388 |
| 95% KM (BCA) UCL                  | 0.421 |
| 95% KM (Percentile Bootstrap) UCL | 0.405 |
| 95% KM (Chebyshev) UCL            | 0.673 |
| 97.5% KM (Chebyshev) UCL          | 0.871 |
| 99% KM (Chebyshev) UCL            | 1.259 |

# Cobalt

**Potential UCL to Use** 

| Number of Valid Observations    | 48     |
|---------------------------------|--------|
| Number of Distinct Observations | 46     |
| Minimum                         | 3      |
| Maximum                         | 9.89   |
| Mean                            | 6.977  |
| Median                          | 7.29   |
| SD                              | 1.408  |
| Variance                        | 1.983  |
| Coefficient of Variation        | 0.202  |
| Skewness                        | -0.339 |
| Mean of log data                | 1.92   |
| SD of log data                  | 0.223  |

# 95% Useful UCLs

| Student's-t UCL                                       | 7.318 |   |
|-------------------------------------------------------|-------|---|
| 95% UCLs (Adjusted for Skewness)                      |       |   |
| 95% Adjusted-CLT UCL                                  | 7.3   |   |
| 95% Modified-t UCL                                    | 7.316 |   |
| Non-Parametric UCLs                                   |       |   |
| 95% CLT UCL                                           | 7.311 |   |
| 95% Jackknife UCL                                     | 7.318 |   |
| 95% Standard Bootstrap UCL                            | 7.311 |   |
| 95% Bootstrap-t UCL                                   | 7.306 | - |
| 95% Hall's Bootstrap UCL                              | 7.325 |   |
| 95% Percentile Bootstrap UCL                          | 7.313 |   |
| 95% BCA Bootstrap UCL                                 | 7.304 |   |
| 95% Chebyshev(Mean, Sd) UCL                           | 7.863 |   |
| 97.5% Chebyshev(Mean, Sd) UCL                         | 8.246 |   |
| 99% Chebyshev(Mean, Sd) UCL                           | 8.999 |   |
| Data appear Normal (0.05) May want to try Normal UCLs |       |   |
|                                                       |       |   |
| Copper                                                |       |   |
| Number of Valid Observations                          | 48    |   |
| Number of Distinct Observations                       | 44    |   |
| Minimum                                               | 5.44  |   |
| Maximum                                               | 49    |   |
| Mean                                                  | 14.49 |   |
| Median                                                | 13.15 |   |
| SD                                                    | 8.49  |   |
| Variance                                              | 72.09 |   |
| Coefficient of Variation                              | 0.586 |   |
| Skewness                                              | 2.371 |   |
| Mean of log data                                      | 2.553 |   |
| SD of log data                                        | 0.471 |   |
| 95% Useful UCLs                                       |       |   |
| Student's-t UCL                                       | 16.55 |   |
| 95% UCLs (Adjusted for Skewness)                      |       |   |
| 95% Adjusted-CLT UCL                                  | 16.96 |   |
| 95% Modified-t UCL                                    | 16.62 |   |
| Non-Parametric UCLs                                   |       |   |
| 95% CLT UCL                                           | 16.51 |   |
| 95% Jackknife UCL                                     | 16.55 |   |
| 95% Standard Bootstrap UCL                            | 16.52 |   |
| 95% Bootstrap-t UCL                                   | 17.22 |   |
| 95% Hall's Bootstrap UCL                              | 17.57 |   |
| 95% Percentile Bootstrap UCL                          | 16.61 |   |

| 95% BCA Bootstrap UCL          | 17.21 |
|--------------------------------|-------|
| 95% Chebyshev(Mean, Sd) UCL    | 19.83 |
| 97.5% Chebyshev (Mean, Sd) UCL | 22.14 |
| 99% Chebyshev(Mean, Sd) UCL    | 26.68 |

Data appear Lognormal (0.05)
May want to try Lognormal UCLs

# Dibenz(a,h)anthracene

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 42      |
| Number of Detected Data   | 6       |
| Minimum Detected          | 0.129   |
| Maximum Detected          | 2.91    |
| Percent Non-Detects       | 87.50%  |
| Minimum Non-detect        | 0.00635 |
| Maximum Non-detect        | 0.743   |
|                           |         |
| Mean of Detected Data     | 1.391   |
| Median of Detected Data   | 1.084   |
| Variance of Detected Data | 1.688   |
| SD of Detected Data       | 1.299   |
| CV of Detected Data       | 0.934   |
| Skewness of Detected Data | 0.291   |
| Mean of Detected log data | -0.265  |
| SD of Detected Log data   | 1.334   |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect45Number treated as Detected3Single DL Percent Detection93.75%

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method     | N/A    |
|--------------------------|--------|
| Kaplan Meier (KM) Method |        |
| Mean                     | 0.287  |
| SD                       | 0.592  |
| Standard Error of Mean   | 0.0936 |

| 95% KM (t) UCL                    | 0.444 |
|-----------------------------------|-------|
| 95% KM (z) UCL                    | 0.441 |
| 95% KM (BCA) UCL                  | 1.896 |
| 95% KM (Percentile Bootstrap) UCL | 0.676 |
| 95% KM (Chebyshev) UCL            | 0.695 |
| 97.5% KM (Chebyshev) UCL          | 0.872 |
| 99% KM (Chebyshev) UCL            | 1.218 |

Data appear Normal (0.05)
May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median < <0.03750 [per recommendation in ProUCL User Guide]

# Dibenzofuran

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 45      |
| Number of Detected Data   | 3       |
| Minimum Detected          | 0.01    |
| Maximum Detected          | 0.08    |
| Percent Non-Detects       | 93.75%  |
| Minimum Non-detect        | 0.00506 |
| Maximum Non-detect        | 0.103   |
|                           |         |
| Mean of Detected Data     | 0.0525  |
| Median of Detected Data   | 0.0674  |
| Variance of Detected Data | 0.00139 |
| SD of Detected Data       | 0.0373  |
| CV of Detected Data       | 0.711   |
| Skewness of Detected Data | -1.513  |
| Mean of Detected log data | -3.276  |
| SD of Detected Log data   | 1.154   |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect48Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only

# Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.0129  |
| SD                                | 0.0133  |
| Standard Error of Mean            | 0.00243 |
| 95% KM (t) UCL                    | 0.0169  |
| 95% KM (z) UCL                    | 0.0169  |
| 95% KM (BCA) UCL                  | N/A     |
| 95% KM (Percentile Bootstrap) UCL | 0.08    |
| 95% KM (Chebyshev) UCL            | 0.0235  |
| 97.5% KM (Chebyshev) UCL          | 0.028   |
| 99% KM (Chebyshev) UCL            | 0.0371  |

Data appear Normal (0.05) May want to try Normal UCLs

|  |  |  | be medi | <0.01555 |
|--|--|--|---------|----------|
|  |  |  |         |          |
|  |  |  |         |          |
|  |  |  |         |          |
|  |  |  |         |          |
|  |  |  |         |          |
|  |  |  |         |          |
|  |  |  |         |          |
|  |  |  |         |          |
|  |  |  | User Gu |          |
|  |  |  |         |          |
|  |  |  |         |          |

# **Endosulfan sulfate**

|                           | •        |
|---------------------------|----------|
| Total Number of Data      | 48       |
| Number of Non-Detect Data | 45       |
| Number of Detected Data   | 3        |
| Minimum Detected          | 0.00731  |
| Maximum Detected          | 0.06     |
| Percent Non-Detects       | 93.75%   |
| Minimum Non-detect        | 2.89E-04 |
| Maximum Non-detect        | 0.00527  |
|                           |          |
| Mean of Detected Data     | 0.0257   |
| Median of Detected Data   | 0.00989  |
| Variance of Detected Data | 8.82E-04 |
| SD of Detected Data       | 0.0297   |
| CV of Detected Data       | 1.154    |
| Skewness of Detected Data | 1.717    |
| Mean of Detected log data | -4.116   |
| SD of Detected Log data   | 1.138    |
|                           |          |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set
The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.
Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |  |
|-----------------------------------|---------|--|
| Kaplan Meier (KM) Method          |         |  |
| Mean                              | 0.00846 |  |
| SD                                | 0.00753 |  |
| Standard Error of Mean            | 0.00133 |  |
| 95% KM (t) UCL                    | 0.0107  |  |
| 95% KM (z) UCL                    | 0.0107  |  |
| 95% KM (BCA) UCL                  | 0.06    |  |
| 95% KM (Percentile Bootstrap) UCL | N/A     |  |
| 95% KM (Chebyshev) UCL            | 0.0143  |  |
| 97.5% KM (Chebyshev) UCL          | 0.0168  |  |
| 99% KM (Chebyshev) UCL            | 0.0217  |  |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median <0.00044
[per recommendation in ProUCL User Guide]

# Endrin aldehyde

| Total Number of Data      | 48       |
|---------------------------|----------|
| Number of Non-Detect Data | 39       |
| Number of Detected Data   | 9        |
| Minimum Detected          | 5.66E-04 |
| Maximum Detected          | 0.01     |
| Percent Non-Detects       | 81.25%   |
| Minimum Non-detect        | 3.94E-04 |
| Maximum Non-detect        | 0.00579  |
| Mean of Detected Data     | 0.00434  |
| Median of Detected Data   | 0.00431  |
| Variance of Detected Data | 1.42E-05 |
| SD of Detected Data       | 0.00377  |
| CV of Detected Data       | 0.869    |
| Skewness of Detected Data | 0.564    |
| Mean of Detected log data | -5.917   |
| SD of Detected Log data   | 1.135    |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

| Number treated as Non-Detect | 45     |
|------------------------------|--------|
| Number treated as Detected   | 3      |
| Single DL Percent Detection  | 93.75% |

Warning: There are only 9 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00128  |
| SD                                | 0.00213  |
| Standard Error of Mean            | 3.27E-04 |
| 95% KM (t) UCL                    | 0.00183  |
| 95% KM (z) UCL                    | 0.00182  |
| 95% KM (BCA) UCL                  | 0.00233  |
| 95% KM (Percentile Bootstrap) UCL | 0.00214  |
| 95% KM (Chebyshev) UCL            | 0.0027   |
| 97.5% KM (Chebyshev) UCL          | 0.00332  |
| 99% KM (Chebyshev) UCL            | 0.00453  |

Data appear Normal (0.05) May want to try Normal UCLs

#### **Endrin ketone**

| Total Number of Data      | 48       |
|---------------------------|----------|
| Number of Non-Detect Data | 45       |
| Number of Detected Data   | 3        |
| Minimum Detected          | 0.00329  |
| Maximum Detected          | 0.013    |
| Percent Non-Detects       | 93.75%   |
| Minimum Non-detect        | 3.79E-04 |
| Maximum Non-detect        | 0.00527  |
| Mean of Detected Data     | 0.00749  |
| Median of Detected Data   | 0.00619  |
| Variance of Detected Data | 2.48E-05 |
| SD of Detected Data       | 0.00498  |
| CV of Detected Data       | 0.665    |
| Skewness of Detected Data | 1.096    |
| Mean of Detected log data | -5.048   |
| SD of Detected Log data   | 0.688    |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect46Number treated as Detected2Single DL Percent Detection95.83%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method      | N/A |
|---------------------------|-----|
| Kantan Majar (KMA) Mathad |     |

| Kaplan Meier (KM) Method          |          |
|-----------------------------------|----------|
| Mean                              | 0.00355  |
| SD                                | 0.00144  |
| Standard Error of Mean            | 2.54E-04 |
| 95% KM (t) UCL                    | 0.00398  |
| 95% KM (z) UCL                    | 0.00397  |
| 95% KM (BCA) UCL                  | 0.013    |
| 95% KM (Percentile Bootstrap) UCL | N/A      |
| 95% KM (Chebyshev) UCL            | 0.00466  |
| 97.5% KM (Chebyshev) UCL          | 0.00514  |
| 99% KM (Chebyshev) UCL            | 0.00608  |
|                                   |          |

Data appear Normal (0.05)
May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median <0.00055 [per recommendation in ProUCL User Guide]

#### **Fluoranthene**

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 35      |
| Number of Detected Data   | 13      |
| Minimum Detected          | 0.012   |
| Maximum Detected          | 2.17    |
| Percent Non-Detects       | 72.92%  |
| Minimum Non-detect        | 0.00647 |
| Maximum Non-detect        | 0.213   |
|                           |         |
| Mean of Detected Data     | 0.346   |

| Median of Detected Data   | 0.0548 |
|---------------------------|--------|
| Variance of Detected Data | 0.444  |
| SD of Detected Data       | 0.667  |
| CV of Detected Data       | 1.925  |
| Skewness of Detected Data | 2.359  |
| Mean of Detected log data | -2.413 |
| SD of Detected Log data   | 1.622  |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 45 Number treated as Detected Single DL Percent Detection 93.75%

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.104   |
| SD                                | 0.365   |
| Standard Error of Mean            | 0.0548  |
| 95% KM (t) UCL                    | . 0.196 |
| 95% KM (z) UCL                    | 0.194   |
| 95% KM (BCA) UCL                  | 0.213   |
| 95% KM (Percentile Bootstrap) UCL | 0.206   |
| 95% KM (Chebyshev) UCL            | 0.343   |
| 97.5% KM (Chebyshev) UCL          | 0.446   |
| 99% KM (Chebyshev) UCL            | 0.649   |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

#### Fluorene

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 44      |
| Number of Detected Data   | 4       |
| Minimum Detected          | 0.015   |
| Maximum Detected          | 0.139   |
| Percent Non-Detects       | 91.67%  |
| Minimum Non-detect        | 0.00659 |
| Maximum Non-detect        | 0.135   |
| Mean of Detected Data     | 0.0923  |
| Median of Detected Data   | 0.108   |
| Variance of Detected Data | 0.00313 |
| SD of Detected Data       | 0.0559  |

| CV of Detected Data       | 0.606  |
|---------------------------|--------|
| Skewness of Detected Data | -1.209 |
| Mean of Detected log data | -2.667 |
| SD of Detected Log data   | 1.041  |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect47Number treated as Detected1Single DL Percent Detection97.92%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

N/Δ

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| WITISOFIZACION MECHIOA            | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
|                                   | 0.0047  |
| Mean                              | 0.0217  |
| SD                                | 0.0259  |
| Standard Error of Mean            | 0.00439 |
| 95% KM (t) UCL                    | 0.029   |
| 95% KM (z) UCL                    | 0.0289  |
| 95% KM (BCA) UCL                  | 0.139   |
| 95% KM (Percentile Bootstrap) UCL | 0.128   |
| 95% KM (Chebyshev) UCL            | 0.0408  |
| 97.5% KM (Chebyshev) UCL          | 0.0491  |
| 99% KM (Chebyshev) UCL            | 0.0653  |
|                                   |         |

Data appear Normal (0.05)
May want to try Normal UCLs

Winscrization Method

| 一点的 经经济股份的现在分词 化上面 |                                  | あげだけ かかがたかどうした               | · 化氯基氯甲基磺胺二甲基磺胺二甲基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | patronia (Alical) 建造物管 超过标识              |
|--------------------|----------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| ** Inctood of      | ICI EDC ic                       | calacted to                  | ho modian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.01100                                 |
| ** Instead of l    | JUL, EFU IS                      | selected to                  | De Illeulali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~0.01100                                 |
|                    | There is a finish rather than in | note is to be a major build- | Daniel Andrew (1975)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The all 1979 beginning the Performance   |
|                    | 化二二甲基甲基苯甲甲甲基                     |                              | signification for the contraction of the contractio |                                          |
| iner reco          | mmendation                       | in Prolici                   | llear Chid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ■ Provide Control of the Late Office Col |
| [PCI ICCO          | minicination                     |                              | . Coci Guide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |

# gamma-Chlordane

| Total Number of Data      | 48       |
|---------------------------|----------|
| Number of Non-Detect Data | 44       |
| Number of Detected Data   | 4        |
| Minimum Detected          | 7.69E-04 |
| Maximum Detected          | 0.0036   |
| Percent Non-Detects       | 91.67%   |
| Minimum Non-detect        | 2.40E-04 |

| Maximum Non-detect        | 0.00423  |
|---------------------------|----------|
| Mean of Detected Data     | 0.00203  |
| Median of Detected Data   | 0.00188  |
| Variance of Detected Data | 1.91E-06 |
| SD of Detected Data       | 0.00138  |
| CV of Detected Data       | 0.68     |
| Skewness of Detected Data | 0.276    |
| Mean of Detected log data | -6.403   |
| SD of Detected Log data   | 0.761    |

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 48
Number treated as Detected 0
Single DL Percent Detection 100.00%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 8.77E-04 |
| SD                                | 4.96E-04 |
| Standard Error of Mean            | 8.35E-05 |
| 95% KM (t) UCL                    | 0.00102  |
| 95% KM (z) UCL                    | 0.00101  |
| 95% KM (BCA) UCL                  | 0.0036   |
| 95% KM (Percentile Bootstrap) UCL | 0.00283  |
| 95% KM (Chebyshev) UCL            | 0.00124  |
| 97.5% KM (Chebyshev) UCL          | 0.0014   |
| 99% KM (Chebyshev) UCL            | 0.00171  |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median <0.00044 [per recommendation in ProUCL User Guide]

Indeno(1,2,3-cd)pyrene

Total Number of Data

48

| Number of Non-Detect Data                                                                                      | 25      |  |
|----------------------------------------------------------------------------------------------------------------|---------|--|
| Number of Detected Data                                                                                        | 23      |  |
| Minimum Detected                                                                                               | 0.0628  |  |
| Maximum Detected                                                                                               | 1.94    |  |
| Percent Non-Detects                                                                                            | 52.08%  |  |
| Minimum Non-detect                                                                                             | 0.013   |  |
| Maximum Non-detect                                                                                             | 0.55    |  |
|                                                                                                                |         |  |
| Mean of Detected Data                                                                                          | 0.388   |  |
| Median of Detected Data                                                                                        | 0.118   |  |
| Variance of Detected Data                                                                                      | 0.279   |  |
| SD of Detected Data                                                                                            | 0.528   |  |
| CV of Detected Data                                                                                            | 1.361   |  |
| Skewness of Detected Data                                                                                      | 1.896   |  |
| Mean of Detected log data                                                                                      | -1.668  |  |
| SD of Detected Log data                                                                                        | 1.156   |  |
|                                                                                                                |         |  |
| Note: Data have multiple DLs - Use of KM Meth                                                                  |         |  |
| For all methods (except KM, DL/2, and ROS Meth                                                                 | ioas),  |  |
| Observations < Largest DL are treated as NDs                                                                   | 42      |  |
| Number treated as Non-Detect Number treated as Detected                                                        | 42<br>6 |  |
|                                                                                                                | 87.50%  |  |
| Single DL Percent Detection                                                                                    | 87.50%  |  |
| Data Dsitribution Test with Detected Values Only                                                               | ,       |  |
| Data do not follow a Discernable Distribution (0.                                                              |         |  |
| · ·                                                                                                            | ,       |  |
| Winsorization Method                                                                                           | N/A     |  |
|                                                                                                                | •       |  |
| Kaplan Meier (KM) Method                                                                                       |         |  |
| Mean                                                                                                           | 0.22    |  |
| SD                                                                                                             | 0.393   |  |
| Standard Error of Mean                                                                                         | 0.0579  |  |
| 95% KM (t) UCL                                                                                                 | 0.317   |  |
| 95% KM (z) UCL                                                                                                 | 0.315   |  |
| 95% KM (BCA) UCL                                                                                               | 0.317   |  |
| 95% KM (Percentile Bootstrap) UCL                                                                              | 0.321   |  |
| 95% KM (Chebyshev) UCL                                                                                         | 0.472   |  |
| 97.5% KM (Chebyshev) UCL                                                                                       | 0.581   |  |
| 99% KM (Chebyshev) UCL                                                                                         | 0.796   |  |
| n na katalan k |         |  |
| Potential UCL to Use                                                                                           |         |  |
| 95% KM (BCA) UCL                                                                                               | 0.317   |  |
|                                                                                                                |         |  |
| Iron                                                                                                           |         |  |
|                                                                                                                |         |  |
| Number of Valid Observations                                                                                   | 48      |  |
| Number of Distinct Observations                                                                                | 37      |  |
| Minimum                                                                                                        | 11100   |  |
| Maximum                                                                                                        | 60900   |  |
|                                                                                                                |         |  |

| Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17152    | ,   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16650    |     |
| SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6903     | *   |
| Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47645953 |     |
| Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.402    |     |
| Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.582    |     |
| Mean of log data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.71     |     |
| SD of log data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |
| Data do not follow a Discernable Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |     |
| 95% Useful UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |
| Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18824    |     |
| Student S-t OCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18824    |     |
| 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |     |
| 95% Adjusted-CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19649    |     |
| 95% Modified-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18958    |     |
| 33% Modified Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10330    |     |
| Non-Parametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |     |
| 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18791    |     |
| 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18824    |     |
| 95% Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18718    |     |
| 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20832    |     |
| 95% Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25660    |     |
| 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18863    |     |
| 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20117    |     |
| 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21495    |     |
| 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23374    |     |
| 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27065    |     |
| NAC ATTRACTOR AND ADDRESS OF ADDRESS OF A 1994 AND ADDRESS OF A 19 |          |     |
| Potential UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |     |
| Use 95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18824    |     |
| Or 95% Modified-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18958    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |
| Number of Valid Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 48       |     |
| Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45       |     |
| Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.4      |     |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 237      |     |
| Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.36    |     |
| Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.7     |     |
| SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.13    |     |
| Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1165     |     |
| Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.346    |     |
| Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.449    | . • |
| Mean of log data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.969    |     |
| CD of log data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.574    |     |

# Data do not follow a Discernable Distribution

SD of log data

0.571

| 0.E0/ (landy)   11Cl a                                                                                                                                                                                                                                                                                  |                                                                                                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| 95% Useful UCLs                                                                                                                                                                                                                                                                                         | 33.62                                                                                             |  |
| Student's-t UCL                                                                                                                                                                                                                                                                                         | 33.02                                                                                             |  |
| 05% LICLs (Adjusted for Skowness)                                                                                                                                                                                                                                                                       |                                                                                                   |  |
| 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL                                                                                                                                                                                                                                                   | 37.6                                                                                              |  |
| 95% Modified-t UCL                                                                                                                                                                                                                                                                                      | 34.27                                                                                             |  |
| 93% Modified-t OCL                                                                                                                                                                                                                                                                                      | 34.27                                                                                             |  |
| Non-Parametric UCLs                                                                                                                                                                                                                                                                                     |                                                                                                   |  |
| 95% CLT UCL                                                                                                                                                                                                                                                                                             | 33.46                                                                                             |  |
| 95% Jackknife UCL                                                                                                                                                                                                                                                                                       | 33.62                                                                                             |  |
| 95% Standard Bootstrap UCL                                                                                                                                                                                                                                                                              | 33.12                                                                                             |  |
| 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                     | 48.81                                                                                             |  |
| 95% Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                | 62.56                                                                                             |  |
| 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                            | 34.42                                                                                             |  |
| 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                   | 39.58                                                                                             |  |
| •                                                                                                                                                                                                                                                                                                       | 46.83                                                                                             |  |
| 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                             | 56.12                                                                                             |  |
| 97.5% Chebyshev (Mean, Sd) UCL                                                                                                                                                                                                                                                                          | 74.38                                                                                             |  |
| 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                             | 74.58                                                                                             |  |
| Potential UCL to Use                                                                                                                                                                                                                                                                                    |                                                                                                   |  |
| Use 95% Chebyshev (Mean, Sd) UCL                                                                                                                                                                                                                                                                        | 46.83                                                                                             |  |
| Use 95% Chebysnev (Wean; Sq) UCL                                                                                                                                                                                                                                                                        | 40.03                                                                                             |  |
|                                                                                                                                                                                                                                                                                                         |                                                                                                   |  |
| Lithium                                                                                                                                                                                                                                                                                                 |                                                                                                   |  |
| Littiidiii                                                                                                                                                                                                                                                                                              |                                                                                                   |  |
|                                                                                                                                                                                                                                                                                                         |                                                                                                   |  |
| Number of Valid Observations                                                                                                                                                                                                                                                                            | 48                                                                                                |  |
| Number of Valid Observations Number of Distinct Observations                                                                                                                                                                                                                                            | 48<br>43                                                                                          |  |
| Number of Distinct Observations                                                                                                                                                                                                                                                                         | . 43                                                                                              |  |
| Number of Distinct Observations<br>Minimum                                                                                                                                                                                                                                                              | . 43<br>5.43                                                                                      |  |
| Number of Distinct Observations<br>Minimum<br>Maximum                                                                                                                                                                                                                                                   | . 43<br>5.43<br>27.6                                                                              |  |
| Number of Distinct Observations<br>Minimum<br>Maximum<br>Mean                                                                                                                                                                                                                                           | . 43<br>5.43<br>27.6<br>18.65                                                                     |  |
| Number of Distinct Observations Minimum Maximum Mean Median                                                                                                                                                                                                                                             | . 43<br>5.43<br>27.6<br>18.65<br>18.75                                                            |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD                                                                                                                                                                                                                                          | . 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754                                                   |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance                                                                                                                                                                                                                                 | . 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09                                          |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation                                                                                                                                                                                                        | 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201                                   |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness                                                                                                                                                                                               | . 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745                       |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data                                                                                                                                                                              | . 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745<br>2.9                |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness                                                                                                                                                                                               | . 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745                       |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                                                                                                               | . 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745<br>2.9                |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                                                                                                               | . 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745<br>2.9<br>0.25        |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                                                                                                               | . 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745<br>2.9                |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data SD student's-t UCL                                                                                                                             | . 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745<br>2.9<br>0.25        |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL                                                                                                               | 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745<br>2.9<br>0.25          |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL                                                                       | 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745<br>2.9<br>0.25          |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL                                                                                                               | 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745<br>2.9<br>0.25          |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL                                     | 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745<br>2.9<br>0.25          |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% HOLS (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs                | 43<br>5.43<br>27.6<br>18.65<br>18.75<br>3.754<br>14.09<br>0.201<br>-0.745<br>2.9<br>0.25<br>19.56 |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL    | 43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25  19.56                                 |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL | 43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25  19.56                                 |  |
| Number of Distinct Observations Minimum Maximum Mean Median SD Variance Coefficient of Variation Skewness Mean of log data SD of log data SD of log data  95% Useful UCLs Student's-t UCL  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL 95% Modified-t UCL  Non-Parametric UCLs 95% CLT UCL    | 43 5.43 27.6 18.65 18.75 3.754 14.09 0.201 -0.745 2.9 0.25  19.56                                 |  |

| 95% Hall's Bootstrap UCL      | 19.54 |
|-------------------------------|-------|
| 95% Percentile Bootstrap UCL  | 19.56 |
| 95% BCA Bootstrap UCL         | 19.43 |
| 95% Chebyshev(Mean, Sd) UCL   | 21.02 |
| 97.5% Chebyshev(Mean, Sd) UCL | 22.04 |
| 99% Chebyshev(Mean, Sd) UCL   | 24.05 |

# Data appear Normal (0.05)

Manganese

Mean of log data

May want to try Normal UCLs

| Number of Valid Observations    | 48    |
|---------------------------------|-------|
| Number of Distinct Observations | 48    |
| Minimum                         | 87.6  |
| Maximum .                       | 1010  |
| Mean                            | 331.8 |
| Median                          | 275   |
| SD                              | 205.9 |
| Variance                        | 42405 |
| Coefficient of Variation        | 0.621 |
| Skewness                        | 1.558 |

SD of log data 0.583

95% Useful UCLs
Student's-t UCL 381.7

5.638

95% UCLs (Adjusted for Skewness)387.895% Adjusted-CLT UCL382.895% Modified-t UCL382.8

Non-Parametric UCLs 380.7 95% CLT UCL 95% Jackknife UCL 381.7 95% Standard Bootstrap UCL 380.9 388.6 95% Bootstrap-t UCL 389.8 95% Hall's Bootstrap UCL 381.8 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 387.6 95% Chebyshev(Mean, Sd) UCL 461.3 97.5% Chebyshev(Mean, Sd) UCL 517.4 99% Chebyshev(Mean, Sd) UCL 627.5

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

Mercury

| Total Number of Data                           | 48         |   |
|------------------------------------------------|------------|---|
| Number of Non-Detect Data                      | 21         |   |
| Number of Detected Data                        | 27         |   |
| Minimum Detected                               | 0.0061     |   |
| Maximum Detected                               | 0.081      |   |
| Percent Non-Detects                            | 43.75%     |   |
| Minimum Non-detect                             | 0.0025     |   |
| Maximum Non-detect                             | 0.038      |   |
| Mean of Detected Data                          | 0.0294     |   |
| Median of Detected Data                        | 0.024      |   |
| Variance of Detected Data                      | 4.64E-04   |   |
| SD of Detected Data                            | 0.0215     |   |
| CV of Detected Data                            | 0.733      |   |
| Skewness of Detected Data                      | 1.056      | • |
| Mean of Detected log data                      | -3.791     |   |
| SD of Detected Log data                        | 0.758      |   |
| No. 5 de la latera de America                  |            |   |
| Note: Data have multiple DLs - Use of KM Me    |            |   |
| For all methods (except KM, DL/2, and ROS Me   | itnods),   |   |
| Observations < Largest DL are treated as NDs   |            |   |
| Number treated as Non-Detect                   | 40         |   |
| Number treated as Detected                     | 8          |   |
| Single DL Percent Detection                    | 83.33%     |   |
| Data Dsitribution Test with Detected Values Or | nly        |   |
| Data appear Gamma Distributed at 5% Significa  | ance Level |   |
| Winsorization Method                           | N/A        |   |
| Kaplan Meier (KM) Method                       |            |   |
| Mean                                           | 0.0204     |   |
| SD                                             | 0.019      |   |
| Standard Error of Mean                         | 0.00282    |   |
| 95% KM (t) UCL                                 | 0.0251     |   |
| 95% KM (z) UCL                                 | 0.025      |   |
| 95% KM (BCA) UCL                               | 0.0256     |   |
| 95% KM (Percentile Bootstrap) UCL              | 0.0251     |   |
| 95% KM (Chebyshev) UCL                         | 0.0327     |   |
| 97.5% KM (Chebyshev) UCL                       | 0.038      |   |
| 99% KM (Chebyshev) UCL                         | 0.0485     |   |
|                                                |            |   |
| Data appear Gamma Distributed (0.05)           |            |   |
| May want to try Gamma UCLs                     |            | 1 |
|                                                |            |   |
| Molybdenum                                     |            |   |
| Total Number of Data                           | 48         |   |
| Number of Non-Detect Data                      | 10         |   |
|                                                |            |   |

38

**Number of Detected Data** 

| Minimum Detected          | 0.13   |
|---------------------------|--------|
| Maximum Detected          | 3.24   |
| Percent Non-Detects       | 20.83% |
| Minimum Non-detect        | 0.074  |
| Maximum Non-detect        | 0.084  |
|                           |        |
| Mean of Detected Data     | 0.723  |
| Median of Detected Data   | 0.445  |
| Variance of Detected Data | 0.482  |
| SD of Detected Data       | 0.694  |
| CV of Detected Data       | 0.961  |
| Skewness of Detected Data | 2.229  |
| Mean of Detected log data | -0.636 |
| SD of Detected Log data   | 0.754  |

For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Data Dsitribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

| Winsorization Method                    | 0.754  |
|-----------------------------------------|--------|
| Mean                                    | 0.413  |
| SD                                      | 0.229  |
| 95% Winsor (t) UCL                      | 0.47   |
| Kaplan Meier (KM) Method                |        |
| Mean                                    | 0.599  |
| *************************************** |        |
| SD                                      | 0.655  |
| Standard Error of Mean                  | 0.0959 |
| 95% KM (t) UCL                          | 0.76   |
| 95% KM (z) UCL                          | 0.757  |
| 95% KM (BCA) UCL                        | 0.775  |
| 95% KM (Percentile Bootstrap) UCL       | 0.769  |
| 95% KM (Chebyshev) UCL                  | 1.017  |
| 97.5% KM (Chebyshev) UCL                | 1.198  |

Data appear Lognormal (0.05) May want to try Lognormal UCLs

99% KM (Chebyshev) UCL

# Nickel

| Number of Valid Observations    | 50    |
|---------------------------------|-------|
| Number of Distinct Observations | 43    |
| Minimum                         | 10.9  |
| Maximum                         | 27.7  |
| Mean                            | 17.29 |
| Median                          | 17.3  |

| SD Variance Coefficient of Variation Skewness Mean of log data SD of log data                                                                                                                                                          | 3.391<br>11.5<br>0.196<br>0.421<br>2.831<br>0.197                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 95% Useful UCLs<br>Student's-t UCL                                                                                                                                                                                                     | 18.09                                                                                 |
| 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                       |                                                                                       |
| 95% Adjusted-CLT UCL                                                                                                                                                                                                                   | 18.11                                                                                 |
| 95% Modified-t UCL                                                                                                                                                                                                                     | 18.09                                                                                 |
| Non-Parametric UCLs 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL | 18.07<br>18.09<br>18.08<br>18.1<br>18.14<br>18.04<br>18.12<br>19.38<br>20.28<br>22.06 |
| Data appear Normal (0.05) May want to try Normal UCLs                                                                                                                                                                                  |                                                                                       |

Phenanthrene

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 36      |
| Number of Detected Data   | 12      |
| Minimum Detected          | 0.023   |
| Maximum Detected          | 1.3     |
| Percent Non-Detects       | 75.00%  |
| Minimum Non-detect        | 0.00616 |
| Maximum Non-detect        | 0.125   |
| Mean of Detected Data     | 0.268   |
| Median of Detected Data   | 0.0938  |
| Variance of Detected Data | 0.209   |
| SD of Detected Data       | 0.457   |
| CV of Detected Data       | 1.707   |
| Skewness of Detected Data | 2.03    |
| Mean of Detected log data | -2.324  |
| SD of Detected Log data   | 1.352   |
|                           |         |

Note: Data have multiple DLs - Use of KM Method is recommended

| For all methods (except KM, DL/2, and ROS Methods), |
|-----------------------------------------------------|
| Observations < Largest DL are treated as NDs        |
| Number treated as Non-Detect                        |
| No. 1 1 1 But 1                                     |

Number treated as Detected 4
Single DL Percent Detection 91.67%

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method              | N/A           |
|-----------------------------------|---------------|
| Kaplan Meier (KM) Method          |               |
| Mean                              | 0.0846        |
| SD                                | 0.243         |
| Standard Error of Mean            | 0.0366        |
| 95% KM (t) UCL                    | 0.146         |
| 95% KM (z) UCL                    | 0.145         |
| 95% KM (BCA) UCL                  | 0.156         |
| 95% KM (Percentile Bootstrap) UCL | 0.149         |
| 95% KM (Chebyshev) UCL            | 0.244         |
| 97.5% KM (Chebyshev) UCL          | 0.313         |
| 99% KM (Chebyshev) UCL            | 0.449         |
| Potential UCL to Use              | iseca pulling |
| 95% KM (BCA) UCL                  | 0.156         |

Pyrene

| Total Number of Data      | 48      |
|---------------------------|---------|
| Number of Non-Detect Data | 29      |
| Number of Detected Data   | 19      |
| Minimum Detected          | 0.0159  |
| Maximum Detected          | 1.64    |
| Percent Non-Detects       | 60.42%  |
| Minimum Non-detect        | 0.00816 |
| Maximum Non-detect        | 0.371   |
| Mean of Detected Data     | 0.355   |
| Median of Detected Data   | 0.109   |
| Variance of Detected Data | 0.255   |
| SD of Detected Data       | 0.505   |
| CV of Detected Data       | 1.42    |
| Skewness of Detected Data | 1.636   |
| Mean of Detected log data | -2.033  |
| SD of Detected Log data   | 1.485   |
|                           |         |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect

44

| Number treated as Detected  | 5      |
|-----------------------------|--------|
| Single DL Percent Detection | 89.58% |

Data Dsitribution Test with Detected Values Only Data Follow Appr. Gamma Distribution at 5% Significance Level

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 0.152 |
| SD                                | 0.351 |
| Standard Error of Mean            | 0.052 |
| 95% KM (t) UCL                    | 0.239 |
| 95% KM (z) UCL                    | 0.237 |
| 95% KM (BCA) UCL                  | 0.254 |
| 95% KM (Percentile Bootstrap) UCL | 0.245 |
| 95% KM (Chebyshev) UCL            | 0.379 |
| 97.5% KM (Chebyshev) UCL          | 0.477 |
| 99% KM (Chebyshev) UCL            | 0.669 |

Data follow Appr. Gamma Distribution (0.05)

May want to try Gamma UCLs

# Strontium

| Number of Valid Observations            | 48    |
|-----------------------------------------|-------|
| Number of Distinct Observations         | 47    |
| Minimum                                 | 18.8  |
| Maximum                                 | 330   |
| Mean                                    | 67    |
| Median                                  | 54    |
| SD                                      | 52.81 |
| Variance                                | 2789  |
| Coefficient of Variation                | 0.788 |
| Skewness                                | 3.229 |
| Mean of log data                        | 4.025 |
| SD of log data                          | 0.557 |
|                                         |       |
| 95% Useful UCLs                         |       |
| Student's-t UCL                         | 79.79 |
|                                         |       |
| 95% UCLs (Adjusted for Skewness)        |       |
| 95% Adjusted-CLT UCL                    | 83.33 |
| 95% Modified-t UCL                      | 80.38 |
| N 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       |
| Non-Parametric UCLs                     | 70.50 |
| 95% CLT UCL                             | 79.53 |
| 95% Jackknife UCL                       | 79.79 |
| 95% Standard Bootstrap UCL              | 79.32 |
| 95% Bootstrap-t UCL                     | 88.66 |

| 95% Hall's Bootstrap UCL      | 98.83 |
|-------------------------------|-------|
| 95% Percentile Bootstrap UCL  | 81.07 |
| 95% BCA Bootstrap UCL         | 85.31 |
| 95% Chebyshev(Mean, Sd) UCL   | 100.2 |
| 97.5% Chebyshev(Mean, Sd) UCL | 114.6 |
| 99% Chebyshev(Mean, Sd) UCL   | 142.8 |

Data appear Lognormal (0.05)
May want to try Lognormal UCLs

#### Tin

| 48     |
|--------|
| . 44   |
| 4      |
| 3.45   |
| 4.61   |
| 91.67% |
| 0.4    |
| 1.29   |
| 3.845  |
| 3.66   |
| 0.27   |
| 0.52   |
| 0.135  |
| 1.771  |
| 1.34   |
| 0.128  |
|        |

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method     | N/A    |
|--------------------------|--------|
| Kaplan Meier (KM) Method |        |
| Mean                     | 3.483  |
| SD                       | 0.17   |
| Standard Error of Mean   | 0.0283 |
| 95% KM (t) UCI           | 3.53   |

| 95% KM (z) UCL                    | 3.529 |
|-----------------------------------|-------|
| 95% KM (BCA) UCL                  | N/A   |
| 95% KM (Percentile Bootstrap) UCL | 3.738 |
| 95% KM (Chebyshev) UCL            | 3.606 |
| 97.5% KM (Chebyshev) UCL          | 3.66  |
| 99% KM (Chebyshev) UCL            | 3.764 |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median <0.60000 [per recommendation in ProUCL User Guide]

# Titanium

| Number of Valid Observations            | 48    |
|-----------------------------------------|-------|
| Number of Distinct Observations         | 44    |
| Minimum                                 | 8.15  |
| Maximum                                 | 68.7  |
| Mean                                    | 29.14 |
| Median                                  | 28    |
| SD                                      | 13.88 |
| Variance                                | 192.7 |
| Coefficient of Variation                | 0.476 |
| Skewness                                | 1.065 |
| Mean of log data                        | 3.267 |
| SD of log data                          | 0.465 |
|                                         |       |
| 95% Useful UCLs                         |       |
| Student's-t UCL                         | 32.5  |
|                                         |       |
| 95% UCLs (Adjusted for Skewness)        |       |
| 95% Adjusted-CLT UCL                    | 32.77 |
| 95% Modified-t UCL                      | 32.55 |
|                                         |       |
| Non-Parametric UCLs                     |       |
| 95% CLT UCL                             | 32.44 |
| 95% Jackknife UCL                       | 32.5  |
| 95% Standard Bootstrap UCL              | 32.44 |
| 95% Bootstrap-t UCL                     | 32.97 |
| 95% Hall's Bootstrap UCL                | 32.68 |
| 95% Percentile Bootstrap UCL            | 32.57 |
| 95% BCA Bootstrap UCL                   | 32.71 |
| 95% Chebyshev(Mean, Sd) UCL             | 37.87 |
| 97.5% Chebyshev(Mean, Sd) UCL           | 41.65 |
| 99% Chebyshev(Mean, Sd) UCL             | 49.08 |
| , , , , , , , , , , , , , , , , , , , , |       |

Data appear Gamma Distributed (0.05)

May want to try Gamma UCLs

#### Toluene

| Total Number of Data      | 48       |
|---------------------------|----------|
| Number of Non-Detect Data | 45       |
| Number of Detected Data   | 3        |
| Minimum Detected          | 0.00157  |
| Maximum Detected          | 0.00214  |
| Percent Non-Detects       | 93.75%   |
| Minimum Non-detect        | 5.94E-04 |
| Maximum Non-detect        | 0.0128   |
|                           |          |
| Mean of Detected Data     | 0.00178  |
| Median of Detected Data   | 0.00162  |
| Variance of Detected Data | 9.96E-08 |
| SD of Detected Data       | 3.16E-04 |
| CV of Detected Data       | 0.178    |
| Skewness of Detected Data | 1.683    |
| Mean of Detected log data | -6.343   |
| SD of Detected Log data   | 0.17     |
|                           |          |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect48Number treated as Detected0Single DL Percent Detection100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00158  |
| SD                                | 8.33E-05 |
| Standard Error of Mean            | 1.50E-05 |
| 95% KM (t) UCL                    | 0.00161  |
| 95% KM (z) UCL                    | 0.00161  |
| 95% KM (BCA) UCL                  | N/A      |
| 95% KM (Percentile Bootstrap) UCL | 0.00214  |
| 95% KM (Chebyshev) UCL            | 0.00165  |
| 97.5% KM (Chebyshev) UCL          | 0.00168  |

0.00173

Data appear Normal (0.05) May want to try Normal UCLs

| ** Instead of UCL, EPC is selected to be median | <0.00073           |
|-------------------------------------------------|--------------------|
| [per recommendation in ProUCL User Guid         | KETIYA KAMPININ KA |

| Vanadium                         |        |
|----------------------------------|--------|
| Number of Valid Observations     | 48     |
| Number of Distinct Observations  | 39     |
| Minimum                          | 9.02   |
| Maximum                          | 32     |
| Mean                             | 21.65  |
| Median                           | 21.75  |
| SD                               | 4.554  |
| Variance                         | 20.74  |
| Coefficient of Variation         | 0.21   |
| Skewness                         | -0.279 |
| Mean of log data                 | 3.05   |
| SD of log data                   | 0.233  |
| 95% Useful UCLs                  |        |
| Student's-t UCL                  | 22.75  |
| 95% UCLs (Adjusted for Skewness) |        |
| 95% Adjusted-CLT UCL             | 22.7   |
| 95% Modified-t UCL               | 22.74  |
| Non-Parametric UCLs              |        |
| 95% CLT UCL                      | 22.73  |
| 95% Jackknife UCL                | 22.75  |
| 95% Standard Bootstrap UCL       | 22.72  |
| 95% Bootstrap-t UCL              | 22.75  |
| 95% Hall's Bootstrap UCL         | 22.77  |
| 95% Percentile Bootstrap UCL     | 22.7   |
| 95% BCA Bootstrap UCL            | 22.67  |
| 95% Chebyshev(Mean, Sd) UCL      | 24.51  |
| 97.5% Chebyshev(Mean, Sd) UCL    | 25.75  |
| 99% Chebyshev(Mean, Sd) UCL      | 28.19  |
| Data appear Normal (0.05)        |        |
| May want to try Normal UCLs      |        |
|                                  |        |
| Zinc                             |        |
|                                  |        |

53

53

**Number of Valid Observations** 

**Number of Distinct Observations** 

| Minimum                                                  | 31.5  |  |
|----------------------------------------------------------|-------|--|
| Maximum                                                  | 903   |  |
| Mean                                                     | 139.1 |  |
| Median                                                   | 84.3  |  |
| SD                                                       | 160.9 |  |
| Variance                                                 | 25899 |  |
| Coefficient of Variation                                 | 1.157 |  |
| Skewness                                                 | 2.989 |  |
| Mean of log data                                         | 4.558 |  |
| SD of log data                                           | 0.795 |  |
|                                                          | 0.755 |  |
| Data do not follow a Discernable Distribution            |       |  |
| 95% Useful UCLs                                          |       |  |
| Student's-t UCL                                          | 176.1 |  |
| 95% UCLs (Adjusted for Skewness)                         |       |  |
| 95% Adjusted-CLT UCL                                     | 185.2 |  |
| 95% Modified-t UCL                                       | 177.6 |  |
| Non-Parametric UCLs                                      |       |  |
| 95% CLT UCL                                              | 175.5 |  |
| 95% Jackknife UCL                                        | 176.1 |  |
| 95% Standard Bootstrap UCL                               | 176.1 |  |
| 95% Bootstrap-t UCL                                      | 198.2 |  |
| 95% Hall's Bootstrap UCL                                 | 196.5 |  |
| 95% Percentile Bootstrap UCL                             | 179.1 |  |
| 95% BCA Bootstrap UCL                                    | 183.4 |  |
| 95% Chebyshev(Mean, Sd) UCL                              | 235.5 |  |
| 97.5% Chebyshev(Mean, Sd) UCL                            | 277.1 |  |
| 99% Chebyshev(Mean, Sd) UCL                              | 359   |  |
| Potential UCL to Use<br>Use 95% Chebyshev (Mean, Sd) UCL | 235.5 |  |

APPENDIX A-9

POND SEDIMENT

#### Nonparametric UCL Statistics for Data Sets with Non-Detects

**User Selected Options** 

From File

C:\Users\Michael\....\ProUCL data analysis\Pond Sediment\Pond sediment data\_ProUCL input.wst

**Full Precision** 

OFF

Confidence Coefficient

95%

Number of Bootstrap Operations

2000

#### 2,4,6-Trichlorophenol

| Total Number of Data      | 8      |
|---------------------------|--------|
| Number of Non-Detect Data | 7      |
| Number of Detected Data   |        |
| Minimum Detected          | 0.0429 |
| Maximum Detected          | 0.0429 |
| Percent Non-Detects       | 87.50% |
| Minimum Non-detect        | 0.025  |
| Maximum Non-detect        | 0.033  |
|                           |        |

Data set has all detected values equal to = 0.0429, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0429

\*\* Instead of UCL, EPC is selected to be median = <0.0269

[per recommendation in ProUCL User Guide]

4,4'-DDD

| Total Number of Data      | 8       |
|---------------------------|---------|
| Number of Non-Detect Data | 7       |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.00068 |
| Maximum Detected          | 0.00068 |
| Percent Non-Detects       | 87.50%  |
| Minimum Non-detect        | 0.00046 |
| Maximum Non-detect        | 0.026   |

Data set has all detected values equal to = 6.7600E-4, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 6.7600E-4

\*\* Instead of UCL, EPC is selected to be median = <0.020 [per recommendation in ProUCL User Guide]

#### 4,4'-DDT

| Total Number of Data      | 8        |
|---------------------------|----------|
| Number of Non-Detect Data | 5        |
| Number of Detected Data   | 3        |
| Minimum Detected          | 0.00111  |
| Maximum Detected          | 0.00157  |
| Percent Non-Detects       | 62.50%   |
| Minimum Non-detect        | 0.011    |
| Maximum Non-detect        | 0.014    |
| Mean of Detected Data     | 0.00127  |
| Median of Detected Data   | 0.00113  |
| Variance of Detected Data | 6.76E-08 |
| SD of Detected Data       | 2.60E-04 |
| CV of Detected Data       | 0.205    |
| Skewness of Detected Data | 1.721    |

Mean of Detected log data -6.682 SD of Detected Log data 0.195

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 8 Number treated as Detected 0 Single DL Percent Detection 100.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A      |
|-----------------------------------|----------|
| Kaplan Meier (KM) Method          |          |
| Mean                              | 0.00127  |
| SD                                | 2.12E-04 |
| Standard Error of Mean            | 1.50E-04 |
| 95% KM (t) UCL                    | 0.00155  |
| 95% KM (z) UCL                    | 0.00152  |
| 95% KM (BCA) UCL                  | 0.00148  |
| 95% KM (Percentile Bootstrap) UCL | 0.00157  |
| 95% KM (Chebyshev) UCL            | 0.00192  |
| 97.5% KM (Chebyshev) UCL          | 0.00221  |
| 99% KM (Chebyshev) UCL            | 0.00276  |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.0110 [per recommendation in ProUCL User Guide]

#### Acetone

| Total Number of Data      | 8       |
|---------------------------|---------|
| Number of Non-Detect Data | 7       |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.0798  |
| Maximum Detected          | 0.0798  |
| Percent Non-Detects       | 87.50%  |
| Minimum Non-detect        | 0.00066 |
| Maximum Non-detect        | 0.073   |

Data set has all detected values equal to = 0.0798, having '0' variation. No reliable or meaningful statistics and estimates can be computed using such a data set. All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0798

\*\* Instead of UCL, EPC is selected to be median =

[per recommendation in ProUCL User Guide]

| Number of Valid Observations    | 8        |
|---------------------------------|----------|
| Number of Distinct Observations | 8        |
| Minimum                         | 7990     |
| Maximum                         | 16300    |
| Mean                            | 11748    |
| Median                          | 11550    |
| SD                              | 3382     |
| Variance                        | 11436193 |
| Coefficient of Variation        | 0.288    |
| Skewness                        | 0.211-   |
| Mean of log data                | 9.334    |
| SD of log data                  | 0.293    |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| /95% Useful UCLs<br>Student's-t UCL                      | 14013 |
|----------------------------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL | 13810 |
| 95% Modified-t UCL                                       | 14028 |
| Non-Parametric UCLs                                      |       |
| 95% CLT UCL                                              | 13714 |
| 95% Jackknife UCL                                        | 14013 |
| 95% Standard Bootstrap UCL                               | 13591 |
| 95% Bootstrap-t UCL                                      | 14179 |
| 95% Hall's Bootstrap UCL                                 | 13371 |
| 95% Percentile Bootstrap UCL                             | 13634 |
| 95% BCA Bootstrap UCL                                    | 13558 |
| 95% Chebyshev(Mean, Sd) UCL                              | 16959 |
| 97.5% Chebyshev(Mean, Sd) UCL                            | 19214 |
| 99% Chebyshev(Mean, Sd) ÚCL                              | 23644 |
| Data appear Normal (0.05) May want to try Normal UCLs    |       |

#### **Antimony**

| Total Number of Data                                                                      | 8                               |
|-------------------------------------------------------------------------------------------|---------------------------------|
| Number of Non-Detect Data                                                                 | 5                               |
| Number of Detected Data                                                                   | 3                               |
| Minimum Detected                                                                          | 1.34                            |
| Maximum Detected                                                                          | 1.85                            |
| Percent Non-Detects                                                                       | 62.50%                          |
| Minimum Non-detect                                                                        | 0.33                            |
| Maximum Non-detect                                                                        | 0.44                            |
| Many of Datastad Data                                                                     | 4 547                           |
| Mean of Detected Data                                                                     | 1.517                           |
| Median of Detected Data  Median of Detected Data                                          | 1.517                           |
|                                                                                           |                                 |
| Median of Detected Data                                                                   | 1.36                            |
| Median of Detected Data Variance of Detected Data                                         | 1.36<br>0.0834                  |
| Median of Detected Data Variance of Detected Data SD of Detected Data                     | 1.36<br>0.0834<br>0.289         |
| Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data | 1.36<br>0.0834<br>0.289<br>0.19 |

Note: Data have multiple DLs - Use of KM Method is recommended  $\,$ For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method                                     | N/A    |
|----------------------------------------------------------|--------|
| Kaplan Meier (KM) Method                                 |        |
| Mean                                                     | 1.406  |
| SD                                                       | 0.168  |
| Standard Error of Mean                                   | 0.0727 |
| 95% KM (t) UCL                                           | 1.544  |
| 95% KM (z) UCL                                           | 1.526  |
| 95% KM (BCA) UCL                                         | 1.85   |
| 95% KM (Percentile Bootstrap) UCL                        | 1.85   |
| 95% KM (Chebyshev) UCL                                   | 1.723  |
| 97.5% KM (Chebyshev) UCL                                 | 1.86   |
| 99% KM (Chebyshev) UCL                                   | 2.129  |
| Data appear Normal (0.05)<br>May want to try Normal UCLs |        |

| ** Instead of UCL, EPC is selected to be medi                          | an = <0.440 |
|------------------------------------------------------------------------|-------------|
| "我的过去分享的,我们,我们还是一个好的,我们就是我的,我们就是我们的人,我们就会不断,一个一定,我们还是一个不可能的的,我们还是一个人,还 |             |
| [per recommendation in ProUCL User G                                   | uide]       |

# Arsenic

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 8<br>5<br>3<br>3.39<br>5.01<br><b>62.50%</b><br>0.28<br>0.37        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 4.373<br>4.72<br>0.746<br>0.864<br>0.198<br>-1.515<br>1.461<br>0.21 |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A   |
|-----------------------------------|-------|
| Kaplan Meier (KM) Method          |       |
| Mean                              | 3.759 |
| SD                                | 0.643 |
| Standard Error of Mean            | 0.278 |
| 95% KM (t) UCL                    | 4.286 |
| 95% KM (z) UCL                    | 4.217 |
| 95% KM (BCA) UCL                  | N/A   |
| 95% KM (Percentile Bootstrap) UCL | 5.01  |
| 95% KM (Chebyshev) UCL            | 4.972 |
| 97.5% KM (Chebyshev) UCL          | 5.497 |
| 99% KM (Chebyshev) ÚCL            | 6.528 |
| Data appear Normal (0.05)         |       |
| May want to try Normal UCLs       |       |

|                                                                                                           | ククビ   |
|-----------------------------------------------------------------------------------------------------------|-------|
| ** Instead of UCL, EPC is selected to be median = <0.                                                     | ಎಎಎ   |
|                                                                                                           | 77.71 |
| 그 문장은 그가 얼마나가는 이 회에는 경기가 되는 것을 받는데 하시고 하는데 그는 것이다. 그는 것이 없는데 그를 가는데 없는데 없는데 없는데 없는데 없는데 없는데 없는데 없는데 없는데 없 |       |
| [per recommendation in ProUCL User Guide]                                                                 |       |
|                                                                                                           |       |

#### Barium

| 8     |
|-------|
| 7     |
| 108   |
| 417   |
| 198.6 |
| 128.5 |
| 119.4 |
| 14249 |
| 0.601 |
| 1.058 |
| 5.149 |
| 0.553 |
|       |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

# Data do not follow a Discernable Distribution

| 95% Useful UCLs                  |       |
|----------------------------------|-------|
| Student's-t UCL                  | 278.6 |
| 95% UCLs (Adjusted for Skewness) | 224.2 |
| 95% Adjusted-CLT UCL             | 284.9 |
| 95% Modified-t UCL               | 281.2 |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 268   |
| 95% Jackknife UCL                | 278.6 |
| 95% Standard Bootstrap UCL       | 262.3 |
| 95% Bootstrap-t UCL              | 330.7 |
| 95% Hall's Bootstrap UCL         | 259.7 |
| 95% Percentile Bootstrap UCL     | 265.3 |
| 95% BCA Bootstrap UCL            | 272.6 |
| 95% Chebyshev(Mean, Sd) UCL      | 382.6 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 462.2 |
|                                  |       |

618.5

| 20  | teı | ٦t  | ıa  | Ľ | C      | Li   | to   | U  | se  | 139 |     | 115  | ٠, | Ç,  |    |   |
|-----|-----|-----|-----|---|--------|------|------|----|-----|-----|-----|------|----|-----|----|---|
|     | 200 | 100 | 311 |   | 118.00 | 11.1 |      | 10 | 100 | - 1 | 100 | <br> |    | 100 |    | 2 |
| 11- |     |     | 07  | ^ | 1      | . 1  | 22_7 | 1_ |     | /#/ |     | <br> | ò  | -11 | 61 |   |

Use 95% Chebyshev (Mean, Sd) UCL 382.6

# Benzo(b)fluoranthene

| Total Number of Data      | 8                  |
|---------------------------|--------------------|
| Number of Non-Detect Data | 2                  |
| Number of Detected Data   | 6                  |
| Minimum Detected          | 0.0293             |
| Maximum Detected          | 0.106              |
| Percent Non-Detects       | 25.00%             |
| Minimum Non-detect        | 0.01               |
| Maximum Non-detect        | 0.011              |
|                           |                    |
| Mean of Detected Data     | 0.0618             |
| Median of Detected Data   | 0.0597             |
| Variance of Detected Data | 0.00112            |
| SD of Detected Data       | 0.0334             |
| CV of Detected Data       | 0.541              |
| Skewness of Detected Data | 0.232              |
| Mean of Detected log data | <del>-</del> 2.919 |
| SD of Detected Log data   | 0.579              |

# Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 6 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

#### Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method | 0.579  |
|----------------------|--------|
| Mean                 | 0.0506 |
| SD                   | 0.027  |
| 95% Winsor (t) UCL   | 0.073  |

#### Kaplan Meier (KM) Method

| Rapian Melei (RM) Method          |        |
|-----------------------------------|--------|
| Mean                              | 0.0537 |
| SD                                | 0.0299 |
| Standard Error of Mean            | 0.0116 |
| 95% KM (t) UCL                    | 0.0756 |
| 95% KM (z) UCL                    | 0.0727 |
| 95% KM (BCA) UCL                  | 0.0746 |
| 95% KM (Percentile Bootstrap) UCL | 0.0746 |
| 95% KM (Chebyshev) UCL            | 0.104  |
| 97.5% KM (Chebyshev) UCL          | 0.126  |
| 99% KM (Chebyshev) UCL            | 0.169  |
|                                   |        |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.0338 [per recommendation in ProUCL User Guide]

Benzo(g,h,i)perylene

Total Number of Data

| Number of Non-Detect Data | 7      |
|---------------------------|--------|
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.135  |
| Maximum Detected          | 0.135  |
| Percent Non-Detects       | 87.50% |
| Minimum Non-detect        | 0.015  |
| Maximum Non-detect        | 0.02   |

Data set has all detected values equal to = 0.135, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UTLs are all less than the maximum detection limit = 0.135

\*\* Instead of UCL, EPC is selected to be median = <0.0159
[per recommendation in ProUCL User Guide]

#### Benzo(k)fluoranthene

| Total Number of Data      | 8        |
|---------------------------|----------|
| Number of Non-Detect Data | 5        |
| Number of Detected Data   | 3        |
| Minimum Detected          | 0.11     |
| Maximum Detected          | 0.13     |
| Percent Non-Detects       | 62.50%   |
| Minimum Non-detect        | 0.023    |
| Maximum Non-detect        | 0.03     |
| Mean of Detected Data     | 0.12     |
| Median of Detected Data   | 0.119    |
| Variance of Detected Data | 1.00E-04 |
| SD of Detected Data       | 0.01     |
| CV of Detected Data       | 0.0837   |
| Skewness of Detected Data | 0.298    |
| Mean of Detected log data | -2.125   |
| SD of Detected Log data   | 0.0836   |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A     |
|-----------------------------------|---------|
| Kaplan Meier (KM) Method          |         |
| Mean                              | 0.114   |
| SD                                | 0.00685 |
| Standard Error of Mean            | 0.00297 |
| 95% KM (t) UCL                    | 0.119   |
| 95% KM (z) UCL                    | 0.119   |
| 95% KM (BCA) UCL                  | N/A     |
| 95% KM (Percentile Bootstrap) UCL | 0.13    |
| 95% KM (Chebyshev) UCL            | 0.127   |
|                                   |         |

| 97.5% KM (Chebyshev) UCL | 0.132 |
|--------------------------|-------|
| 99% KM (Chebyshev) UCL   | 0.143 |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = <col><0.0275</pre>
[per recommendation in ProUCL User Guide]

| Ber | νII | ie | m |
|-----|-----|----|---|
|     |     |    |   |

| Number of Valid Observations    | 8      |
|---------------------------------|--------|
| Number of Distinct Observations | 8      |
| Minimum                         | 0.58   |
| Maximum                         | 1.13   |
| Mean                            | 0.834  |
| Median                          | 0.865  |
| SD                              | 0.206  |
| Variance                        | 0.0423 |
| Coefficient of Variation        | 0.247  |
| Skewness                        | 0.0408 |
| Mean of log data                | -0.209 |
| SD of log data                  | 0.254  |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

## 95% Useful UCLs Student's-t UCL 0.972

| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL | 0.954 |
|----------------------------------------------------------|-------|
| 95% Modified-t UCL                                       | 0.972 |
| Non-Parametric UCLs                                      |       |
| 95% CLT UCL                                              | 0.953 |
| 95% Jackknife UCL                                        | 0.972 |
| 95% Standard Bootstrap UCL                               | 0.946 |
| 95% Bootstrap-t UCL                                      | 0.979 |
| 95% Hall's Bootstrap UCL                                 | 0.938 |
| 95% Percentile Bootstrap UCL                             | 0.944 |
| 95% BCA Bootstrap UCL                                    | 0.946 |
| 95% Chebyshev(Mean, Sd) UCL                              | 1.151 |
| 97.5% Chebyshev(Mean, Sd) UCL                            | 1.288 |
| 99% Chebyshev(Mean, Sd) UCL                              | 1.557 |

## Data appear Normal (0.05)

May want to try Normal UCLs

#### beta-BHC

| Total Number of Data      | 8        |
|---------------------------|----------|
| Number of Non-Detect Data | 7        |
| Number of Detected Data   | 1        |
| Minimum Detected          | 0.000699 |
| Maximum Detected          | 0.000699 |
| Percent Non-Detects       | 87.50%   |
| Minimum Non-detect        | 0.00049  |
| Maximum Non-detect        | 0.03     |

Data set has all detected values equal to = 6.9900E-4, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set. All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 6.9900E-4

\*\* Instead of UCL, EPC is selected to be median = <0.0230</p> [per recommendation in ProUCL User Guide]

| в | O | ro | n |
|---|---|----|---|
|   |   |    |   |

| Total Number of Data      | 8      |
|---------------------------|--------|
| Number of Non-Detect Data | 3      |
| Number of Detected Data   | 5      |
| Minimum Detected          | 11     |
| Maximum Detected          | 28.4   |
| Percent Non-Detects       | 37.50% |
| Minimum Non-detect        | 8.52   |
| Maximum Non-detect        | 9.89   |
| Mean of Detected Data     | 21.12  |
| Median of Detected Data   | 25     |
| Variance of Detected Data | 65.87  |
| SD of Detected Data       | 8.116  |
| CV of Detected Data       | 0.384  |
| Skewness of Detected Data | -0.574 |
| Mean of Detected log data | 2.98   |
| SD of Detected Log data   | 0.438  |

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

N/A

47

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Kaplan Meier (KM) Method          |       |
|-----------------------------------|-------|
| Mean                              | 17.33 |
| SD                                | 7.546 |
| Standard Error of Mean            | 2.983 |
| 95% KM (t) UCL                    | 22.98 |
| 95% KM (z) UCL                    | 22.23 |
| 95% KM (BCA) UCL                  | 26.33 |
| 95% KM (Percentile Bootstrap) UCL | 26.28 |
| 95% KM (Chebyshev) UCL            | 30.33 |
| 97.5% KM (Chebyshev) UCL          | 35.95 |

Data appear Normal (0.05) May want to try Normal UCLs

99% KM (Chebyshev) UCL

Winsorization Method

\*\* Instead of UCL, EPC is selected to be median = <12.4 [per recommendation in ProUCL User Guide]

#### **Bromomethane**

Total Number of Data 8 Number of Non-Detect Data 6

| Number of Detected Data   | 2        |
|---------------------------|----------|
| Minimum Detected          | 0.014    |
| Maximum Detected          | 0.031    |
| Percent Non-Detects       | 75.00%   |
| Minimum Non-detect        | 0.00264  |
| Maximum Non-detect        | 0.017    |
| Mean of Detected Data     | 0.0225   |
| Median of Detected Data   | 0.0225   |
| Variance of Detected Data | 1.45E-04 |
| SD of Detected Data       | 0.012    |
| CV of Detected Data       | 0.534    |
| Skewness of Detected Data | . N/A    |
| Mean of Detected log data | -3.871   |
| SD of Detected Log data   | 0.562    |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 7
Number treated as Detected 1
Single DL Percent Detection 87.50%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                              | N/A     |
|---------------------------------------------------|---------|
| Kaplan Meier (KM) Method                          |         |
| Mean                                              | 0.0161  |
| SD                                                | 0.00562 |
| Standard Error of Mean                            | 0.00281 |
| 95% KM (t) UCL                                    | 0.0215  |
| 95% KM (z) UCL                                    | 0.0207  |
| 95% KM (BCA) UCL                                  | 0.031   |
| 95% KM (Percentile Bootstrap) UCL                 | 0.031   |
| 95% KM (Chebyshev) UCL                            | 0.0284  |
| 97.5% KM (Chebyshev) UCL                          | 0.0337  |
| 99% KM (Chebyshev) ÚCL                            | 0.0441  |
| Potential UCL to Use                              |         |
| 95% KM (t) UCL                                    | 0.0215  |
| 95% KM (% Bootstrap) UCL                          | 0.031   |
| ** Instead of UCL, EPC is selected to be median = | <0.0135 |

#### Cadmium

Total Number of Data

[per recommendation in ProUCL User Guide]

| Number of Non-Detect Data | 3       |
|---------------------------|---------|
| Number of Detected Data   | 5       |
| Minimum Detected          | 0.19    |
| Maximum Detected          | 0.27    |
| Percent Non-Detects       | 37.50%  |
| Minimum Non-detect        | 0.03    |
| Maximum Non-detect        | 0.034   |
| Mean of Detected Data     | 0.226   |
| Median of Detected Data   | 0.23    |
| Variance of Detected Data | 0.00128 |
| SD of Detected Data       | 0.0358  |
| CV of Detected Data       | 0.158   |
| Skewness of Detected Data | 0.0524  |
| Mean of Detected log data | -1.497  |
| SD of Detected Log data   | 0.16    |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

the Largest DL value is used for all NDs

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set

the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method              | N/A    |
|-----------------------------------|--------|
| Kaplan Meier (KM) Method          | 0.213  |
| SD                                | 0.0307 |
| Standard Error of Mean            | 0.0121 |
| 95% KM (t) UCL                    | 0.236  |
| 95% KM (z) UCL                    | 0.232  |
| 95% KM (BCA) UCL                  | 0.24   |
| 95% KM (Percentile Bootstrap) UCL | 0.243  |
| 95% KM (Chebyshev) UCL            | 0.265  |
| 97.5% KM (Chebyshev) UCL          | 0.288  |
| 99% KM (Chebyshev) UCL            | 0.333  |
| · · ·                             |        |

Data appear Normal (0.05) May want to try Normal UCLs

\*\*Instead of UCL, EPC is selected to be median = <0.190
[per recommendation in ProUCL User Guide]

### Carbon disulfide

| Total Number of Data      | 8       |
|---------------------------|---------|
| Number of Non-Detect Data | 7       |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.00771 |
| Maximum Detected          | 0.00771 |
| Percent Non-Detects       | 87.50%  |
| Minimum Non-detect        | 0.00019 |
| Maximum Non-detect        | 0.00205 |

Data set has all detected values equal to = 0.00771, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.00771

16.02

| Cinomium                        |       |  |
|---------------------------------|-------|--|
| Number of Valid Observations    | 8     |  |
| Number of Distinct Observations | 8     |  |
| Minimum                         | 8.29  |  |
| Maximum                         | 20.1  |  |
| Mean                            | 12.93 |  |
| Median                          | 11.55 |  |
| SD                              | 4.611 |  |
| Variance                        | 21.26 |  |
| Coefficient of Variation        | 0.357 |  |
| Skewness                        | 0.57  |  |
| Mean of log data                | 2.505 |  |
| SD of log data                  | 0.35  |  |
|                                 |       |  |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

#### 95% Useful UCLs Student's-t UCL

| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL<br>95% Modified-t UCL | 15.97<br>16.08 |
|--------------------------------------------------------------------------------|----------------|
| Non-Parametric UCLs                                                            |                |
| 95% CLT UCL                                                                    | 15.61          |
| 95% Jackknife UCL                                                              | 16.02          |
| 95% Standard Bootstrap UCL                                                     | 15.51          |
| 95% Bootstrap-t UCL                                                            | 16.56          |
| 95% Hall's Bootstrap UCL                                                       | 15.49          |
| 95% Percentile Bootstrap UCL                                                   | 15.56          |
| 95% BCA Bootstrap UCL                                                          | 15.76          |
| 95% Chebyshev(Mean, Sd) UCL                                                    | 20.04          |
| 97.5% Chebyshev(Mean, Sd) UCL                                                  | 23.11          |
| 99% Chebyshev(Mean, Sd) ÚCL                                                    | 29.15          |

#### Data appear Normal (0.05)

May want to try Normal UCLs

#### Chrysene

| Total Number of Data      | 8      |
|---------------------------|--------|
| Number of Non-Detect Data | 7      |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.0257 |
| Maximum Detected          | 0.0257 |
| Percent Non-Detects       | 87.50% |
| Minimum Non-detect        | 0.013  |
| Maximum Non-detect        | 0.017  |

Data set has all detected values equal to = 0.0257, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects

Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0257

\*\* Instead of UCL, EPC is selected to be median = <0.0140

#### Cobalt

| Number of Valid Observations    | 8     |
|---------------------------------|-------|
| Number of Distinct Observations | 8     |
| Minimum                         | 5.19  |
| Maximum                         | 8.99  |
| Mean                            | 6.939 |
| Median                          | 6.945 |
| SD                              | 1.378 |
| Variance                        | 1.898 |
| Coefficient of Variation        | 0.199 |
| Skewness                        | 0.167 |
| Mean of log data                | 1.92  |
| SD of log data                  | 0.2   |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

## 95% Useful UCLS

| Student's-t UCL                  | 7.862 |
|----------------------------------|-------|
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 7.771 |
| 95% Modified-t UCL               | 7.866 |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 7.74  |
| 95% Jackknife UCL                | 7.862 |
| 95% Standard Bootstrap UCL       | 7.698 |
| 95% Bootstrap-t UCL              | 7.888 |
| 95% Hall's Bootstrap UCL         | 7.723 |
| 95% Percentile Bootstrap UCL     | 7.695 |
| 95% BCA Bootstrap UCL            | 7.695 |
| 95% Chebyshev(Mean, Sd) UCL      | 9.062 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 9.981 |
| 99% Chebyshev(Mean, Sd) ÚCL      | 11.79 |

### Data appear Normal (0.05)

May want to try Normal UCLs

#### Copper

| Number of Valid Observations    | 8     |
|---------------------------------|-------|
| Number of Distinct Observations | 8     |
| Minimum                         | 8.33  |
| Maximum                         | 26.8  |
| Mean                            | 15.2  |
| Median                          | 12.55 |
| SD                              | 7.421 |
| Variance                        | 55.08 |
| Coefficient of Variation        | 0.488 |
| Skewness                        | 0.836 |
| Mean of log data                | 2.623 |
| SD of log data                  | 0.467 |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs<br>Student's-t UCL | 20.17 |
|------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)   |       |
| 95% Adjusted-CLT UCL               | 20.34 |
| 95% Modified-t UCL                 | 20.3  |
| Non-Parametric UCLs                |       |
| 95% CLT UCL                        | 19.51 |
| 95% Jackknife UCL                  | 20:17 |
| 95% Standard Bootstrap UCL         | 19.15 |
| 95% Bootstrap-t UCL                | 23.41 |
| 95% Hall's Bootstrap UCL           | 21.13 |
| 95% Percentile Bootstrap UCL       | 19.25 |
| 95% BCA Bootstrap UCL              | 19.92 |
| 95% Chebyshev(Mean, Sd) UCL        | 26.64 |
| 97.5% Chebyshev(Mean, Sd) UCL      | 31.58 |
| 99% Chebyshev(Mean, Sd) UCL        | 41.31 |
| Data appear Normal (0.05)          |       |
| May want to try Normal UCLs        |       |

| Number of Valid Observations    | 8        |
|---------------------------------|----------|
| Number of Distinct Observations | 8        |
| Minimum                         | 11300    |
| Maximum                         | 20100    |
| Mean                            | 15275    |
| Median                          | 15500    |
| SD                              | 3227     |
| Variance                        | 10416429 |
| Coefficient of Variation        | 0.211    |
| Skewness                        | 0.139    |
| Mean of log data                | 9.614    |
| SD of log data                  | 0.214    |
|                                 |          |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

## 95% Useful UCLs

| Student's-t UCL                      | 17437 |
|--------------------------------------|-------|
| OFO/ LICL a (Adjusted for Classical) |       |
| 95% UCLs (Adjusted for Skewness)     | 47040 |
| 95% Adjusted-CLT UCL                 | 17212 |
| 95% Modified-t UCL                   | 17446 |
|                                      |       |
| Non-Parametric UCLs                  |       |
| 95% CLT UCL                          | 17152 |
| 95% Jackknife UCL                    | 17437 |
| 95% Standard Bootstrap UCL           | 17037 |
| 95% Bootstrap-t UCL                  | 17535 |
| 95% Hall's Bootstrap UCL             | 17130 |
| 95% Percentile Bootstrap UCL         | 17125 |
| 95% BCA Bootstrap UCL                | 17088 |
| 95% Chebyshev(Mean, Sd) UCL          | 20249 |
| 97.5% Chebyshev(Mean, Sd) UCL        | 22401 |
| 99% Chebyshev(Mean, Sd) UCL          | 26629 |
|                                      |       |

#### Data appear Normal (0.05)

May want to try Normal UCLs

#### Lead

| Number of Valid Observations    | 8     |
|---------------------------------|-------|
| Number of Distinct Observations | 8     |
| Minimum                         | 10.6  |
| Maximum                         | 30.5  |
| Mean                            | 17.54 |
| Median                          | 15.5  |
| SD                              | 7.076 |
| Variance                        | 50.07 |
| Coefficient of Variation        | 0.403 |
| Skewness                        | 0.923 |
| Mean of log data                | 2.798 |
| SD of log data                  | 0.384 |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

21.54

22.34 28.44

33.16

42.43

| 22.28 |
|-------|
|       |
| 22.52 |
| 22.41 |
|       |
| 21.65 |
| 22.28 |
| 21.32 |
| 23.59 |
| 23.41 |
|       |

97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Data appear Normal (0.05)

May want to try Normal UCLs

95% Percentile Bootstrap UCL

95% Chebyshev(Mean, Sd) UCL

95% BCA Bootstrap UCL

#### Lithium

| Number of Valid Observations Number of Distinct Observations | 8       |
|--------------------------------------------------------------|---------|
| Minimum                                                      | 13.5    |
| Maximum                                                      | 23.7    |
| Mean                                                         | 18.48   |
| Median                                                       | 18.85   |
| \$D                                                          | 4.071   |
| Variance                                                     | 16.58   |
| Coefficient of Variation                                     | 0.22    |
| Skewness                                                     | 0.00369 |
| Mean of log data                                             | 2.895   |
| SD of log data                                               | 0.225   |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs                  |       |
|----------------------------------|-------|
| Student's-t UCL                  | 21.2  |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 20.84 |
| 95% Modified-t UCL               | 21.2  |
| 50 % Modified-t 50E              | 21.2  |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 20.84 |
| 95% Jackknife UCL                | 21.2  |
| 95% Standard Bootstrap UCL       | 20.65 |
| 95% Bootstrap-t UCL              | 21.12 |
| 95% Hall's Bootstrap UCL         | 20.4  |
| 95% Percentile Bootstrap UCL     | 20.68 |
| 95% BCA Bootstrap UCL            | 20.68 |
| 95% Chebyshev(Mean, Sd) UCL      | 24.75 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 27.46 |
| 99% Chebyshev(Mean, Sd) UCL      | 32.8  |
| •                                |       |

Data appear Normal (0.05)
May want to try Normal UCLs

m,p-Cresol

| Total Number of Data      | 8      |
|---------------------------|--------|
| Number of Non-Detect Data | 7      |
| Number of Detected Data   | 1      |
| Minimum Detected          | 0.0375 |
| Maximum Detected          | 0.0375 |
| Percent Non-Detects       | 87.50% |
| Minimum Non-detect        | 0.021  |
| Maximum Non-detect        | 0.0253 |

Data set has all detected values equal to = 0.0375, having '0' variation.

No reliable or meaningful statistics and estimates can be computed using such a data set.

All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.0375

\*\* Instead of UCL, EPC is selected to be median = <0.0234
[per recommendation in ProUCL User Guide]

Manganese

| Number of Valid Observations    | 8     |
|---------------------------------|-------|
| Number of Distinct Observations | 8     |
| Minimum                         | 352   |
| Maximum                         | 711   |
| Mean                            | 487.6 |
| Median                          | 453   |
| SD                              | 124.2 |
| Variance                        | 15417 |
| Coefficient of Variation        | 0.255 |
| Skewness                        | 0.739 |
| Mean of log data                | 6.162 |
| SD of log data                  | 0.247 |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

95% Useful UCLs

570.8

| 95% UCLs (Adjusted for Skewness)<br>95% Adjusted-CLT UCL<br>95% Modified-t UCL | 572.1<br>572.7 |
|--------------------------------------------------------------------------------|----------------|
| Non-Parametric UCLs                                                            |                |
| 95% CLT UCL                                                                    | 559.8          |
| 95% Jackknife UCL                                                              | 570.8          |
| 95% Standard Bootstrap UCL                                                     | 556.5          |
| 95% Bootstrap-t UCL                                                            | 599            |
| 95% Hall's Bootstrap UCL                                                       | 572.9          |
| 95% Percentile Bootstrap UCL                                                   | 556            |
| 95% BCA Bootstrap UCL                                                          | 563.6          |
| 95% Chebyshev(Mean, Sd) UCL                                                    | 679            |
| 97.5% Chebyshev(Mean, Sd) UCL                                                  | 761.8          |
| 99% Chebyshev(Mean, Sd) UCL                                                    | 924.4          |

Data appear Normal (0.05) May want to try Normal UCLs

#### Methyl iodide

| Total Number of Data      | 8       |
|---------------------------|---------|
| Number of Non-Detect Data | 7       |
| Number of Detected Data   | 1       |
| Minimum Detected          | 0.041   |
| Maximum Detected          | 0.041   |
| Percent Non-Detects       | 87.50%  |
| Minimum Non-detect        | 0.00159 |
| Maximum Non-detect        | 0.017   |

Data set has all detected values equal to = 0.041, having '0' variation. No reliable or meaningful statistics and estimates can be computed using such a data set. All relevant statistics such as background statistics (UPLs, UTLs) and UCLs should also be nondetects Specifically, UPLs, UCLs, UTLs are all less than the maximum detection limit = 0.041

\*\* Instead of UCL, EPC is selected to be median = .....<0.00784 [per recommendation in ProUCL User Guide]

#### Molybdenum

| Total Number of Data<br>Number of Non-Detect Data | 8      |
|---------------------------------------------------|--------|
| Number of Detected Data                           | 2      |
| Minimum Detected                                  | 0.21   |
| Maximum Detected                                  | 0.6    |
| Percent Non-Detects                               | 75.00% |
| Minimum Non-detect                                | 0.11   |
| Maximum Non-detect                                | 0.14   |
| Mean of Detected Data                             | 0.405  |
| Median of Detected Data                           | 0.405  |
| Variance of Detected Data                         | 0.0761 |
| SD of Detected Data                               | 0.276  |
| CV of Detected Data                               | 0.681  |
| Skewness of Detected Data                         | N/A    |
| Mean of Detected log data                         | -1.036 |
| SD of Detected Log data                           | 0.742  |

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), the Largest DL value is used for all NDs

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

| Winsorization Method                                                                             | N/A    |
|--------------------------------------------------------------------------------------------------|--------|
| Kaplan Meier (KM) Method                                                                         |        |
| Mean                                                                                             | 0.259  |
| SD                                                                                               | 0.129  |
| Standard Error of Mean                                                                           | 0.0645 |
| 95% KM (t) UCL                                                                                   | 0.381  |
| 95% KM (z) UCL                                                                                   | 0.365  |
| 95% KM (BCA) UCL                                                                                 | N/A    |
| 95% KM (Percentile Bootstrap) UCL                                                                | 0.6    |
| 95% KM (Chebyshev) UCL                                                                           | 0.54   |
| 97.5% KM (Chebyshev) UCL                                                                         | 0.661  |
| 99% KM (Chebyshev) UCL                                                                           | 0.9    |
| Potential UCL to Use                                                                             |        |
| 95% KM (t) UCL                                                                                   | 0.381  |
| 95% KM (% Bootstrap) UCL                                                                         | 0.6    |
| **Instead of UCL, EPC is selected to be median = <0.12 [per recommendation in ProUCL User Guide] |        |

#### Nickel

| Number of Valid Observations Number of Distinct Observations | 8<br>8  |
|--------------------------------------------------------------|---------|
| Minimum                                                      | 12.3    |
| Maximum                                                      | 20.6    |
| Mean                                                         | 16.33   |
| Median                                                       | 16.65   |
| SD                                                           | 3.09    |
| Variance                                                     | 9.551   |
| Coefficient of Variation                                     | 0.189   |
| Skewness                                                     | -0.0427 |
| Mean of log data                                             | 2.777   |
| SD of log data                                               | 0.193   |
|                                                              |         |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs<br>Student's-t UCL | 18.4  |
|------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)   |       |
| 95% Adjusted-CLT UCL               | 18.1  |
| 95% Modified-t UCL                 | 18.39 |

| Non-Parametric UCLs           | •     |
|-------------------------------|-------|
| 95% CLT UCL                   | 18.12 |
| 95% Jackknife UCL             | 18.4  |
| 95% Standard Bootstrap UCL    | 17.98 |
| 95% Bootstrap-t UCL           | 18.4  |
| 95% Hall's Bootstrap UCL      | 17.86 |
| 95% Percentile Bootstrap UCL  | 17.88 |
| 95% BCA Bootstrap UCL         | 17.96 |
| 95% Chebyshev(Mean, Sd) UCL   | 21.09 |
| 97.5% Chebyshev(Mean, Sd) UCL | 23.15 |
| 99% Chebyshev(Mean, Sd) UCL   | 27.2  |

Data appear Normal (0.05)
May want to try Normal UCLs

\_\_\_\_\_\_

#### Pyrene

| Total Number of Data Number of Non-Detect Data Number of Detected Data Minimum Detected Maximum Detected Percent Non-Detects Minimum Non-detect Maximum Non-detect                          | 8<br>5<br>3<br>0.0201<br>0.0265<br><b>62.50%</b><br>0.018<br>0.023          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Mean of Detected Data Median of Detected Data Variance of Detected Data SD of Detected Data CV of Detected Data Skewness of Detected Data Mean of Detected log data SD of Detected Log data | 0.0232<br>0.0231<br>1.03E-05<br>0.0032<br>0.138<br>0.187<br>-3.769<br>0.138 |

#### Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

Observations < Largest DL are treated as NDs

Number treated as Non-Detect 6
Number treated as Detected 2
Single DL Percent Detection 75.00%

Warning: There are only 3 Distinct Detected Values in this data set

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Data Dsitribution Test with Detected Values Only Data appear Normal at 5% Significance Level

| Winsorization Method     | N/A      |  |
|--------------------------|----------|--|
| Kaplan Meier (KM) Method |          |  |
| Mean                     | 0.0213   |  |
| SD                       | 0.00221  |  |
| Standard Error of Mean   | 9.55E-04 |  |
| 95% KM (t) UCL           | 0.0231   |  |
| 95% KM (z) UCL           | 0.0228   |  |
| 95% KM (BCA) UCL         | 0.0265   |  |

| 95% KM (Percentile Bootstrap) UCL | 0.0265 |
|-----------------------------------|--------|
| 95% KM (Chebyshev) UCL            | 0.0254 |
| 97.5% KM (Chebyshev) UCL          | 0.0272 |
| 99% KM (Chebyshev) UCL            | 0.0308 |

Data appear Normal (0.05) May want to try Normal UCLs

\*\* Instead of UCL, EPC is selected to be median = <0.0196</pre>
[per recommendation in ProUCL User Guide]

#### Strontium

| Number of Valid Observations    | 8     |
|---------------------------------|-------|
| Number of Distinct Observations | 8     |
| Minimum                         | 63.3  |
| Maximum                         | 181   |
| Mean                            | 103.6 |
| Median                          | 89.45 |
| SD                              | 41.82 |
| Variance                        | 1749  |
| Coefficient of Variation        | 0.404 |
| Skewness                        | 1     |
| Mean of log data                | 4.575 |
| SD of log data                  | 0.38  |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

## 95% Useful UCLs Student's-t UCL 131.6

|                                  | 34403301-1-0-11-6 |
|----------------------------------|-------------------|
| 95% UCLs (Adjusted for Skewness) | 400.5             |
| 95% Adjusted-CLT UCL             | 133.5             |
| 95% Modified-t UCL               | 132.5             |
| Non-Parametric UCLs              |                   |
| 95% CLT UCL                      | 127.9             |
| 95% Jackknife UCL                | 131.6             |
| 95% Standard Bootstrap UCL       | 126               |
| 95% Bootstrap-t UCL              | 151.9             |
| 95% Hall's Bootstrap UCL         | 138.6             |
| 95% Percentile Bootstrap UCL     | 127               |
| 95% BCA Bootstrap UCL            | 130.3             |
| 95% Chebyshev(Mean, Sd) UCL      | 168.1             |
| 97.5% Chebyshev(Mean, Sd) UCL    | 195.9             |
| 99% Chebyshev(Mean, Sd) UCL      | 250.7             |

Titanium

Data appear Normal (0.05) May want to try Normal UCLs

| Number of Valid Observations | 8     |
|------------------------------|-------|
| Number of Valid Observations | 8     |
| Minimum                      | 19.1  |
| Maximum                      | 40.5  |
| Mean                         | 30    |
| Median                       | 32.65 |
| SD                           | 8.035 |
| Variance                     | 64.57 |

| Coefficient of Variation | 0.268  |
|--------------------------|--------|
| Skewness                 | -0.263 |
| Mean of log data         | 3.367  |
| SD of log data           | 0.286  |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95% Useful UCLs                  |       |
|----------------------------------|-------|
| Student's-t UCL                  | 35,38 |
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 34.39 |
| 95% Modified-t UCL               | 35.34 |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 34.67 |
| 95% Jackknife UCL                | 35.38 |
| 95% Standard Bootstrap UCL       | 34.3  |
| 95% Bootstrap-t UCL              | 35.29 |
| 95% Hall's Bootstrap UCL         | 33.72 |
| 95% Percentile Bootstrap UCL     | 34.38 |
| 95% BCA Bootstrap UCL            | 34.13 |
| 95% Chebyshev(Mean, Sd) UCL      | 42.38 |
| 97.5% Chebyshev(Mean, Sd) UCL    | 47.74 |
| 99% Chebyshev(Mean, Sd) UCL      | 58.27 |
| Data appear Normal (0.05)        |       |
| May want to try Normal LICLs     |       |

May want to try Normal UCLs

#### Vanadium

| Number of Valid Observations    | 8      |
|---------------------------------|--------|
| Number of Distinct Observations | 8      |
| Minimum                         | 16.8   |
| Maximum                         | 27.4   |
| Mean                            | 21.83  |
| Median                          | 21.8   |
| SD                              | 4.107  |
| Variance                        | 16.87  |
| Coefficient of Variation        | 0.188  |
| Skewness                        | 0.0796 |
| Mean of log data                | 3.067  |
| SD of log data                  | 0.19   |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

| 95              | % 1  | Jsefu   | 1110 | `l e        |  |
|-----------------|------|---------|------|-------------|--|
| :, <b>,</b> , , | /U C | ,30 i u |      | <i>-</i> L3 |  |

| Student's-t UCL                  | 24.58 |
|----------------------------------|-------|
| 95% UCLs (Adjusted for Skewness) |       |
| 95% Adjusted-CLT UCL             | 24.26 |
| 95% Modified-t UCL               | 24.58 |
| Non-Parametric UCLs              |       |
| 95% CLT UCL                      | 24.21 |
| 95% Jackknife UCL                | 24.58 |
| 95% Standard Bootstrap UCL       | 24.04 |
| 95% Bootstrap-t UCL              | 24.41 |

| 95% Hall's Bootstrap UCL      | 23.81 |
|-------------------------------|-------|
| 95% Percentile Bootstrap UCL  | 24.04 |
| 95% BCA Bootstrap UCL         | 24.15 |
| 95% Chebyshev(Mean, Sd) UCL   | 28.15 |
| 97.5% Chebyshev(Mean, Sd) UCL | 30.89 |
| 99% Chebyshev(Mean, Sd) UCL   | 36.27 |

## Data appear Normal (0.05)

May want to try Normal UCLs

#### Zinc

| Number of Valid Observations    | 8      |
|---------------------------------|--------|
| Number of Distinct Observations | 8      |
| Minimum                         | 38.2   |
| Maximum                         | 999    |
| Mean                            | 332.3  |
| Median                          | 55.65  |
| SD                              | 407.7  |
| Variance                        | 166239 |
| Coefficient of Variation        | 1.227  |
| Skewness                        | 0.879  |
| Mean of log data                | 4.894  |
| SD of log data                  | 1.489  |

Warning: There are only 8 Values in this data

Note: It should be noted that even though bootstrap methods may be performed on this data set,

the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

### Data do not follow a Discernable Distribution

| 95% Useful UCLs<br>Student's-t UCL              | 605.4 |
|-------------------------------------------------|-------|
| 95% UCLs (Adjusted for Skewness)                |       |
| 95% Adjusted-CLT UCL                            | 617.3 |
| 95% Modified-t UCL                              | 612.9 |
| Non-Parametric UCLs                             |       |
| 95% CLT UCL                                     | 569.4 |
| 95% Jackknife UCL                               | 605.4 |
| 95% Standard Bootstrap UCL                      | 557.3 |
| 95% Bootstrap-t UCL                             | 767.6 |
| 95% Hall's Bootstrap UCL                        | 474.7 |
| 95% Percentile Bootstrap UCL                    | 549.9 |
| 95% BCA Bootstrap UCL                           | 591.4 |
| 95% Chebyshev(Mean, Sd) UCL                     | 960.7 |
| 97.5% Chebyshev(Mean, Sd) UCL                   | 1233  |
| 99% Chebyshev(Mean, Sd) UCL                     | 1767  |
| Potential UCL to Use                            |       |
| 99% Chebyshev(Mean, Sd) UCL                     | 1767  |
| Recommended UCL exceeds the maximum observation |       |

## APPENDIX B

BACKGROUND COMPARISONS

# APPENDIX B-1 BACKGROUND COMPARISONS SOUTH OF MARLIN SURFACE SOIL

| ANTIMONY - SOUTH OF MARLIN SURFACE SOIL |                                                                                                               |  |  |  |  |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound                                | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background                |  |  |  |  |  |  |  |  |
| Antimony                                | Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples  Antimony 1.118 1.228 83 0.953 0.878 10 |  |  |  |  |  |  |  |  |

0.165

Standard Error of the Difference = 0.407177285

Degree of Freedom =

91

t = 0.405228892

0.3445

calculated at www.stat.tamu.edu/~west/applets/tdemo.html background mean is not statistically less than site mean

Data sets significantly different =

No

| ARSENIC - SOUTH OF MARLIN SURFACE SOIL |                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound                               | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Arsenic                                |                                                                                                                                                                       |  |  |  |  |  |  |  |  |

0.297

Standard Error of the Difference = 1.126036589

Degree of Freedom =

t = 0.263756971 p =

0.3963

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

No

site soil mean is not statistically greater than background mean

| BARIUM - SOUTH OF MARLIN SURFACE SOIL |                                                                                                                                                               |     |    |       |       |    |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-------|-------|----|--|--|--|
| Compound                              | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation |     |    |       |       |    |  |  |  |
| Barium                                | 345.2                                                                                                                                                         | 349 | 83 | 333.1 | 288.1 | 10 |  |  |  |

Standard Error of the Difference = 124.3580544

Degree of Freedom =

91

t = 0.097299689

0.4614

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

Data sets significantly different =

No

| CADMIUM - SOUTH OF MARLIN SURFACE SOIL                                                                                                                                |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |  |
| Cadmium                                                                                                                                                               |  |  |  |  |  |  |  |  |  |

Standard Error of the Difference = 0.277019204

Degree of Freedom = 91

t = 1.562707545

p = 0.0608

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = No site soil mean is not statistically greater than background mean

| CHROMIUM - SOUTH OF MARLIN SURFACE SOIL |                                                                                                                                                                       |      |    |      |      |    |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|------|------|----|--|--|--|
| Compound                                | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |      |    |      |      |    |  |  |  |
| Chromium                                | 16.08                                                                                                                                                                 | 15.7 | 83 | 15.2 | 3.02 | 10 |  |  |  |

0.88

Standard Error of the Difference = 3.925742193

Degree of Freedom =

91

t = 0.224161434 0.4116

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

| COPPER - SOUTH OF MARLIN SURFACE SOIL |                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound .                            | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Copper 27.98 35.35 83 12.12 3.955 10  |                                                                                                                                                                       |  |  |  |  |  |  |  |  |

15.86

Standard Error of the Difference = 8.664375822

Degree of Freedom =

91

t = 1.830483849

p =

0.0353

Data sets significantly different =

Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically greater than background mean

| LEAD - SOUTH OF MARLIN SURFACE SOIL                                                |                                                                                                                                   |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound                                                                           | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Conc. Number of Background Samples |  |  |  |  |  |  |  |  |
| Lead         69.61         112.8         83         13.43         1.547         10 |                                                                                                                                   |  |  |  |  |  |  |  |  |

56.18

Standard Error of the Difference = 27.36239203

Degree of Freedom =

91

t = 2.053183068

0.0215

Data sets significantly different =

Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically greater than background mean

| LITHIUM - SOUTH OF MARLIN SURFACE SOIL |                                                                                                 |  |  |  |  |  |  |  |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound                               | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  |  |  |  |  |  |  |  |  |
| Lithium                                | MeanStandard DeviationSamplesConc. MeanStandard DeviationSamplesLithium7.8565.7158321.145.16610 |  |  |  |  |  |  |  |  |

Standard Error of the Difference = 2.142429492

Degree of Freedom = 91

t = 6.200437423

p = 0.00

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically less than background mean

Data sets significantly different = Yes site surface soil mean is statistically less than bac

| MANGANESE - SOUTH OF MARLIN SURFACE SOIL                                                                                                                                       |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Compound Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Manganese         257.4         129.3         83         377.4         93.75         10                                                                                        |  |  |  |  |  |  |  |  |

120

Standard Error of the Difference = 43.15491673

Degree of Freedom =

91

t = 2.780679679

0.0033

Data sets significantly different =

Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically less than background mean

| MERCURY - SOUTH OF MARLIN SURFACE SOIL                                                               |                                                                                                 |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound                                                                                             | Compound: Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background |  |  |  |  |  |  |  |  |
| MeanStandard DeviationSamplesConc, MeanStandard DeviationSamplesMercury0.02270.0752830.02130.0047910 |                                                                                                 |  |  |  |  |  |  |  |  |

0.0014

Standard Error of the Difference =

0.01830147

91

Degree of Freedom =

t = 0.076496585

0.4698

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

| MOLYBDENUM - SOUTH OF MARLIN SURFACE SOIL                                                                                                                              |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc.: Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Molybdenum         1.306         1.588         83         0.522         0.0739         10                                                                              |  |  |  |  |  |  |  |

Standard Error of the Difference = 0.385854899 91

Degree of Freedom =

t = 2.031851873

0.0225

Data sets significantly different =

Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically greater than background mean

| ZINC - SOUTH OF MARLIN SURFACE SOIL                                                                                                                                   |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Compound Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Zinc 601.2 672.8 83 247 364.6 10                                                                                                                                      |  |  |  |  |  |  |  |

354.2

Standard Error of the Difference = 199.8008143

Degree of Freedom =

91

t = 1.772765547

0.0399

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

Yes

site surface soil mean is statistically greater than background mean

# APPENDIX B-2 BACKGROUND COMPARISONS SOUTH OF MARLIN SOIL

| ANTIMONY - SOUTH OF MARLIN SOIL                                                                                                                                       |       |      |     |       |       |    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----|-------|-------|----|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |      |     |       |       |    |  |
| Antimony                                                                                                                                                              | 1.023 | 1.14 | 166 | 0.953 | 0.878 | 10 |  |

0.07

Standard Error of the Difference = 0.39183601

Degree of Freedom =

174

t = 0.178646164

0.4292

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

No

background mean is not statistically less than site mean

| ARSENIC - SOUTH OF MARLIN SOIL                                                                                                                                        |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Arsenic                                                                                                                                                               |  |  |  |  |  |  |  |

0.107

Standard Error of the Difference =

0.97454393

Degree of Freedom =

174

t = 0.109794948

p =

0.4563

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

Data sets significantly different =

No

| BARIUM - SOUTH OF MARLIN SOIL |                                                                                                                                                                       |       |     |       |       |    |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-------|-------|----|--|--|
| Compound                      | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |     |       |       |    |  |  |
| Barium                        | 237.4                                                                                                                                                                 | 274.8 | 166 | 333.1 | 288.1 | 10 |  |  |

95.7

Standard Error of the Difference = 112.8814519

Degree of Freedom =

174

t = 0.847792072

p =

Data sets significantly different =

0.1989 No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

| CADMIUM - SOUTH OF MARLIN SOIL                                                                                                                                        |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Cadmium         0.335         0.859         166         0.0311         0.0398         10                                                                              |  |  |  |  |  |  |  |

0.3039

Standard Error of the Difference = 0.208717917

Degree of Freedom =

174

t = 1.456032165

0.0736

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

Data sets significantly different =

No

| CHROMIUM - SOUTH OF MARLIN SOIL                                                                 |                                                                                                |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound                                                                                        | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background |  |  |  |  |  |  |  |
| MeanStandard DeviationSamplesConc. MeanStandard DeviationSamplesChromium13.5312.4916615.23.0210 |                                                                                                |  |  |  |  |  |  |  |

Standard Error of the Difference = 3.176242508

Degree of Freedom = 174

t = 0.525778493

p = 0.2998

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = No site soil mean is not statistically less than background mean

| COPPER - SOUTH OF MARLIN SOIL                                                                                                                                         |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| MeanStandard DeviationSamplesConc. MeanStandard DeviationSamplesCopper24.2646.7616612.123.95510                                                                       |  |  |  |  |  |  |  |

Standard Error of the Difference = 11.40971991

Degree of Freedom = 174

t = 1.064005085

p = 0.1444

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

| LEAD - SOUTH OF MARLIN SOIL                                                                                                                                          |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Lead 53.52 104.2 166 13.43 1.547 10                                                                                                                                  |  |  |  |  |  |  |  |

40.09

Standard Error of the Difference = 25.27694655

Degree of Freedom =

174

t = 1.586030177

0.0573

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically greater than background mean

| LITHIUM - SOUTH OF MARLIN SOIL                                                                                                                                |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation |  |  |  |  |  |  |  |  |
| Lithium                                                                                                                                                       |  |  |  |  |  |  |  |  |

Standard Error of the Difference = 2.236676187

Degree of Freedom = 174

t = 4.967191972

p = 0.00

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically less than background mean Data sets significantly different = Yes

| MANGANESE - SOUTH OF MARLIN SOIL                                                                                                                                      |       |       |     |       |       |    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----|-------|-------|----|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |       |     |       |       |    |  |
| Manganese                                                                                                                                                             | 261.2 | 127.4 | 166 | 377.4 | 93.75 | 10 |  |

116.2

Standard Error of the Difference = 42.82121949

Degree of Freedom =

174

t = 2.713607912 p =

0.0037

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically less than background mean

Data sets significantly different =

Yes

| MERCURY - SOUTH OF MARLIN SOIL |                                                                                                                                                                         |        |     |        |         |    |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|--------|---------|----|--|
| Compound                       | Compound . Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |        |     |        |         |    |  |
| Mercury                        | 0.0262                                                                                                                                                                  | 0.0941 | 166 | 0.0213 | 0.00479 | 10 |  |

Standard Error of the Difference = 0.022872813

Degree of Freedom = 174

t = 0.214228129

0.4153

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

| MOLYBDENUM - SOUTH OF MARLIN SOIL                                                                                                                                     |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples Molybdenum 0.89 1.488 166 0.522 0.0739 10                                                       |  |  |  |  |  |  |  |

0.368

Standard Error of the Difference = 0.361648843

174

Degree of Freedom =

t = 1.017561668

0.1550

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

| ZINC - SOUTH OF MARLIN SOIL |                                                                                                                                                                       |       |     |     |       |    |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|-------|----|--|
| Compound                    | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |     |     |       |    |  |
| Zinc                        | 433.8                                                                                                                                                                 | 786.8 | 166 | 247 | 364.6 | 10 |  |

Calculated Difference = 186.8 Standard Error of the Difference = 222.9535182

Degree of Freedom = 174

0.8378428

0.2016

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

## APPENDIX B-3 BACKGROUND COMPARISONS NORTH OF MARLIN SURFACE SOIL

| ANTIMONY - NORTH OF MARLIN SURFACE SOIL                                                                                                                                                          |       |       |    |       |       |    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----|-------|-------|----|--|
| Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Conc. Number of Background  Compound Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |       |    |       |       |    |  |
| Antimony                                                                                                                                                                                         | 1.744 | 2.146 | 18 | 0.953 | 0.878 | 10 |  |

Standard Error of the Difference = 0.589906214

Degree of Freedom = 26

t = 1.340891114

0.0958

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

| ARSENIC - NORTH OF MARLIN SURFACE SOIL                                                                                                                                                     |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Conc. Number of Background Conc. Number of Background Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Arsenic 2.522 1.164 18 3.438 1.792 10                                                                                                                                                      |  |  |  |  |  |  |  |  |

0.916

Standard Error of the Difference = 0.633108336

26

Degree of Freedom =

t = 1.446829789

0.0799

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

Data sets significantly different =

No

| BARIUM - NORTH OF MARLIN SURFACE SOIL                                                          |                      |                          |            |       |       |            |  |
|------------------------------------------------------------------------------------------------|----------------------|--------------------------|------------|-------|-------|------------|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background |                      |                          |            |       |       |            |  |
| Barium                                                                                         | <b>Mean</b><br>145.2 | Standard Deviation 115.8 | Samples 18 | 333.1 | 288.1 | Samples 10 |  |

187.9

Standard Error of the Difference = 95.33605484

Degree of Freedom =

26 t = 1.970922756

0.0297

Data sets significantly different =

Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically less than background mean

| CADMIUM - NORTH OF MARLIN SURFACE SOIL |                                                                                                                                                                       |  |  |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound                               | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Cadmium                                |                                                                                                                                                                       |  |  |  |  |  |  |  |

Calculated Difference = 0.1759 Standard Error of the Difference = 0.06240139

Degree of Freedom = 26

t = 2.818847487

p = 0.0045 calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically greater than background mean

Data sets significantly different = Yes

| CHROMIUM - NORTH OF MARLIN SURFACE SOIL |                                                                                                                                                      |       |    |      |      |    |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|------|------|----|--|
| Compound                                | Gompound Site Conc. Site Conc. Number of Site Background Background Gonc. Number of Background Conc. Number of Background Standard Deviation Samples |       |    |      |      |    |  |
| Chromium                                | 20.26                                                                                                                                                | 27.58 | 18 | 15.2 | 3.02 | 10 |  |

Standard Error of the Difference =

6.7569619

Degree of Freedom =

26

t = 0.748857264

0.2303

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

| COPPER - NORTH OF MARLIN SURFACE SOIL                                                                                               |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site   Background Background Conc. Number of Background Conc. Number of Background Samples |  |  |  |  |  |  |  |
| Copper         24.13         44.66         18         12.12         3.955         10                                                |  |  |  |  |  |  |  |

Standard Error of the Difference = 10.90360718

Degree of Freedom =

26

t = 1.101470348

0.1405

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

No

site soil mean is not statistically greater than background mean

| LEAD - NORTH OF MARLIN SURFACE SOIL |                                                                                                                                                                       |       |    |       |       |    |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|-------|----|--|--|
| Compound                            | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |    |       |       |    |  |  |
| Lead                                | 57.7                                                                                                                                                                  | 111.1 | 18 | 13.43 | 1.547 | 10 |  |  |

Standard Error of the Difference = 26.95014837

Degree of Freedom = 26

1.64266257

0.0562

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically greater than background mean Data sets significantly different = No

| LITHIUM - NORTH OF MARLIN SURFACE SOIL                                                                                                   |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site   Background Background Conc. Number of Background   Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Lithium         16.57         5.136         18         21.14         5.166         10                                                    |  |  |  |  |  |  |  |

Standard Error of the Difference = 2.054368963

Degree of Freedom =

t = 2.224527377

0.0175

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically less than background mean

Data sets significantly different =

Yes

| MANGANESE - NORTH OF MARLIN SURFACE SOIL                                                                                                                              |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Manganese                                                                                                                                                             |  |  |  |  |  |  |  |  |

7.9

Standard Error of the Difference = 66.99284257

Degree of Freedom =

t = 0.117923045

0.4535

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically less than background mean

| MERCURY - NORTH OF MARLIN SURFACE SOIL |                                                                                                                                                                       |  |  |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound                               | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Mercury                                |                                                                                                                                                                       |  |  |  |  |  |  |  |

Calculated Difference = 0.0087 Standard Error of the Difference = 0.004233584

Degree of Freedom =

26

t = 2.054996426

0.0250

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

Data sets significantly different =

Yes

| MOLYBDENUM - NORTH OF MARLIN SURFACE SOIL                                                                                                                             |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Molybdenum         0.949         2.5         18         0.522         0.0739         10                                                                               |  |  |  |  |  |  |  |

0.427

Standard Error of the Difference = 0.606789238

Degree of Freedom =

26

t = 0.703703977 0.2439

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

Data sets significantly different =

No

| ZINC - NORTH OF MARLIN SURFACE SOIL                                                                                                                                   |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Zinc 418.4 1308 18 247 364.6 10                                                                                                                                       |  |  |  |  |  |  |  |

Standard Error of the Difference = 337.5387012

Degree of Freedom = 26

t = 0.507793623

0.3080

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

## APPENDIX B-4 BACKGROUND COMPARISONS NORTH OF MARLIN SOIL

| ANTIMONY - NORTH OF MARLIN SOIL                                                                                                                                         |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Conc. Number of Background Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Antimony                                                                                                                                                                |  |  |  |  |  |  |  |  |

Standard Error of the Difference = 0.513084318

Degree of Freedom =

t = 0.902385794

0.1859

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

| ARSENIC - NORTH OF MARLIN SOIL                                                                                                                                        |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Arsenic 2.573 1.369 36 3.438 1.792 10                                                                                                                                 |  |  |  |  |  |  |  |

Standard Error of the Difference = 0.656788524

Degree of Freedom =

t = 1.317014486

0.0973

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

Data sets significantly different =

No

| CADMIUM - NORTH OF MARLIN SOIL                                                                                                                                          |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Gonc. Number of Background Conc. Number of Background Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Cadmium         0.193         0.239         36         0.0311         0.0398         10                                                                                 |  |  |  |  |  |  |  |  |

Standard Error of the Difference = 0.059316632

Degree of Freedom =

t = 2.729419974

0.0045

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically greater than background mean Data sets significantly different = Yes

| BARIUM - NORTH OF MARLIN SOIL                                                                                                                                    |                                                                                     |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Standard Deviation Samples Conc. Mean Standard Deviation Samples |                                                                                     |  |  |  |  |  |  |  |
| Barium                                                                                                                                                           | Barium         142.1         95.9         36         333.1         288.1         10 |  |  |  |  |  |  |  |

191

Standard Error of the Difference = 94.02738869

Degree of Freedom =

t = 2.031323029

p = 0.0242 calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data:sets:significantly.different = Yes site surface soil mean is statistically less than background mean

| CHROMIUM - NORTH OF MARLIN SOIL                                                                                                 |       |      |    |      |      |    |  |
|---------------------------------------------------------------------------------------------------------------------------------|-------|------|----|------|------|----|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Conc. Standard Deviation Samples |       |      |    |      |      |    |  |
| Chromium                                                                                                                        | 17.17 | 19.6 | 36 | 15.2 | 3.02 | 10 |  |

1.97

Standard Error of the Difference = 4.848678898

Degree of Freedom =

t = 0.406296239

0.3432

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

| COPPER - NORTH OF MARLIN SOIL                                                                                                                                         |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Copper                                                                                                                                                                |  |  |  |  |  |  |  |  |

Standard Error of the Difference = 7.837321881

Degree of Freedom = 44

t = 0.83957251

0.2028

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

| LEAD - NORTH OF MARLIN SOIL |                  |                               |                        |             |                  |                      |
|-----------------------------|------------------|-------------------------------|------------------------|-------------|------------------|----------------------|
| Compound                    | Site Conc.  Mean | Site Conc. Standard Deviation | Number of Site Samples | Background: | Background Gone. | Number of Background |
| Lead                        | 37.8             | 80.99                         | 36                     | 13.43       | 1.547            | 10                   |

Calculated Difference = 24.37 Standard Error of the Difference = 19.6490511

> Degree of Freedom = 44

> > t = 1.240263455

0.1108

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically greater than background mean Data sets significantly different = No

| LITHIUM - NORTH OF MARLIN SOIL                                                                                                                                        |       |       |    |       |       |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----|-------|-------|----|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |       |    |       |       |    |
| Lithium                                                                                                                                                               | 18.84 | 5.952 | 36 | 21.14 | 5.166 | 10 |

2.3

Standard Error of the Difference = 2.180058677

Degree of Freedom =

t = 1.055017475

0.1486

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

Data sets significantly different =

No

| MANGANESE - NORTH OF MARLIN SOIL |                 |              |                |                          |                  |                              |  |
|----------------------------------|-----------------|--------------|----------------|--------------------------|------------------|------------------------------|--|
| Compound                         | Site Conc. Mean | Site Conc. S | Number of Site | Background<br>Conc. Mean | Background Conc. | Number of Background Samples |  |
| Manganese '                      | 347             | 204.1        | 36             | 377.4                    | 93.75            | 10                           |  |

30.4

Standard Error of the Difference = 57.70014591

Degree of Freedom =

t = 0.526861753

0.3005

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically less than background mean

| MOLYBDENUM - NORTH OF MARLIN SOIL |                    |            |                 |            |                  |                              |
|-----------------------------------|--------------------|------------|-----------------|------------|------------------|------------------------------|
| Compound                          | Site Conc.<br>Mean | Site Conc. | Number of Sites | Background | Background Conc. | Number of Background Samples |
| Molybdenum                        | 0.586              | 1.788      | 36              | 0.522      | 0.0739           | 10                           |

0.064

Standard Error of the Difference = 0.434282915

Degree of Freedom =

44

t = 0.147369371

0.4417

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

|   | MERCURY - NORTH OF MARLIN SOIL |                    |                    |                         |            |                  |                      |
|---|--------------------------------|--------------------|--------------------|-------------------------|------------|------------------|----------------------|
|   | Compound                       | Site Conc.<br>Mean | Standard Dovistion | Number of Site. Samples | Background | Background Conc. | Number of Background |
| ı | Mercury                        | 0.0094             | 0.0124             | 36                      | 0.0213     | 0.00479          | 10                   |

Calculated Difference = 0.0119 Standard Error of the Difference = 0.00336736

Degree of Freedom = 44

t = 3.533925295

0.0005

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

Data sets significantly different = Yes

| ZINC - NORTH OF MARLIN SOIL      |                 |                               |                        |                         |                  |                      |  |
|----------------------------------|-----------------|-------------------------------|------------------------|-------------------------|------------------|----------------------|--|
| Compound                         | Site Conc. Mean | Site Conc. Standard Deviation | Number of Site Samples | Background<br>Conc Mean | Background Conc. | Number of Background |  |
| Zinc 242.5 929.4 36 247 364.6 10 |                 |                               |                        |                         |                  |                      |  |

4.5

Standard Error of the Difference = 253.1879948

Degree of Freedom =

t = 0.017773355

0.4929

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

Data sets significantly different =

No

## APPENDIX B-5 BACKGROUND COMPARISONS INTRACOASTAL WATERWAY SEDIMENT

| 4,4'-DDT - INTRACOASTAL WATERWAY SEDIMENT |                 |            |                |            |                  |                      |  |
|-------------------------------------------|-----------------|------------|----------------|------------|------------------|----------------------|--|
| Compound                                  | Site Conc. Mean | Site Conc. | Number of Site | Background | Background Conc. | Number of Background |  |
| 4,4'-DDT                                  | 0.00041103      | 0.0007962  | 17             | 0.0001555  | 0.00015569       | 9                    |  |

Calculated Difference = 0.00025553 Standard Error of the Difference = 0.000199284

Degree of Freedom = 24

t = 1.28223903

0.106

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

| ALUMINUM - INTRACOASTAL WATERWAY SEDIMENT |                    |                               |                  |                          |                                     |                              |  |
|-------------------------------------------|--------------------|-------------------------------|------------------|--------------------------|-------------------------------------|------------------------------|--|
| Compound                                  | Site Conc.<br>Mean | Site Conc. Standard Deviation | Number of Site : | Background<br>Conc. Mean | Background Conc. Standard Deviation | Number of Background Samples |  |
| Aluminum                                  | 6854               | 2346                          | 16               | 12213                    | 6892                                | 9                            |  |

5359

Standard Error of the Difference = 2252.49071

Degree of Freedom =

23

t = 2.379144107

p =

0.013

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

Data sets significantly different =

Yes

| 1 | ARSENIC - INTRACOASTAL WATERWAY SEDIMENT |                    |                               |                |                          |                  |                              |  |
|---|------------------------------------------|--------------------|-------------------------------|----------------|--------------------------|------------------|------------------------------|--|
|   | Compound                                 | Site Conc.<br>Mean | Site Conc. Standard Deviation | Number of Site | Background<br>Conc. Mean | Background Conc. | Number of Background Samples |  |
|   | Arsenic                                  | 4.026              | 1.4                           | 16             | 5.813                    | 3.107            | 9                            |  |

Calculated Difference = 1.787 Standard Error of the Difference = 1.039537887

> Degree of Freedom = 23

t = 1.719033066

p = 0.0495 calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

Data sets significantly different = Yes

| BARIUM - INTRACOASTAL WATERWAY SEDIMENT                                                                                                                               |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Barium                                                                                                                                                                |  |  |  |  |  |  |  |  |

5.6

Standard Error of the Difference = 20.90733397

Degree of Freedom =

23 t = 0.267848594

0.3956

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

| ANTIMONY - INTRACOASTAL WATERWAY SEDIMENT |                                                                                                                                                                       |  |  |  |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound                                  | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Antimony                                  |                                                                                                                                                                       |  |  |  |  |  |  |  |

Standard Error of the Difference = 0.819130942

Degree of Freedom =

t = 2.170593136

0.0203

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

Data sets significantly different =

| BENZO(B)FLUORANTHENE - INTRACOASTAL WATERWAY SEDIMENT                                                                                                                 |     |       |    |        |        |   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----|--------|--------|---|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |     |       |    |        |        |   |  |
| Benzo(b)fluoranthene                                                                                                                                                  | 0.1 | 0.157 | 16 | 0.0087 | 0.0106 | 9 |  |

Standard Error of the Difference = 0.038225347

Degree of Freedom = 23

t = 2.388467508

p = 0.5

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

| BERYLLIUM - INTRACOASTAL WATERWAY SEDIMENT                                                                                                                            |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Beryllium         0.463         0.149         16         0.766         0.403         9                                                                                |  |  |  |  |  |  |  |  |

0.303

Standard Error of the Difference = 0.13246449

Degree of Freedom =

23 t = 2.287405473

0.0159

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

Data sets significantly different =

| BORON - INTRACOASTAL WATERWAY SEDIMENT |                                                                                                                                                                       |  |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Compound                               | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |
| Boron 12.04 9.92 16 27.64 12.82 9      |                                                                                                                                                                       |  |  |  |  |  |  |

15.6

Standard Error of the Difference = 4.714218044

Degree of Freedom =

23

t = 3.30913841

p =

0.0015

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

Yes

site soil mean is statistically less than background mean

| COBALT - INTRACOASTAL WATERWAY SEDIMENT |                      |                          |            |                            |                          |           |  |  |
|-----------------------------------------|----------------------|--------------------------|------------|----------------------------|--------------------------|-----------|--|--|
| Compound                                |                      |                          |            |                            |                          |           |  |  |
| Cobalt                                  | <b>Mean</b><br>4.385 | Standard Deviation 1.131 | Samples 16 | <u>Conc. Mean</u><br>6.698 | Standard Deviation 3.165 | Samples 9 |  |  |

Standard Error of the Difference = 1.037770333

Degree of Freedom =

23

t = 2.228816845

0.0179

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

Data sets significantly different =

| COPPER - INTRACOASTAL WATERWAY SEDIMENT                                                                                                                               |       |       |    |       |       |   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----|-------|-------|---|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |       |    |       |       |   |  |
| Copper                                                                                                                                                                | 7.112 | 2.997 | 16 | 8.138 | 5.165 | 9 |  |

Standard Error of the Difference = 1.787757246

Degree of Freedom =

23

t = 0.573903421 0.2858

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

| IRON - INTRACOASTAL WATERWAY SEDIMENT                                                                                                        |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Samples Conc Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Iron 13352 5546 16 16496 8097 9                                                                                                              |  |  |  |  |  |  |  |  |

Standard Error of the Difference = 2892.307356

23

Degree of Freedom =

t = 1.087021403

0.1441

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

Data sets significantly different =

No

| LEAD - INTRACOASTAL WATERWAY SEDIMENT |                                                                                                                                                                                                      |       |    |       |       |   |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|-------|---|--|--|
| Compound                              | Compound Site Conc. Site Conc. Number of Site   Background Background Conc. Number of Background Conc. Number of Background Conc. Number of Background Samples Conc. Mean Standard Deviation Samples |       |    |       |       |   |  |  |
| Lead                                  | 11.56                                                                                                                                                                                                | 7.161 | 16 | 9.587 | 3.602 | 9 |  |  |

Standard Error of the Difference = 2.076994545

Degree of Freedom = 23

t = 0.949930275

0.1760

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

| LITHIUM - INTRACOASTAL WATERWAY SEDIMENT                                                       |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background |  |  |  |  |  |  |  |  |
| Mean Standard Deviation Samples Lithium 10.53 3.559 16 21.4 14.41 9                            |  |  |  |  |  |  |  |  |

10.87

Standard Error of the Difference = 4.637876359

Degree of Freedom =

23

t = 2.343745102

p =

0.0141

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

Data sets significantly different =

| MANGANESE - INTRACOASTAL WATERWAY SEDIMENT                                                                                                                            |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Manganese         283.3         87.59         16         330.7         88.99         9                                                                                |  |  |  |  |  |  |  |  |

47.4

Standard Error of the Difference = 35.25927685

Degree of Freedom =

23

t = 1.34432706

0.0960

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

Data sets significantly different =

No

| MERCURY - INTRACOASTAL WATERWAY SEDIMENT                                                                                                                              |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples  Mercury 0.0201 0.0073 16 0.0176 0.0132 9                                                       |  |  |  |  |  |  |  |

Calculated Difference = 0.0025 Standard Error of the Difference = 0.004534171

Degree of Freedom = 23

t = 0.551368717

0.5000

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

| MOLYBDENUM - INTRACOASTAL WATERWAY SEDIMENT                                                        |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound                                                                                           |  |  |  |  |  |  |  |  |
| MeanStandard DeviationSamplesConc. MeanStandard DeviationSamplesMolybdenum0.6671.358160.2410.06759 |  |  |  |  |  |  |  |  |

0.426

Standard Error of the Difference = 0.330054329

23

Degree of Freedom =

t = 1.290696598

0.1048

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

Data sets significantly different =

No

| NICKEL - INTRACOASTAL WATERWAY SEDIMENT |                                                                                                                                                      |  |  |  |  |  |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| - r Compound                            | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Conc. Number of Background Standard Deviation Samples |  |  |  |  |  |  |  |
| Nickel 9.589 2.741 16 14.91 8.111 9     |                                                                                                                                                      |  |  |  |  |  |  |  |

5.321

Standard Error of the Difference = 2.649675082

Degree of Freedom =

23

t = 2.008170751

0.5000

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

| STRONTIUM - INTRACOASTAL WATERWAY SEDIMENT |                                                                                                                                                                       |       |    |       |       |   |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|-------|---|--|--|
| Compound                                   | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |    |       |       |   |  |  |
| Strontium                                  | 44.86                                                                                                                                                                 | 14.43 | 16 | 59.17 | 22.06 | 9 |  |  |

Standard Error of the Difference = 7.804670623

Degree of Freedom = 23

t = 1.833517478

p = 0.0398

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

Data sets significantly different = Yes

| TITANIUM - INTRACOASTAL WATERWAY SEDIMENT |                                                                                                |  |  |  |  |  |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound                                  | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background |  |  |  |  |  |  |  |
| Titanium                                  | Titanium 25.58 5.051 16 31.79 10.49 9                                                          |  |  |  |  |  |  |  |

6.21

Standard Error of the Difference = 3.536205768

Degree of Freedom =

23

t = 1.756119527

p =

0.0462

Data sets significantly different =

Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

| VANADIUM - INTRACOASTAL WATERWAY SEDIMENT |                                                                                                                                                                       |       |    |       |       |   |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|-------|---|--|
| -Compound:                                | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |    |       |       |   |  |
| Vanadium                                  | 13.86                                                                                                                                                                 | 3.523 | 16 | 20.21 | 9.135 | 9 |  |

6.35

Standard Error of the Difference = 3.012459534

Degree of Freedom =

23 t = 2.107912133

0.0231

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean

Data sets significantly different =

| ZINC - INTRACOASTAL WATERWAY SEDIMENT |                                                                                                                                                                        |  |  |  |  |  |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound                              | Compound Site Conc. Site Conc. Number of Site Background Background Conc., Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Zinc                                  |                                                                                                                                                                        |  |  |  |  |  |  |  |

Standard Error of the Difference = 6.477819531

Degree of Freedom = 23

t = 1.438755735

0.0818

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

## APPENDIX B-6 BACKGROUND COMPARISONS WETLAND SEDIMENT

| ANTIMONY - WETLAND SEDIMENT                                                                                                                                          |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |
| Antimony 1.154 0.724 47 0.953 0.878 10                                                                                                                               |  |  |  |  |  |  |  |

0.201

Standard Error of the Difference = 0.32851527

Degree of Freedom =

55

t = 0.611843706

0.2716

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

| ARSENIC - WETLAND SEDIMENT |                                                                                                                                                                       |       |    |       |       |    |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|-------|----|--|--|
| Compound                   | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |    |       |       |    |  |  |
| Arsenic                    | 2.534                                                                                                                                                                 | 2.465 | 48 | 3.438 | 1.792 | 10 |  |  |

Standard Error of the Difference = 0.823742314

Degree of Freedom = 56

t = 1.097430573

p = 0.1387

Data sets significantly different = No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

| BARIUM - WETLAND SEDIMENT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Compound                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Barium                    | Candard Deviations and Candard Deviations and Candard Deviations and Candard Deviation a |  |  |  |  |  |  |

181.4

Standard Error of the Difference = 96.93387285

Degree of Freedom =

t = 1.871378855

0.0333

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically less than background mean

Data sets significantly different =

| CADMIUM - WETLAND SEDIMENT                                                                                                                                            |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Cadmium                                                                                                                                                               |  |  |  |  |  |  |  |  |

Standard Error of the Difference = 0.037580399

Degree of Freedom =

56 t = 1.913231441

0.0304

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically greater than background mean

Data sets significantly different =

| CHROMIUM - WETLAND SEDIMENT                                                                                                                                           |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |  |  |  |  |  |  |  |  |
| Chromium                                                                                                                                                              |  |  |  |  |  |  |  |  |

0.13

Standard Error of the Difference = 1.647671726

Degree of Freedom =

56

t = 0.078899211

0.4687

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

Data sets significantly different =

No

| COPPER - WETLAND SEDIMENT |                                                                                                                                                                     |      |    |       |       |    |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|-------|-------|----|--|
| Compound                  | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background Mean Standard Deviation Samples Conc Mean Standard Deviation Samples |      |    |       |       |    |  |
| Copper                    | 14.49                                                                                                                                                               | 8.49 | 48 | 12.12 | 3.955 | 10 |  |

Standard Error of the Difference = 2.409192475

Degree of Freedom = 56

t = 0.983732111

0.1647

No

Data sets significantly different =

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

| LEAD - WETLAND SEDIMENT |                                                                                                                                                                       |       |    |       |       |    |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|-------|----|--|--|
| Compound                | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |    |       |       |    |  |  |
| Lead                    | 25.36                                                                                                                                                                 | 34.13 | 48 | 13.43 | 1.547 | 10 |  |  |

11.93

Standard Error of the Difference = 8.292183972

Degree of Freedom =

56

p =

t = 1.438704211 0.0779

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically greater than background mean

| LITHIUM - WETLAND SEDIMENT |                                                                                                                                                                       |       |    |       |       |    |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|-------|----|--|--|
| Compound                   | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |    |       |       |    |  |  |
| Lithium                    | 18.65                                                                                                                                                                 | 3.754 | 48 | 21.14 | 5.166 | 10 |  |  |

Standard Error of the Difference = 1.870221145

Degree of Freedom = 56

t = 1.331393353

p =

0.0943 calculated at www.stat.tamu.edu/~west/applets/tdemo.html

site soil mean is not statistically less than background mean Data sets significantly different = No

| MANGANESE - WETLAND SEDIMENT |                                                                                                                                                                       |       |    |       |       |      |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|-------|------|--|--|
| Compound ***                 | Compound Site Conc. Site Conc. Number of Site Background Background Gonc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |    |       |       |      |  |  |
| Manganese                    | 331.8                                                                                                                                                                 | 205.9 | 48 | 377.4 | 93.75 | · 10 |  |  |

45.6

Standard Error of the Difference = 58.07511173

Degree of Freedom =

56

t = 0.785190052

**p** =

0.2178

Data sets significantly different =

No

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically less than background mean

| MERCURY - WETLAND SEDIMENT |                                                                                                                                                                       |        |    |        |         |    |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|--------|---------|----|--|--|
| Gompound                   | Gompound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |        |    |        |         |    |  |  |
| Mercury                    | 0.0199                                                                                                                                                                | 0.0194 | 48 | 0.0213 | 0.00479 | 10 |  |  |

Standard Error of the Difference = 0.004942998

Degree of Freedom = 56

t = 0.283228898

0.3890

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically less than background mean Data sets significantly different = No

| MOLYBDENUM - WETLAND SEDIMENT |                                                                                                                                                                       |       |    |       |        |    |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|--------|----|--|--|
| Compound                      | Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Compound Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |    |       |        |    |  |  |
| Molybdenum                    | 0.581                                                                                                                                                                 | 0.677 | 48 | 0.522 | 0.0739 | 10 |  |  |

Calculated Difference = 0.059 Standard Error of the Difference = 0.16585129

Degree of Freedom =

56 t = 0.355740374

0.3617

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

| ZINC - WETLAND SEDIMENT |                                                                                                                                                                      |       |                      |     |       |    |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|-----|-------|----|--|--|
| Compound                | Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc Mean Standard Deviation Samples |       |                      |     |       |    |  |  |
| Zinc                    | <b>Mean</b><br>139.1                                                                                                                                                 | 160.9 | <b>Samples</b><br>53 | 247 | 364.6 | 10 |  |  |

Calculated Difference = 107.9 Standard Error of the Difference = 121.7217613

Degree of Freedom =

t = 0.886447902

0.1896

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean Data sets significantly different = No

## APPENDIX B-7 BACKGROUND COMPARISONS POND SEDIMENT

| ANTIMONY - POND SEDIMENT |                                                                                                                                                                       |       |   |       |       |    |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|-------|-------|----|--|--|
| Gompound*****            | Gompound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |   |       |       |    |  |  |
| Antimony                 | 0.795                                                                                                                                                                 | 0.618 | 8 | 0.953 | 0.878 | 10 |  |  |

0.158

Standard Error of the Difference =

Data sets significantly different =

0.31552261

Degree of Freedom =

16

p =

t = 0.500756506

0.3116

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

No

site soil mean is not statistically less than background mean

| ARSENIC - POND SEDIMENT                                                                                                                                               |       |       |   |       |       |    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---|-------|-------|----|--|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |       |   |       |       |    |  |  |
| Arsenic                                                                                                                                                               | 1.735 | 2.233 | 8 | 3.438 | 1.792 | 10 |  |  |

Standard Error of the Difference = 0.783860649

Degree of Freedom = 16

t = 2.172580039

0.0226

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different = Yes

site soil mean is statistically less than background mean

| BARIUM - POND SEDIMENT                                                                                                                                                |       |       |   |       |       |    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---|-------|-------|----|--|
| Compound Site Conc. Site Conc, Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |       |   |       |       |    |  |
| Barium                                                                                                                                                                | 198.6 | 119.4 | 8 | 333.1 | 288.1 | 10 |  |

Standard Error of the Difference = 95.59691633

Degree of Freedom = 16

t = 1.406949148

0.0893

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is not statistically less than background mean Data sets significantly different = No

| CADMIUM - POND SEDIMENT                                                                                                                                               |       |       |   |        |        |    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---|--------|--------|----|--|
| Compound Site Conc. Site Conc. Number of Site Background Background Conc. Number of Background  Mean Standard Deviation Samples Conc. Mean Standard Deviation Samples |       |       |   |        |        |    |  |
| Cadmium                                                                                                                                                               | 0.147 | 0.112 | 8 | 0.0311 | 0.0398 | 10 |  |

Standard Error of the Difference = 0.029938042

Degree of Freedom =

16

t = 3.871328672

0.0007

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically greater than background mean

Data sets significantly different =

|          | CHROMIUM - POND SEDIMENT |                               |                        |                          |                                      |                              |
|----------|--------------------------|-------------------------------|------------------------|--------------------------|--------------------------------------|------------------------------|
| Compound | Site Conc.<br>Mean       | Site Conc. Standard Deviation | Number of Site Samples | Background<br>Conc. Mean | Background Conc.  Standard Deviation | Number of Background Samples |
| Chromium | 12.93                    | 4.611                         | 8                      | 15.2                     | 3.02                                 | 10                           |

Calculated Difference = 2.27

Standard Error of the Difference = 1.470614137

Degree of Freedom = 16

t = 1.543572812

0.0711

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically less than background mean

Data sets significantly different = No

|          |                    | COPPER                        | R - POND SEDIMEI | NT         |                  |                              |
|----------|--------------------|-------------------------------|------------------|------------|------------------|------------------------------|
| Compound | Site Conc.<br>Mëan | Site Conc. Standard Deviation | Number of Site   | Background | Background Conc. | Number of Background Samples |
| Copper   | 15.2               | 7.421                         | 8                | 12.12      | 3.955            | 10                           |

Calculated Difference =

3.08

Standard Error of the Difference = 2.191731568

Degree of Freedom =

16

t = 1.40528158

p =

0.0896

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean

Data sets significantly different =

No

|          |                    | LEAD -                        | POND SEDIMENT  | -          |                  |                              |
|----------|--------------------|-------------------------------|----------------|------------|------------------|------------------------------|
| Compound | Site Conc.<br>Mean | Site Conc. Standard Deviation | Number of Site | Background | Background Conc. | Number of Background Samples |
| Lead     | 17.54              | 7.076                         | 8              | 13.43      | 1.547            | 10                           |

Calculated Difference = 4.11

Standard Error of the Difference = 1.784545276

Degree of Freedom = 16

t = 2.303107719

0.0175

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically greater than background mean Data sets significantly different = Yes

|          |                    | LITHIUN    | I - POND SEDIMEN       | IT                       |                  |                              |
|----------|--------------------|------------|------------------------|--------------------------|------------------|------------------------------|
| Compound | Site Conc.<br>Mean | Site Conc. | Number of Site Samples | Background<br>Conc. Mean | Background Conc. | Number of Background Samples |
| Lithium  | 18.48              | 4.071      | 8                      | 21.14                    | ໌ 5.166          | 10                           |

Calculated Difference =

2.66

Standard Error of the Difference = 1.908832199

Degree of Freedom =

16

t = 1.393522176

calculated at www.stat.tamu.edu/~west/applets/tdemo.html

Data sets significantly different =

0.0912 No

site soil mean is not statistically less than background mean

|           | MANGANESE - POND SEDIMENT |            |                |                         |                  |                              |  |
|-----------|---------------------------|------------|----------------|-------------------------|------------------|------------------------------|--|
| Compound  | Site Conc.  Mean          | Site Conc. | Number of Site | Background<br>Conc Mean | Background Conc. | Number of Background Samples |  |
| Manganese | 487.6                     | 124.2      | 8              | 377.4                   | 93.75            | 10                           |  |

Calculated Difference =

110.2

Standard Error of the Difference = 42.26460503

Degree of Freedom =

16

t = 2.607382701

p =

0.0095

Data sets significantly different =

Yes

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site surface soil mean is statistically greater than background mean

|            |                    | MOLYBDEN                      | IUM - POND SEDI        | MENT                  |                                     |                              |
|------------|--------------------|-------------------------------|------------------------|-----------------------|-------------------------------------|------------------------------|
| Compound   | Site Conc.<br>Mean | Site Conc. Standard Deviation | Number of Site Samples | Background Conc. Mean | Background Conc. Standard Deviation | Number of Background Samples |
| Molybdenum | 0.146              | 0.191                         | 8                      | 0.522                 | 0.0739                              | 10                           |

Calculated Difference = 0.376 Standard Error of the Difference = 0.051885086

Degree of Freedom = 16

t = 7.24678375

p =

0.0000

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is statistically less than background mean Data sets significantly different = Yes

|          |                    | ZINC -                        | POND SEDIMENT           | •                      |                  |                              |
|----------|--------------------|-------------------------------|-------------------------|------------------------|------------------|------------------------------|
| Compound | Site Conc.<br>Mean | Site Conc. Standard Deviation | Number of Sites Samples | Background : Conc Mean | Background Conc. | Number of Background Samples |
| Zinc     | 332.3              | 407.7                         | 8                       | 247                    | 364.6            | 10                           |

Calculated Difference = 85.3

Standard Error of the Difference = 151.8911495

Degree of Freedom = 16

t = 0.561586375

p = 0.2910

calculated at www.stat.tamu.edu/~west/applets/tdemo.html site soil mean is not statistically greater than background mean Data sets significantly different = No

APPENDIX C

INTAKE CALCULATIONS

APPENDIX C-1
INTAKE CALCULATIONS
SOUTH OF MARLIN SOIL

TABLE C-1
EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs
SOIL SOUTH OF MARLIN AVE.

| Parameter                 | Average  |   | 95% UCL  | Statistic Used       |
|---------------------------|----------|---|----------|----------------------|
| 4,4-DDD                   | 7.76E-03 |   | 5.08E-02 | 97.5% KM (Chebyshev) |
| Aluminum                  | 6.45E+03 |   | 8.20E+03 | 97.5% Chebyshev      |
| Aroclor-1254              | 2.16E-01 |   | 7.73E-01 | 97.5% KM (Chebyshev) |
| Benzo(a)anthracene        | 2.69E-01 |   | 6.43E-01 | 97.5% KM (Chebyshev) |
| Benzo(a)pyrene            | 3.48E-01 |   | 7.63E-01 | 97.5% KM (Chebyshev) |
| Benzo(b)fluoranthene      | 4.77E-01 |   | 8.22E-01 | 95% KM (Chebyshev)   |
| Benzo(k)fluoranthene      | 1.58E-01 |   | 3.81E-01 | 97.5% KM (Chebyshev) |
| Dibenz(a,h)anthracene     | 1.48E-01 |   | 1.80E-01 | 95% KM (Bootstrap)   |
| Dieldrin                  | 8.89E-04 |   | 2.11E-03 | 97.5% KM (Chebyshev) |
| Indeno(1,2,3-cd)pyrene    | 3.85E-01 |   | 6.58E-01 | 95% KM (Chebyshev)   |
| Iron                      | 1.43E+04 |   | 1.75E+04 | 95% Chebyshev        |
| Isopropylbenzene (cumene) | 8.31E-01 |   | 5.85E+00 | 97.5% KM (Chebyshev) |
| Lead                      | 5.35E+01 |   | 1.04E+02 | 97.5% Chebyshev      |
| Napthalene                | 3.26E-01 | < | 2.65E-03 | median               |

TABLE C-2
EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs
SURFACE SOIL SOUTH OF MARLIN AVE.

| Parameter                 | Average  |   | 95% UCL  | Statistic Used       |
|---------------------------|----------|---|----------|----------------------|
| 4,4-DDD                   | 3.07E-03 | < | 2.70E-04 | median               |
| Aluminum                  | 5.34E+03 |   | 5.95E+03 | 95% Student's-t      |
| Aroclor-1254              | 1.46E-01 |   | 7.64E-01 | 97.5% KM (Chebyshev) |
| Benzo(a)anthracene        | 3.57E-01 |   | 9.03E-01 | 97.5% KM (Chebyshev) |
| Benzo(a)pyrene            | 4.53E-01 |   | 1.09E+00 | 97.5% KM (Chebyshev) |
| Benzo(b)fluoranthene      | 5.88E-01 |   | 1.10E+00 | 95% KM (Chebyshev)   |
| Benzo(k)fluoranthene      | 2.44E-01 |   | 6.58E-01 | 97.5% KM (Chebyshev) |
| Dibenz(a,h)anthracene     | 1.87E-01 |   | 2.45E-01 | 95% KM (Bootstrap)   |
| Dieldrin                  | 1.40E-03 |   | 3.14E-03 | 97.5% KM (Chebyshev) |
| Indeno(1,2,3-cd)pyrene    | 4.83E-01 |   | 9.31E-01 | 95% KM (Chebyshev)   |
| Iron                      | 1.63E+04 |   | 2.40E+04 | 97.5% Chebyshev      |
| isopropylbenzene (cumene) |          |   |          |                      |
| Lead                      | 6.96E+01 |   | 1.47E+02 | 97.5% Chebyshev      |
| Napthalene                |          |   |          |                      |

TABLE C-2.5
CALCULATION OF OUTDOOR AIR CONCENTRATION FROM EXPOSED SOIL - VOLATILE EMISSIONS

|           | De = H' * Da * na^3.33/n^2 + Dw * nw^3.33/n^2 Pb * Kd + nw + na * H' | Kd = Foc * Kd | oc .              |
|-----------|----------------------------------------------------------------------|---------------|-------------------|
|           | VF = (3.14 * De * T)^0.5 * Q/C                                       | na = n - nw   |                   |
|           | VF = (3.14 * De * T)^0.5 * Q/C<br>(2 * Pb * De) * CF                 |               | Source: EPA, 1996 |
| Parameter | Definition                                                           | Value         | Reference         |
| Da        | Diffusion coefficent in air (cm^2/sec)                               | see below     | EPA, 1996         |
| Dw        | Diffusion coefficent in water (cm^2/sec)                             | see below     | EPA, 1996         |
| De        | Effective diffusion coefficient (cm^2/sec)                           | see below     | calculated        |
| VF        | Volatilization Factor (m3/kg)                                        | see below     | calculated        |
| n         | Total porosity (dimensionless)                                       | 0.35          | TNRCC, 1993       |
| nw        | Water filled soil porosity (dimensionless)                           | 0.15          | EPA, 1996         |
| na        | Air filled soil porosity (dimensionless)                             | 0.2           | n-nw              |
| H'        | Henry's law constant (dimensionless)                                 | see below     | TRRP              |
| Pb        | Dry Bulk Density (g/cm^3)                                            | 1.5           | EPA, 1996         |
| Foc       | Fraction organic carbon (g/g)                                        | 0.006         | EPA, 1996         |
| Koc       | Organic carbon-water partition coefficient (cm^3/g)                  | see below     | EPA, 1996         |
| Kd        | Soil-water partition coefficient (cm^3/g)                            | see below     | calculated        |
| CF        | Conversion factor (cm^2/m^2)                                         | 1.00E+04      | standard          |
| Q/C       | Inverse of the mean conc. at center of source (g/m^2-s per kg/m^3)   | see below     | EPA, 1996         |
| T         | Exposure interval (sec)                                              | see below     | EPA, 1996         |

| Chemical                  | Da       | Dw       | De       | H'       | Koc      | Kd    | Q/C   | Т        | VF       |
|---------------------------|----------|----------|----------|----------|----------|-------|-------|----------|----------|
| Isopropylbenzene (cumene) | 7.50E-02 | 7.80E-06 | 1.14E-05 | 7.89E-03 | 2.04E+02 | 1.224 | 68.81 | 9.50E+08 | 3.71E+04 |

#### TABLE C-3 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE – YOUTH TRESPASSER

| SOIL INGESTIO                                                                                                                                                    | N                               |                                                                      |              |                                                          |                                                          |                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------|--------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| NTAKE = (Sc *                                                                                                                                                    | R * EF * ED * CF) / (BW * /     | AT)                                                                  |              |                                                          |                                                          |                                                          |
| Parameter                                                                                                                                                        | Definition                      |                                                                      |              |                                                          | Value                                                    | Reference                                                |
| ntake                                                                                                                                                            | Intake of chemical (m           | ig/kg-day)                                                           |              |                                                          | calculated                                               |                                                          |
| ic                                                                                                                                                               | Soil concentration (m           | g/kg)                                                                |              |                                                          | see data page                                            |                                                          |
| C                                                                                                                                                                | Air concentration (mg           | /m^3) .                                                              |              |                                                          | see below                                                |                                                          |
| AC                                                                                                                                                               | Effective air concentr          | ation (mg/m^                                                         | 3)           |                                                          | calculated                                               |                                                          |
| EF                                                                                                                                                               | Particulate Emission            | Factor (m^3/l                                                        | kg)          |                                                          | 1.00E+09                                                 | EPA, 2004a                                               |
| ₹                                                                                                                                                                | Ingestion rate of soil          | (mg/day)                                                             |              |                                                          | 100                                                      | TNRCC, 1998                                              |
| SA.                                                                                                                                                              | Skin surface area (cn           |                                                                      |              |                                                          | 3500                                                     | TNRCC, 1998                                              |
| ١F                                                                                                                                                               | Soil to skin adherenc           |                                                                      | cm2)         |                                                          | 0.1                                                      | TNRCC, 1998                                              |
| ABSd                                                                                                                                                             | Dermal absorption fra           |                                                                      |              |                                                          | see chemprop page                                        |                                                          |
| F                                                                                                                                                                | Exposure frequency (            |                                                                      | ,            |                                                          | 25                                                       | professional judgment                                    |
| D                                                                                                                                                                | Exposure duration (y            |                                                                      |              |                                                          | 6                                                        | professional judgment                                    |
| F                                                                                                                                                                | Conversion factor (kg           |                                                                      |              |                                                          | 1.00E-06                                                 | EPA, 1989                                                |
| SW .                                                                                                                                                             | Body weight (kg)                | //iig/                                                               |              |                                                          | 40                                                       | EPA, 1991a                                               |
| ATc                                                                                                                                                              | Averaging time for ca           | roinogene (d                                                         | ave)         |                                                          | 25550                                                    | EPA, 1989                                                |
| ATnc                                                                                                                                                             | Averaging time for no           |                                                                      |              |                                                          | 9125                                                     | EPA, 1989                                                |
| <del></del>                                                                                                                                                      |                                 |                                                                      | <del></del>  | <del></del>                                              |                                                          |                                                          |
| Chemical                                                                                                                                                         |                                 |                                                                      |              | Sc                                                       | Intake for<br>Carcinogens                                | Intake for<br>Noncarcinogens                             |
|                                                                                                                                                                  |                                 |                                                                      |              | 7.765.02                                                 |                                                          |                                                          |
| ,4-DDD                                                                                                                                                           |                                 |                                                                      |              | 7.76E-03                                                 | 1.14E-10                                                 | 3.19E-10                                                 |
| Muminum                                                                                                                                                          |                                 |                                                                      |              | 6.45E+03                                                 | 9.47E-05                                                 | 2.65E-04                                                 |
| roclor-1254                                                                                                                                                      |                                 |                                                                      |              | 2.16E-01                                                 | 3.17E-09                                                 | 8.88E-09                                                 |
| Benzo(a)anthrac                                                                                                                                                  | ane                             |                                                                      |              | 2,69E-01                                                 | 3.95E-09                                                 | 1.11E-08                                                 |
| Benzo(a)pyrene                                                                                                                                                   |                                 |                                                                      |              | 3.48E-01                                                 | 5.11E-09                                                 | 1.43E-08                                                 |
| Benzo(b)fluorant                                                                                                                                                 | hene                            |                                                                      |              | 4.77E-01                                                 | 7.00E-09                                                 | 1.96E-08                                                 |
| Benzo(k)fluorant                                                                                                                                                 |                                 |                                                                      |              | 1.58E-01                                                 | 2.32E-09                                                 | 6,49E-09                                                 |
| Dibenz(a,h)anthr                                                                                                                                                 |                                 |                                                                      |              | 1.48E-01                                                 | 2,17E-09                                                 | 6.08E-09                                                 |
| Dieldrin                                                                                                                                                         |                                 |                                                                      |              | 8,89E-04                                                 | 1,30E-11                                                 | 3,65E-11                                                 |
| ndeno(1,2,3-cd)                                                                                                                                                  | ovrene                          |                                                                      |              | 3,85E-01                                                 | 5.65E-09                                                 | 1.58E-08                                                 |
| ron                                                                                                                                                              | 3,10.10                         |                                                                      |              | 1.43E+04                                                 | 2.10E-04                                                 | 5.87E-04                                                 |
|                                                                                                                                                                  | o (aumana)                      |                                                                      |              |                                                          |                                                          |                                                          |
| sopropylbenzen                                                                                                                                                   | (content)                       |                                                                      |              | 8.31E-01                                                 | 1.22E-08                                                 | 3.42E-08                                                 |
| _ead<br>Napthalene                                                                                                                                               |                                 |                                                                      |              | 5.35E+01                                                 | 7.86E-07                                                 | 2,20E-06<br>1,34E-08                                     |
| чаринанепе                                                                                                                                                       |                                 |                                                                      |              | 3,26E-01                                                 | 4.78E-09                                                 | 1,345-08                                                 |
| NTAKE = (Sc * 8                                                                                                                                                  | SA * AF * ABSd * EF * ED *      | °CF) / (BW *                                                         | AT)          |                                                          |                                                          |                                                          |
| Chemical                                                                                                                                                         |                                 |                                                                      | ABSd         | Sc                                                       | Intake for<br>Carcinogens                                | Intake for<br>Noncarcinogens                             |
| CHAINICA                                                                                                                                                         |                                 |                                                                      |              |                                                          | - Carolino genia                                         | rionodioniogono                                          |
| 1,4-DDD                                                                                                                                                          |                                 |                                                                      | 1.30E-01     | 7.76E-03                                                 | 5.18E-11                                                 | 1.45E-10                                                 |
| Aluminum                                                                                                                                                         |                                 |                                                                      | 1.00E-02     | 6.45E+03                                                 | 3.31E-06                                                 | 9,28E-06                                                 |
| Aroclor-1254                                                                                                                                                     |                                 |                                                                      | 1.40E-01     | 2.16E-01                                                 | 1.55E-09                                                 | 4.35E-09                                                 |
| Benzo(a)anthrac                                                                                                                                                  | ene                             |                                                                      | 1.30E-01     | 2.69E-01                                                 | 1.80E-09                                                 | 5.03E-09                                                 |
| Benzo(a)pyrene                                                                                                                                                   | 3116                            |                                                                      | 1.30E-01     |                                                          |                                                          | 6.51E-09                                                 |
|                                                                                                                                                                  | L                               |                                                                      |              | 3.48E-01                                                 | 2,32E-09                                                 |                                                          |
| Benzo(b)fluorant                                                                                                                                                 |                                 |                                                                      | 1.30E-01     | 4.77E-01                                                 | 3.19E-09                                                 | 8.92E-09                                                 |
| Benzo(k)fluoranti                                                                                                                                                |                                 |                                                                      | 1.30E-01     | 1.58E-01                                                 | 1.06E-09                                                 | 2.95E-09                                                 |
| Dibenz(a,h)anthr                                                                                                                                                 | acene                           |                                                                      | 1.30E-01     | 1.48E-01                                                 | 9.88E-10                                                 | 2.77E-09                                                 |
| Dieldrin                                                                                                                                                         |                                 |                                                                      | 1.30E-01     | 8.89E-04                                                 | 5.94E-12                                                 | 1.66E-11                                                 |
| ndeno(1,2,3-cd)                                                                                                                                                  | pyrene                          |                                                                      | 1.30E-01     | 3,85E-01                                                 | 2.57E-09                                                 | 7.20E-09                                                 |
| ron                                                                                                                                                              |                                 |                                                                      | 1.00E-02     | 1.43E+04                                                 | 7,33E-06                                                 | 2.05E-05                                                 |
| sopropylbenzene                                                                                                                                                  | (cumene)                        |                                                                      | 1.30E-01     | 8.31E-01                                                 | 5.55E-09                                                 | 1.55E-08                                                 |
| ead                                                                                                                                                              | •                               |                                                                      | 1.00E-02     | 5,35E+01                                                 | 2.75E-08                                                 | 7.70E-08                                                 |
| Vapthalene                                                                                                                                                       |                                 |                                                                      | 1.30E-01     | 3,26E-01                                                 | 2.18E-09                                                 | 6.10E-09                                                 |
| NHALATION PA                                                                                                                                                     | THWAY                           |                                                                      |              |                                                          |                                                          |                                                          |
|                                                                                                                                                                  | 1/PEF+1/VF)                     |                                                                      |              |                                                          |                                                          |                                                          |
| EAC = (Ac *                                                                                                                                                      | EF * ED) / AT *for              | carcinogens,                                                         | a conversion | is necessary to ge                                       | et into proper units, ug/m3                              |                                                          |
|                                                                                                                                                                  |                                 | Sc                                                                   | VF           | Ac                                                       | EAC for                                                  | EAC for                                                  |
| Chemical                                                                                                                                                         |                                 |                                                                      |              | <del></del>                                              | Carcinogens                                              | Noncarcinogens                                           |
| 4 000                                                                                                                                                            |                                 | 3.07E-03                                                             |              | 3,07E-12                                                 | 1.80E-11                                                 | 5,05E-14                                                 |
| ,4-000                                                                                                                                                           |                                 | 5.34E+03                                                             |              | 5,34E-06                                                 | 3,13E-05                                                 | 8.77E-08                                                 |
|                                                                                                                                                                  |                                 | 1.46E-01                                                             |              | 1,46E-10                                                 | 8.57E-10                                                 | 2,40E-12                                                 |
| Aluminum                                                                                                                                                         | ene                             | 3.57E-01                                                             |              | 3.57E-10                                                 | 2.10E-09                                                 | 5.87E-12                                                 |
| Aluminum<br>Aroclor-1254                                                                                                                                         |                                 | 4.53E-01                                                             |              | 4.53E-10                                                 | 2.66E-09                                                 | 7.45E-12                                                 |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthrac                                                                                                                      |                                 | 4.JJC-U1                                                             |              |                                                          |                                                          |                                                          |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthrac<br>Benzo(a)pyrene                                                                                                    |                                 | E 00F 04                                                             |              | 5.88E-10                                                 | 3.45E-09                                                 | 9.67E-12                                                 |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthrac<br>Benzo(a)pyrene<br>Benzo(b)fluorant                                                                                | hene                            | 5.88E-01                                                             |              | 0.445.40                                                 |                                                          | 4.045 4-                                                 |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthrac<br>Benzo(a)pyrene<br>Benzo(b)fluorant<br>Benzo(k)fluorantl                                                           | hene<br>hene                    | 2.44E-01                                                             |              | 2.44E-10                                                 | 1.43E-09                                                 | 4.01E-12                                                 |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthrac<br>Benzo(a)pyrene<br>Benzo(b)fluorant<br>Benzo(k)fluorantl<br>Dibenz(a,h)anthr                                       | hene<br>hene                    | 2.44E-01<br>1.87E-01                                                 |              | 1.87E-10                                                 | 1.10E-09                                                 | 3.07E-12                                                 |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthrac<br>Benzo(a)pyrene<br>Benzo(b)fluorant<br>Benzo(k)fluorantl<br>Dibenz(a,h)anthr                                       | hene<br>hene                    | 2.44E-01                                                             |              |                                                          |                                                          |                                                          |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthrac<br>Benzo(a)pyrene<br>Benzo(b)fluorant<br>Benzo(k)fluorantl<br>Dibenz(a,h)anthr<br>Dieldrin                           | hene<br>hene<br>acene           | 2.44E-01<br>1.87E-01                                                 |              | 1.87E-10                                                 | 1.10E-09                                                 | 3.07E-12                                                 |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthrac<br>Benzo(a)pyrene<br>Benzo(b)fluorant<br>Benzo(k)fluorantl<br>Dibenz(a,h)anthr<br>Dieldrin<br>ndeno(1,2,3-cd)        | hene<br>hene<br>acene           | 2.44E-01<br>1.87E-01<br>1.40E-03<br>4.83E-01                         |              | 1.87E-10<br>1.40E-12<br>4.83E-10                         | 1.10E-09<br>8.22E-12<br>2.84E-09                         | 3.07E-12<br>2.30E-14<br>7.94E-12                         |
| Aluminum Aroclor-1254 Benzo(a)anthrac Benzo(a)pyrene Benzo(b)fluorant Benzo(k)fluorantl Dibenz(a,h)anthr Dieldrin ndeno(1,2,3-cd);                               | hene<br>nene<br>acene<br>pyrene | 2.44E-01<br>1.87E-01<br>1.40E-03<br>4.83E-01<br>1.63E+04             | 3.71F+04     | 1.87E-10<br>1.40E-12<br>4.83E-10<br>1.63E-05             | 1.10E-09<br>8.22E-12<br>2.84E-09<br>9.56E-05             | 3.07E-12<br>2.30E-14<br>7.94E-12<br>2.68E-07             |
| Aluminum Aroclor-1254 Benzo(a)anthrac Benzo(a)pyrene Benzo(b)fluorant Benzo(k)fluorant Dibenz(a,h)anthr Dieldrin ndeno(1,2,3-cd) ron sopropylbenzene             | hene<br>nene<br>acene<br>pyrene | 2.44E-01<br>1.87E-01<br>1.40E-03<br>4.83E-01<br>1.63E+04<br>8.31E-01 | 3.71E+04     | 1.87E-10<br>1.40E-12<br>4.83E-10<br>1.63E-05<br>2.24E-05 | 1.10E-09<br>8.22E-12<br>2.84E-09<br>9.56E-05<br>1.32E-04 | 3.07E-12<br>2.30E-14<br>7.94E-12<br>2.68E-07<br>3.69E-07 |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluorantl Benzo(b)fluorantl Dibenz(a,h)anthr Dieldrin Indeno(1,2,3-cd) Iron Isopropylbenzen Lead Napthalene | hene<br>nene<br>acene<br>pyrene | 2.44E-01<br>1.87E-01<br>1.40E-03<br>4.83E-01<br>1.63E+04             | 3.71E+04     | 1.87E-10<br>1.40E-12<br>4.83E-10<br>1.63E-05             | 1.10E-09<br>8.22E-12<br>2.84E-09<br>9.56E-05             | 3.07E-12<br>2.30E-14<br>7.94E-12<br>2.68E-07             |

#### TABLE C-4 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN RME -- YOUTH TRESPASSER (age 6 to 18)

| EOIL INCESTION                | <u> </u>                                                     |                      |                      |                              |                            |
|-------------------------------|--------------------------------------------------------------|----------------------|----------------------|------------------------------|----------------------------|
| SOIL INGESTION                | V                                                            |                      |                      |                              |                            |
| INTAKE = (Sc * I              | R * EF * ED * CF) / (BW * AT)                                |                      |                      |                              |                            |
| Parameter                     | Definition                                                   |                      |                      | Value                        | Reference                  |
| Intake                        | Intake of chemical (mg/kg-day)                               |                      |                      | calculated                   | recipies                   |
| Sc                            | Soil concentration (mg/kg)                                   |                      |                      | see data page                |                            |
| Ac                            | Air concentration (mg/m <sup>3</sup> )                       |                      |                      | see below                    |                            |
| EAC                           | Effective air concentration (mg/m                            |                      |                      | calculated                   |                            |
| PEF                           | Particulate Emission Factor (m^3                             | /kg)                 |                      | 1.00E+09                     | EPA, 2004a                 |
| IR<br>SA                      | Ingestion rate of soil (mg/day)                              |                      |                      | 100                          | TNRCC, 1998                |
| SA<br>AF                      | Skin surface area (cm2)<br>Soil to skin adherence factor (mg | /cm2\                |                      | 3500<br>0.1                  | TNRCC, 1998<br>TNRCC, 1998 |
| ABSd                          | Dermal absorption fraction (unitle                           |                      |                      | see chemprop page            | 111100, 1990               |
| EF                            | Exposure frequency (day/yr)                                  | ,                    |                      | 50                           | TNRCC, 1998                |
| ED                            | Exposure duration (yr)                                       |                      |                      | 12                           | TNRCC, 1998                |
| CF                            | Conversion factor (kg/mg)                                    |                      |                      | 1.00E-06                     | EPA, 1989                  |
| BW                            | Body weight (kg)                                             |                      |                      | 40                           | EPA, 1991a                 |
| ATC                           | Averaging time for carcinogens (                             |                      |                      | 25550                        | EPA, 1989                  |
| ATnc                          | Averaging time for noncarcinoge                              | ns (days)            |                      | 9125                         | EPA, 1989                  |
|                               |                                                              |                      | . Sc                 | Intake for                   | Intake for                 |
| Chemical                      |                                                              |                      |                      | Carcinogens                  | Noncarcinogens             |
| 4,4-DDD                       |                                                              |                      | 5.08E-02             | 2.98E-09                     | 8.35E-09                   |
| Aluminum                      |                                                              |                      | 8.20E+03             | 4.81E-04                     | 1.35E-03                   |
| Aroclor-1254                  |                                                              |                      | 7.73E-01             | 4.54E-08                     | 1.27E-07                   |
| Benzo(a)anthrace              | ene                                                          |                      | 6.43E-01             | 3.77E-08                     | 1.06E-07                   |
| Benzo(a)pyrene                |                                                              |                      | 7.63E-01             | 4.48E-08                     | 1.25E-07                   |
| Benzo(b)fluoranti             |                                                              |                      | 8.22E-01             | 4.83E-08                     | 1.35E-07                   |
| Benzo(k)fluoranth             |                                                              |                      | 3.81E-01             | 2.24E-08                     | 6.26E-08                   |
| Dibenz(a,h)anthr:<br>Dieldrin | acene                                                        |                      | 1.80E-01<br>2.11E-03 | 1.06E-08<br>1.24E-10         | 2.96E-08<br>3.47E-10       |
| Indeno(1,2,3-cd);             | ovrene                                                       |                      | 6.58E-01             | 3.86E-08                     | · 1.08E-07                 |
| iron                          | 3,10,10                                                      |                      | 1.75E+04             | 1.02E-03                     | 2.87E-03                   |
| Isopropylbenzene              | e (cumene)                                                   |                      | 5.85E+00             | 3.43E-07                     | 9.61E-07                   |
| Lead                          | •                                                            |                      | 1.04E+02             | 6.11E-06                     | 1.71E-05                   |
| Napthalene                    |                                                              |                      | 2.65E-03             | 1.56E-10                     | 4.36E-10                   |
| DERMAL CONTA                  | ACT                                                          |                      |                      |                              | <del></del>                |
| INTAKE = (Sc * S              | -<br>- BA * AF * ABSd * EF * ED * CF) / (BW                  | * AT)                |                      |                              |                            |
| (0)                           |                                                              | ···,                 |                      |                              |                            |
|                               |                                                              | ABSd                 | Sc                   | Intake for                   | Intake for                 |
| Chemical                      | <u></u>                                                      |                      |                      | Carcinogens                  | Noncarcinogens             |
| 4.4-DDD                       |                                                              | 4 205 04             | E 00E 03             | 4.265.00                     | 2 205 00                   |
| 4,4-000<br>Aluminum           |                                                              | 1.30E-01<br>1.00E-02 | 5.08E-02<br>8.20E+03 | 1.36E-09<br>1.68E-05         | 3.80E-09<br>4.72E-05       |
| Aroclor-1254                  |                                                              | 1.40E-01             | 7.73E-01             | 2,22E-08                     | 6.23E-08                   |
| Benzo(a)anthrace              | ene                                                          | 1.30E-01             | 6.43E-01             | 1.72E-08                     | 4,81E-08                   |
| Benzo(a)pyrene                |                                                              | 1.30E-01             | 7.63E-01             | 2.04E-08                     | 5.71E-08                   |
| Benzo(b)fluoranti             | hene                                                         | 1.30E-01             | 8,22E-01             | 2.20E-08                     | 6.15E-08                   |
| Benzo(k)fluoranti             | nene                                                         | 1.30E-01             | 3.81E-01             | 1.02E-08                     | 2.85E-08                   |
| Dibenz(a,h)anthra             | acene                                                        | 1.30E-01             | 1.80E-01             | 4.81E-09                     | 1.35E-08                   |
| Dieldrin                      |                                                              | 1.30E-01             | 2.11E-03             | 5.64E-11                     | 1.58E-10                   |
| Indeno(1,2,3-cd)p             | pyrene                                                       | 1.30E-01             | 6.58E-01             | 1.76E-08                     | 4.92E-08                   |
| lron                          | (-,                                                          | 1.00E-02             | 1.75E+04             | 3.59E-05                     | 1.00E-04                   |
| Isopropylbenzene              | (cumene)                                                     | 1.30E-01             | 5.85E+00             | 1.56E-07                     | 4.37E-07                   |
| Lead<br>Napthalene            |                                                              | 1.00E-02<br>1.30E-01 | 1.04E+02<br>2.65E-03 | 2.14E-07<br>7.08E-11         | 5.98E-07<br>1.98E-10       |
| ·                             |                                                              | 1.002-01             | 2.002-00             | 7.000-11                     | 1.002-10                   |
| NHALATION PA                  | THWAY                                                        |                      |                      |                              |                            |
|                               | 1/PEF+1/VF)<br>EF * ED) / AT *for carcinogens                | , a conversion       | is necessary to      | get into proper units, ug/m3 |                            |
|                               |                                                              |                      |                      |                              |                            |
| Chamiaal                      | Sc                                                           | VF                   | Ac                   | EAC for                      | EAC for                    |
| Chemical                      |                                                              |                      |                      | Carcinogens                  | Noncarcinogens             |
| 4,4-DDD                       | 2.70E-04                                                     |                      | 2.70E-13             | 6,34E-12                     | 1.78E-14                   |
| Aluminum                      | 5,95E+03                                                     |                      | 5.95E-06             | 1.40E-04                     | 3.91E-07                   |
| Aroclor-1254                  | 7.64E-01                                                     |                      | 7.64E-10             | 1.79E-08                     | 5.02E-11                   |
| Benzo(a)anthrace              |                                                              |                      | 9.03E-10             | 2,12E-08                     | 5.94E-11                   |
| Benzo(a)pyrene                | 1.09E+00                                                     |                      | 1.09E-09             | 2.55E-08                     | 7.13E-11                   |
| Benzo(b)fluoranth             |                                                              |                      | 1.10E-09             | 2.59E-08                     | 7.25E-11                   |
| Benzo(k)fluoranth             |                                                              |                      | 6.58E-10             | 1.55E-08                     | 4.33E-11                   |
| Dibenz(a,h)anthra<br>Dieldrin | acene 2.45E-01<br>3.14E-03                                   |                      | 2.45E-10<br>3.14E-12 | 5.75E-09<br>7.37E-11         | 1.61E-11<br>2.06E-13       |
| ndeno(1,2,3-cd);              |                                                              |                      | 9,31E-10             | 2.19E-08                     | 6.12E-11                   |
| ron                           | 2.40E+04                                                     |                      | 2.40E-05             | 5.63E-04                     | 1.58E-06                   |
| isopropylbenzene              |                                                              |                      | 1.58E-04             | 3.71E-03                     | 1.04E-05                   |
| Lead                          | 1.47E+02                                                     |                      | 1.47E-07             | 3,45E-06                     | 9.66E-09                   |
| Napthalene                    | 2.65E-03                                                     |                      | 2.65E-12             | 6.22E-11                     | 1.74E-13                   |
|                               |                                                              |                      |                      |                              |                            |

#### TABLE C-5 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE – CONSTRUCTION WORKER

| SOIL INGESTION                       |                                                       |                      |                      | <del></del>                    |                                 |
|--------------------------------------|-------------------------------------------------------|----------------------|----------------------|--------------------------------|---------------------------------|
| INITAKE = (So * ID * E               | F * ED * CF) / (BW * AT)                              |                      |                      |                                |                                 |
| INTAKE - (SC IK E                    | F ED CF//(BW AT)                                      |                      |                      |                                |                                 |
| Parameter                            | Definition                                            |                      |                      | Value                          | Reference                       |
| Intake                               | Intake of chemical (mg/kg-day)                        |                      |                      | calculated                     |                                 |
| Sc<br>Ac                             | Soil concentration (mg/kg) Air concentration (mg/m^3) |                      |                      | see data page<br>see below     |                                 |
| EAC                                  | Effective air concentration (mg/m^                    | 3)                   |                      | calculated                     |                                 |
| PEF                                  | Particulate Emission Factor (m^3/                     |                      |                      | 1.00E+09                       | EPA, 2004a                      |
| IR                                   | Ingestion rate of soil (mg/day)                       | •                    |                      | 165 pro                        | fessional judgment              |
| SA                                   | Skin surface area (cm2)                               |                      |                      | 3300                           | EPA, 2004a                      |
| AF                                   | Soil to skin adherence factor (mg/c                   |                      |                      | 0.14                           | EPA, 2004b                      |
| ABSd                                 | Dermal absorption fraction (unitles                   | s)                   |                      | see chemprop page              |                                 |
| EF<br>ED                             | Exposure frequency (day/yr) Exposure duration (yr)    |                      |                      |                                | fessional judgment              |
| CF                                   | Conversion factor (kg/mg)                             |                      |                      | 1.00E-06                       | fessional judgment<br>EPA, 1989 |
| BW                                   | Body weight (kg)                                      |                      |                      | 70                             | EPA, 1989                       |
|                                      | Averaging time for carcinogens (da                    | avs)                 |                      | 25550                          | EPA, 1989                       |
|                                      | Averaging time for noncarcinogens                     |                      |                      | 365                            | EPA, 1989                       |
| <u> </u>                             | <del></del>                                           |                      |                      | <del></del>                    |                                 |
| Chemical                             |                                                       |                      | Sc                   | Intake for<br>Carcinogens      | Intake for<br>Noncarcinogens    |
|                                      |                                                       |                      |                      |                                |                                 |
| 4,4-DDD                              |                                                       |                      | 7.76E-03             | 6.44E-11                       | 4.51E-09                        |
| Aluminum                             |                                                       |                      | 6.45E+03             | 5.36E-05                       | 3.75E-03                        |
| Aroclor-1254                         |                                                       |                      | 2.16E-01             | 1.79E-09                       | 1.26E-07                        |
| Benzo(a)anthracene                   |                                                       |                      | 2.69E-01             | 2,23E-09                       | 1.56E-07                        |
| Benzo(a)pyrene                       |                                                       |                      | 3.48E-01             | 2.89E-09                       | 2.02E-07                        |
| Benzo(b)fluoranthene                 |                                                       |                      | 4.77E-01             | 3.96E-09                       | 2.77E-07                        |
| Benzo(k)fluoranthene                 | •                                                     |                      | 1.58E-01             | 1.31E-09                       | 9.18E-08                        |
| Dibenz(a,h)anthracend<br>Dieldrin    | <b>5</b>                                              |                      | 1.48E-01<br>8.89E-04 | 1,23E-09<br>7,38E-12           | 8.60E-08<br>5.17E-10            |
| Indeno(1,2,3-cd)pyren                | e                                                     |                      | 3.85E-04             | 7.38E-12<br>3.20E-09           | 5.17E-10<br>2.24E-07            |
| Iron                                 | 6                                                     |                      | 1.43E+04             | 1.19E-04                       | 8.30E-03                        |
| Isopropylbenzene (cur                | mene)                                                 |                      | 8.31E-01             | 6,90E-09                       | 4.83E-07                        |
| Lead                                 | ŕ                                                     |                      | 5.35E+01             | 4.44E-07                       | 3.11E-05                        |
| Napthalene                           |                                                       |                      | 3.26E-01             | 2.71E-09                       | 1,89E-07                        |
| DERMAL CONTACT                       |                                                       |                      |                      |                                |                                 |
| INTAKE = (Sc * SA * A                | AF * ABSd * EF * ED * CF) / (BW * .                   | ΔΤ)                  |                      |                                |                                 |
| INTAKE - (GC GA A                    |                                                       | ^1)                  |                      |                                |                                 |
|                                      |                                                       | V DC1                |                      | 1-4-1 6                        | ladalis for                     |
| Chemical                             |                                                       | ABSd                 | Sc                   | Intake for<br>Carcinogens N    | Intake for<br>Noncarcinogens    |
|                                      |                                                       |                      |                      |                                |                                 |
| 4,4-DDD                              |                                                       | 1.30E-01             | 7.76E-03             | 2,35E-11                       | 1.64E-09                        |
| Aluminum                             |                                                       | 1.00E-02             | 6.45E+03             | 1.50E-06                       | 1.05E-04                        |
| Aroclor-1254                         |                                                       | 1.40E-01             | 2.16E-01             | 7.03E-10                       | 4.92E-08                        |
| Benzo(a)anthracene<br>Benzo(a)pyrene |                                                       | 1.30E-01<br>1.30E-01 | 2.69E-01<br>3.48E-01 | 8.13E-10<br>1.05E-09           | 5.69E-08<br>7.36E-08            |
| Benzo(b)fluoranthene                 |                                                       | 1.30E-01             | 4.77E-01             | 1.44E-09                       | 1.01E-07                        |
| Benzo(k)fluoranthene                 |                                                       | 1.30E-01             | 1.58E-01             | 4.78E-10                       | 3.34E-08                        |
| Dibenz(a,h)anthracene                | 9                                                     | 1.30E-01             | 1.48E-01             | 4.47E-10                       | 3.13E-08                        |
| Dieldrin                             |                                                       | 1.30E-01             | 8.89E-04             | 2.69E-12                       | 1.88E-10                        |
| Indeno(1,2,3-cd)pyren                | e                                                     | 1.30E-01             | 3.85E-01             | 1.16E-09                       | 8.15E-08                        |
| Iron                                 |                                                       | 1.00E-02             | 1.43E+04             | 3.32E-06                       | 2.32E-04                        |
| Isopropyibenzene (cur                | mene)                                                 | 1.30E-01             | 8.31E-01             | 2.51E-09                       | 1.76E-07                        |
| Lead                                 |                                                       | 1.00E-02             | 5.35E+01             | 1.24E-08                       | 8.71E-07                        |
| Napthalene                           | ű.                                                    | 1.30E-01             | 3.26E-01             | 9,85E-10                       | 6.90E-08                        |
| INHALATION PATHW                     | AY                                                    |                      |                      |                                |                                 |
| Ac = Sc * (1/PE                      |                                                       |                      |                      |                                |                                 |
| EAC = (Ac * EF * I                   | ED) / AT *for carcinogens,                            | a conversion         | Is necessary t       | o get into proper units, ug/m3 |                                 |
|                                      |                                                       | VE                   | ۸                    | FAC 4                          | EAC for                         |
| Chemical .                           | Sc                                                    | VF                   | Ac                   | EAC for<br>Carcinogens         | EAC for<br>loncarcinogens       |
|                                      | 2 27=                                                 |                      | 2.075.10             |                                |                                 |
| 4,4-DDD                              | 3.07E-03                                              |                      | 3.07E-12             | 1.08E-11                       | 7.57E-13                        |
| Aluminum                             | 5.34E+03                                              |                      | 5.34E-06             | 1.88E-05                       | 1.32E-06<br>3.60E-11            |
| Aroclor-1254<br>Benzo(a)anthracene   | 1.46E-01<br>3.57E-01                                  |                      | 1.46E-10<br>3.57E-10 | 5.14E-10<br>1.26E-09           | 3.60E-11<br>8.80E-11            |
| Benzo(a)pyrene                       | 3.57E-01<br>4.53E-01                                  |                      | 3.57E-10<br>4.53E-10 | 1,26E-09<br>1,60E-09           | 1.12E-10                        |
| Benzo(b)fluoranthene                 | 5.88E-01                                              |                      | 5.88E-10             | 2.07E-09                       | 1.45E-10                        |
| Benzo(k)fluoranthene                 | 2.44E-01                                              |                      | 2.44E-10             | 8.59E-10                       | 6.02E-11                        |
| Dibenz(a,h)anthracene                |                                                       |                      | 1.87E-10             | 6.59E-10                       | 4.61E-11                        |
| Dieldrin                             | 1.40E-03                                              |                      | 1.40E-12             | 4,93E-12                       | 3.45E-13                        |
| Indeno(1,2,3-cd)pyren                |                                                       |                      | 4.83E-10             | 1.70E-09                       | 1.19E-10                        |
| Iron                                 | 1.63E+04                                              |                      | 1.63E-05             | 5.74E-05                       | 4.02E-06                        |
| Isopropylbenzene (cur                |                                                       | 3.71E+04             | 2.24E-05             | 7,90E-05                       | 5.53E-06                        |
| Lead                                 | 6.96E+01                                              |                      | 6.96E-08             | 2,45E-07                       | 1.72E-08                        |
| Napthalene                           | 3.26E-01                                              |                      | 3.26E-10             | 1.15E-09                       | 8.04E-11                        |
| L <u></u>                            |                                                       |                      |                      |                                |                                 |

#### TABLE C-6 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN RME -- CONSTRUCTION WORKER

| SOIL INGESTION                      |                                           |                      |                      |                      | <del></del>                    |                           |
|-------------------------------------|-------------------------------------------|----------------------|----------------------|----------------------|--------------------------------|---------------------------|
| OOL NGESTION                        |                                           |                      |                      |                      |                                |                           |
| INTAKE = (Sc * IF                   | R * EF * ED * CF) / (BW                   | * AT)                |                      |                      | •                              |                           |
| Parameter                           | Definition                                |                      |                      |                      | Value                          | Reference                 |
| Intake                              | Intake of chemical                        | (mg/kg-day)          |                      |                      | calculated                     | 1,010.011                 |
| Sc                                  | Soil concentration (                      | mg/kg)               |                      |                      | see data page                  |                           |
| Ac                                  | Air concentration (r                      |                      |                      |                      | see below                      |                           |
| EAC                                 | Effective air concer                      |                      |                      |                      | calculated                     | FDA 2004-                 |
| PEF<br>IR                           | Particulate Emission Ingestion rate of so |                      | (g)                  |                      | 1.00E+09<br>330                | EPA, 2004a<br>EPA, 2001   |
| SA                                  | Skin surface area (                       |                      |                      |                      | 3300                           | EPA, 2001                 |
| AF                                  | Soil to skin adherer                      |                      | :m2)                 |                      | 0.3                            | EPA, 2004b                |
| ABSd                                | Dermal absorption                         |                      |                      |                      | see chemprop page              |                           |
| EF                                  | Exposure frequenc                         |                      | •                    |                      | 250                            | professional judgment     |
| ED                                  | Exposure duration                         | (yr)                 |                      |                      | 1                              | professional judgment     |
| CF                                  | Conversion factor (                       | kg/mg)               |                      |                      | 1.00E-06                       | EPA, 1989                 |
| BW                                  | Body weight (kg)                          | ·                    |                      |                      | 70                             | EPA, 1989                 |
| ATc                                 | Averaging time for                        |                      |                      |                      | 25550                          | EPA, 1989                 |
| ATnc                                | Averaging time for                        | noncarcinogen        | s (uays)             |                      | 365                            | EPA, 1989                 |
|                                     |                                           |                      |                      | Sc                   | Intake for                     | Intake for                |
| Chemical                            | ·                                         |                      |                      |                      | Carcinogens                    | Noncarcinogens            |
| 4,4-DDD                             |                                           |                      |                      | 5,08E-02             | 2.34E-09                       | 1.64E-07                  |
| Aluminum                            |                                           |                      |                      | 8.20E+03             | 3.78E-04                       | 2.65E-02                  |
| Aroclor-1254                        |                                           |                      |                      | 7.73E-01             | 3.57E-08                       | 2.50E-06                  |
| Benzo(a)anthrace                    | ene                                       |                      |                      | 6.43E-01             | 2,97E-08                       | 2.08E-06                  |
| Benzo(a)pyrene                      |                                           |                      |                      | 7.63E-01             | 3.52E-08                       | 2.46E-06                  |
| Benzo(b)fluoranth                   | nene                                      |                      |                      | 8.22E-01             | 3.79E-08                       | 2.65E-06                  |
| Benzo(k)fluoranth                   |                                           |                      |                      | 3.81E-01             | 1.76E-08                       | 1.23E-06                  |
| Dibenz(a,h)anthra                   |                                           |                      |                      | 1.80E-01             | 8.30E-09                       | 5.81E-07                  |
| Dieldrin                            |                                           |                      |                      | 2.11E-03             | 9.73E-11                       | 6.81E-09                  |
| ndeno(1,2,3-cd)p                    | yrene                                     |                      |                      | 6,58E-01             | 3.04E-08                       | 2.12E-06                  |
| ron                                 |                                           |                      |                      | 1.75E+04             | . 8.05E-04                     | 5.64E-02                  |
| Isopropylbenzene                    | (cumene)                                  |                      |                      | 5.85E+00             | 2.70E-07                       | 1.89E-05                  |
| _ead                                |                                           |                      |                      | 1.04E+02<br>2.65E-03 | 4.80E-06                       | 3.36E-04                  |
| Napthalene                          |                                           |                      |                      | 2,65E-03             | 1.22E-10                       | 8,56E-09                  |
|                                     | <del></del>                               | <u> </u>             | ABSd                 | Sc                   | Intake for                     | Intake for                |
| Chemical                            |                                           |                      |                      |                      | Carcinogens                    | Noncarcinogens            |
| 4,4-DDD                             |                                           |                      | 1.30E-01             | 5,08E-02             | 9,14E-10                       | 6,40E-08                  |
| 4,4-000<br>Aluminum                 |                                           |                      | 1.00E-02             | 8,20E+03             | 1.13E-05                       | 7.94E-04                  |
| Aroclor-1254                        |                                           |                      | 1.40E-01             | 7.73E-01             | 1.50E-08                       | 1.05E-06                  |
| Benzo(a)anthrace                    | ine                                       |                      | 1.30E-01             | 6.43E-01             | 1.16E-08                       | 8,10E-07                  |
| Benzo(a)pyrene                      |                                           |                      | 1.30E-01             | 7.63E-01             | 1.37E-08                       | 9,61E-07                  |
| Benzo(b)fluoranth                   | iene                                      |                      | 1.30E-01             | 8.22E-01             | 1.48E-08                       | 1.04E-06                  |
| Benzo(k)fluoranth                   | ene                                       |                      | 1.30E-01             | 3.81E-01             | 6.85E-09                       | 4.80E-07                  |
| Dibenz(a,h)anthra                   |                                           |                      | 1.30E-01             | 1.80E-01             | 3.24E-09                       | 2.27E-07                  |
| Dieldrin                            |                                           |                      | 1,30E-01             | 2.11E-03             | 3,80E-11                       | 2.66E-09                  |
| ndeno(1,2,3-cd)p                    | yrene                                     |                      | 1.30E-01             | 6.58E-01             | 1.18E-08                       | 8.29E-07                  |
| ron                                 |                                           |                      | 1.00E-02             | 1.75E+04             | 2.42E-05                       | 1.69E-03                  |
| sopropylbenzene                     | (cumene)                                  |                      | 1.30E-01             | 5.85E+00             | 1.05E-07                       | 7.36E-06                  |
| _ead<br>Napthalene                  |                                           |                      | 1.00E-02<br>1.30E-01 | 1.04E+02<br>2.65E-03 | 1.44E-07<br>4.77E-11           | 1.01E-05<br>3.34E-09      |
|                                     |                                           |                      | 1.00E-01             | 2.000-00             | 4.776-11                       | J.J7L-03                  |
| NHALATION PAT                       | THWAY                                     |                      |                      |                      |                                |                           |
|                                     | I/PEF+ 1/VF)<br>EF * ED) / AT *fo         | r carcinogens,       | a conversion         | is necessary to      | o get into proper units, ug/m3 |                           |
| Chemical                            |                                           | Sc                   | VF                   | Ac                   | EAC for<br>Carcinogens         | EAC for<br>Noncarcinogens |
|                                     |                                           | 0.705.04             |                      | 2.705.42             |                                |                           |
| 4,4-DDD<br>Aluminum                 |                                           | 2.70E-04<br>5.95E+03 |                      | 2.70E-13<br>5.95E-06 | 2.64E-12<br>5.82E-05           | 1.85E-13<br>4.07E-06      |
| Aroclor-1254                        |                                           | 7.64E-01             |                      | 7.64E-10             | 7,48E-09                       | 5.23E-10                  |
| Riocior-1254<br>Benzo(a)anthrace    | ene                                       | 9.03E-01             |                      | 9.03E-10             | 8.84E-09                       | 6.18E-10                  |
| senzo(a)anmrace<br>Senzo(a)pyrene   | A10                                       | 1.09E+00             |                      | 1.09E-09             | 1,06E-08                       | 7.43E-10                  |
| Benzo(a)pyrene<br>Benzo(b)fluoranth | nene                                      | 1.10E+00             |                      | 1.10E-09             | 1.08E-08                       | 7.43E-10<br>7.55E-10      |
| Benzo(k)fluoranth                   |                                           | 6.58E-01             |                      | 6.58E-10             | 6.44E-09                       | 4.51E-10                  |
| Dibenz(a,h)anthra                   |                                           | 2.45E-01             |                      | 2.45E-10             | 2.40E-09                       | 1.68E-10                  |
| Dieldrin                            |                                           | 3.14E-03             |                      | 3.14E-12             | 3.07E-11                       | 2.15E-12                  |
| ndeno(1,2,3-cd)p                    | yrene                                     | 9.31E-01             |                      | 9.31E-10             | 9.11E-09                       | 6.38E-10                  |
| ron                                 | -                                         | 2.40E+04             |                      | 2.40E-05             | 2.34E-04                       | 1.64E-05                  |
| sopropylbenzene                     | (cumene)                                  |                      | 3.71E+04             | 1.58E-04             | 1.54E-03                       | 1.08E-04                  |
| Lead                                | •                                         | 1.47E+02             |                      | 1.47E-07             | 1.44E-06                       | 1.01E-07                  |
| Napthalene                          |                                           | 2.65E-03             |                      | 2.65E-12             | 2.59E-11                       | 1.82E-12                  |
|                                     |                                           |                      |                      |                      |                                |                           |

#### TABLE C-7 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE — INDUSTRIAL WORKER

| SOIL INGESTION                           |                                             |                      |                      | <del></del>          |                                |                              |   |
|------------------------------------------|---------------------------------------------|----------------------|----------------------|----------------------|--------------------------------|------------------------------|---|
| SOIL INGESTION                           |                                             |                      |                      |                      |                                |                              | • |
| INTAKE = (Sc * IR                        | * EF * ED * CF) / (BW                       | * AT)                |                      |                      |                                |                              |   |
| Parameter                                | Definition                                  |                      |                      |                      | Value                          | Reference                    |   |
| Intake                                   | Intake of chemical                          |                      |                      |                      | calculated                     | . <del>-</del>               |   |
| Sc                                       | Soil concentration                          |                      |                      |                      | see data page                  |                              |   |
| Ac                                       | Air concentration (                         |                      | •                    |                      | see below                      |                              |   |
| EAC<br>PEF                               | Effective air conce<br>Particulate Emission |                      |                      |                      | calculated<br>1.00E+09         | EPA, 2004a                   |   |
| IR                                       | Ingestion rate of se                        |                      | 9)                   |                      | 50                             | EPA, 2004a                   |   |
| SA                                       | Skin surface area                           |                      |                      |                      | 3300                           | EPA, 2004a                   |   |
| AF                                       | Soil to skin adhere                         |                      | :m2)                 |                      | 0.021                          | EPA, 2004a                   |   |
| ABSd                                     | Dermal absorption                           | fraction (unitles    | s)                   |                      | see chemprop page              |                              |   |
| EF                                       | Exposure frequence                          |                      |                      |                      | 250                            | EPA, 2004a                   |   |
| ED                                       | Exposure duration                           |                      |                      |                      | 25                             | EPA, 2004a                   |   |
| CF<br>BW                                 | Conversion factor                           | (kg/mg)              |                      |                      | 1.00E-06                       | EPA, 1989<br>EPA, 1989       |   |
| ATC                                      | Body weight (kg)<br>Averaging time for      | carcinogene (de      | ave)                 |                      | 70<br>25550                    | EPA, 1989                    |   |
| ATnc                                     | Averaging time for                          |                      |                      |                      | 9125                           | EPA, 1989                    |   |
|                                          |                                             |                      |                      |                      |                                |                              |   |
| <b>.</b>                                 |                                             |                      |                      | Sc                   | Intake for                     | Intake for                   |   |
| Chemical                                 |                                             |                      |                      |                      | Carcinogens                    | Noncarcinogens               |   |
| 4,4-DDD                                  |                                             |                      |                      | 7.76E-03             | 1.36E-09                       | 3,80E-09                     |   |
| Aluminum                                 |                                             |                      |                      | 6.45E+03             | 1.13E-03                       | 3.16E-03                     |   |
| Aroclor-1254                             |                                             |                      |                      | 2.16E-01             | 3.77E-08                       | 1.06E-07                     |   |
| Benzo(a)anthracer                        | ie                                          |                      |                      | 2.69E-01             | 4.70E-08<br>6.08E-08           | 1.32E-07                     |   |
| Benzo(a)pyrene<br>Benzo(b)fluoranthe     | ene                                         |                      |                      | 3.48E-01<br>4.77E-01 | 6,08E-08<br>8,33E-08           | 1.70E-07<br>2.33E-07         |   |
| Benzo(b)fluoranthe<br>Benzo(k)fluoranthe |                                             |                      |                      | 4.77E-01<br>1.58E-01 | 8.33E-08<br>2.76E-08           | 7.73E-08                     |   |
| Dibenz(a,h)anthrac                       |                                             |                      |                      | 1.48E-01             | 2.59E-08                       | 7.73E-08<br>7.24E-08         |   |
| Dieldrin                                 | *                                           |                      |                      | 8.89E-04             | 1.55E-10                       | 4.35E-10                     |   |
| Indeno(1,2,3-cd)py                       | rene                                        |                      |                      | 3.85E-01             | 6.73E-08                       | 1.88E-07                     |   |
| Iron                                     |                                             |                      |                      | 1.43E+04             | 2,49E-03                       | 6,98E-03                     |   |
| Isopropylbenzene (                       | (cumene)                                    |                      |                      | 8.31E-01             | 1.45E-07                       | 4.07E-07                     |   |
| Lead<br>Napthalene                       |                                             |                      |                      | 5.35E+01             | 9.35E-06                       | 2.62E-05                     |   |
| ויים אוומוסווט                           | · ·                                         |                      |                      | 3.26E-01             | 5,70E-08                       | 1.59E-07                     |   |
| INTAKE = (Sc * SA                        | A*AF*ABSd*EF*E                              | D * CF) / (BW *      | AT)                  |                      |                                |                              |   |
| Chemical                                 |                                             |                      | ABSd                 | Sc                   | Intake for<br>Carcinogens      | Intake for<br>Noncarcinogens |   |
|                                          |                                             | 7.**                 |                      |                      |                                |                              |   |
|                                          |                                             |                      | 4.00= - /            |                      |                                |                              |   |
| 4,4-DDD<br>Aluminum                      |                                             |                      | 1.30E-01             | 7.76E-03             | 2.44E-10                       | 6.84E-10                     |   |
| Aluminum<br>Aroclor-1254                 |                                             |                      | 1.00E-02<br>1.40E-01 | 6.45E+03<br>2.16E-01 | 1.56E-05<br>7.32E-09           | 4.37E-05<br>2.05E-08         |   |
| Arocioi-1234<br>Benzo(a)anthracen        | 10                                          |                      | 1.30E-01             | 2.69E-01             | 8.47E-09                       | 2.37E-08                     |   |
| Benzo(a)pyrene                           |                                             |                      | 1.30E-01             | 3,48E-01             | 1.10E-08                       | 3.07E-08                     |   |
| Benzo(b)fluoranthe                       | ene                                         |                      | 1.30E-01             | 4.77E-01             | 1.50E-08                       | 4.20E-08                     |   |
| Benzo(k)fluoranthe                       | ne                                          |                      | 1.30E-01             | 1.58E-01             | 4.97E-09                       | 1.39E-08                     |   |
| Dibenz(a,h)anthrac                       |                                             |                      | 1.30E-01             | 1.48E-01             | 4.66E-09                       | 1.30E-08                     |   |
| Dieldrin                                 |                                             |                      | 1.30E-01             | 8.89E-04             | 2.80E-11                       | 7.84E-11                     |   |
| ndeno(1,2,3-cd)py                        | rene                                        |                      | 1.30E-01             | 3.85E-01             | 1.21E-08                       | 3.39E-08                     |   |
| lron                                     | (a.,                                        |                      | 1.00E-02             | 1.43E+04             | 3,46E-05                       | 9.68E-05                     |   |
| lsopropylbenzene (<br>Lead               | cumene)                                     |                      | 1.30E-01<br>1.00E-02 | 8,31E-01<br>5,35E+01 | 2.62E-08                       | 7.33E-08<br>3.63E-07         |   |
| Lead<br>Napthalene                       |                                             |                      | 1.30E-01             | 3.26E-01             | 1.30E-07<br>1.03E-08           | 2.87E-08                     |   |
| NHALATION PATI                           | HWAY                                        |                      |                      |                      |                                |                              |   |
| Ac= Sc* (1/                              | PEF+ 1/VF)                                  | or carcinogens,      | a conversion         | is necessary to      | o get into proper units, ug/m3 |                              |   |
| Chemical                                 |                                             | Sc                   | VF                   | Ac                   | EAC for<br>Carcinogens         | EAC for<br>Noncarcinogens    |   |
| 4,4-DDD                                  |                                             | 3.07E-03             |                      | 3.07E-12             | 7.51E-10                       | 2,10E-12                     |   |
| Aluminum                                 |                                             | 5.34E+03             |                      | 5.34E-06             | 1.31E-03                       | 3.65E-06                     |   |
| Aroclor-1254                             |                                             | 1.46E-01             |                      | 1.46E-10             | 3.57E-08                       | 1.00E-10                     |   |
| Benzo(a)anthracen                        | ie                                          | 3.57E-01             |                      | 3.57E-10             | 8.73E-08                       | 2.45E-10                     |   |
| Benzo(a)pyrene                           |                                             | 4.53E-01             |                      | 4.53E-10             | 1.11E-07                       | 3.10E-10                     |   |
| Benzo(b)fluoranthe                       |                                             | 5.88E-01             |                      | 5.88E-10             | 1.44E-07                       | 4.03E-10                     |   |
| Benzo(k)fluoranthe                       |                                             | 2.44E-01             |                      | 2.44E-10             | 5.97E-08                       | 1.67E-10                     |   |
| Dibenz(a,h)anthrac                       | ene                                         | 1.87E-01             |                      | 1.87E-10             | 4.57E-08                       | 1.28E-10                     |   |
| Dieldrin                                 |                                             | 1.40E-03             |                      | 1.40E-12             | 3.42E-10                       | 9.59E-13                     |   |
| ndeno(1,2,3-cd)py                        | rene                                        | 4.83E-01             |                      | 4.83E-10             | 1.18E-07                       | 3.31E-10                     |   |
| ron<br>sopropylbenzene (                 | (cumene)                                    | 1.63E+04<br>8.31E-01 | 3.71E+04             | 1.63E-05<br>2.24E-05 | 3.98E-03<br>5.49E-03           | 1.12E-05<br>1.54E-05         |   |
| -ead                                     | Julianio                                    | 6.96E+01             | J.7 1ETU4            | 6.96E-08             | 1.70E-05                       | 4.77E-08                     |   |
| Napthalene                               |                                             | 3.26E-01             |                      | 3.26E-10             | 7.97E-08                       | 2.23E-10                     |   |
|                                          |                                             |                      |                      |                      |                                |                              |   |

#### TABLE C-8 INTAKE CALCULATIONS FOR SOIL SOUTH OF MARLIN RME – INDUSTRIAL WORKER

| SOIL INGESTION                           |                                        | <del></del>        | ····                 |                      |                                |                           |
|------------------------------------------|----------------------------------------|--------------------|----------------------|----------------------|--------------------------------|---------------------------|
|                                          |                                        |                    |                      |                      |                                |                           |
| INTAKE = (Sc * IR                        | * EF * ED * CF) / (BV                  | / * AT)            |                      |                      |                                |                           |
| Parameter                                | Definition                             |                    |                      |                      | Value                          | Reference                 |
| Intake                                   | Intake of chemica                      |                    |                      |                      | calculated                     |                           |
| Sc<br>Ac                                 | Soil concentration Air concentration   |                    |                      |                      | see data page<br>see below     |                           |
| EAC                                      | Effective air conc                     |                    | 3)                   |                      | calculated                     |                           |
| PEF                                      | Particulate Emissi                     |                    |                      |                      | 1.00E+09                       | EPA, 2004a                |
| IR                                       | Ingestion rate of s                    |                    | <b>.</b> ,           |                      | 50                             | EPA, 2004a                |
| SA                                       | Skin surface area                      | (cm2)              |                      |                      | 3300                           | EPA, 2004a                |
| AF                                       | Soil to skin adher                     |                    |                      |                      | 0.2                            | EPA, 2004a                |
| ABSd                                     | Dermal absorption                      |                    | s)                   |                      | see chemprop page              | ED.4. 000.4               |
| EF<br>ED                                 | Exposure frequen                       |                    |                      |                      | 250<br>25                      | EPA, 2004a                |
| CF                                       | Exposure duration<br>Conversion factor |                    |                      |                      | 1,00E-06                       | EPA, 2004a<br>EPA, 1989   |
| BW                                       | Body weight (kg)                       | (value)            |                      |                      | 70                             | EPA, 1989                 |
| ATc                                      | Averaging time fo                      | r carcinogens (da  | avs)                 |                      | 25550                          | EPA, 1989                 |
| ATnc                                     | Averaging time fo                      |                    |                      |                      | 9125                           | EPA, 1989                 |
|                                          |                                        | <del></del>        |                      | Sc                   | Intake for                     | Intake for                |
| Chemical                                 |                                        |                    |                      |                      | Carcinogens                    | Noncarcinogens            |
| 4,4-DDD                                  |                                        |                    |                      | 5,08E-02             | 8.88E-09                       | 2,49E-08                  |
| Aluminum                                 |                                        |                    |                      | 8.20E+03             | 1.43E-03                       | 4.01E-03                  |
| Aroclor-1254                             | _                                      |                    |                      | 7.73E-01             | 1.35E-07                       | 3.78E-07                  |
| Benzo(a)anthracen                        | ie                                     |                    |                      | 6.43E-01             | 1.12E-07                       | 3.15E-07                  |
| Benzo(a)pyrene                           | nne.                                   |                    |                      | 7.63E-01             | 1.33E-07                       | 3,73E-07                  |
| Benzo(b)fluoranthe                       |                                        |                    |                      | 8.22E-01<br>3.81E-01 | 1.44E-07                       | 4.02E-07<br>1.86E-07      |
| Benzo(k)fluoranthe<br>Dibenz(a,h)anthrac |                                        |                    |                      | 3.81E-01<br>1.80E-01 | 6.66E-08<br>3.15E-08           | 1.86E-07<br>8.81E-08      |
| Dieldrin                                 | ond.                                   |                    |                      | 2.11E-03             | 3.69E-10                       | 1.03E-09                  |
| Indeno(1,2,3-cd)py                       | rene                                   |                    |                      | 6.58E-01             | 1,15E-07                       | 3.22E-07                  |
| Iron                                     | TOTIC                                  |                    |                      | 1.75E+04             | 3.05E-03                       | 8.54E-03                  |
| Isopropylbenzene (                       | (cumene)                               |                    |                      | 5,85E+00             | 1,02E-06                       | 2.86E-06                  |
| Lead                                     |                                        |                    |                      | 1.04E+02             | 1.82E-05                       | 5.09E-05                  |
| Napthalene                               |                                        |                    |                      | 2.65E-03             | 4.63E-10                       | 1.30E-09                  |
| DERMAL CONTAC                            | :T<br>. * AF * ABSd * EF * E           | ED * CF) / (BW * . | ΑΤ)                  |                      |                                |                           |
|                                          |                                        |                    |                      |                      | ·                              |                           |
|                                          |                                        |                    | ABSd                 | Sc                   | Intake for                     | Intake for                |
| Chemical                                 |                                        |                    |                      |                      | Carcinogens                    | Noncarcinogens            |
| 4,4-DDD                                  |                                        |                    | 1.30E-01             | 5.08E-02             | 1,52E-08                       | 4.26E-08                  |
| Aluminum                                 |                                        |                    | 1.00E-02             | 8,20E+03             | 1.89E-04                       | 5.29E-04                  |
| Aroclor-1254                             |                                        |                    | 1.40E-01             | 7.73E-01             | 2.50E-07                       | 6.99E-07                  |
| Benzo(a)anthracen                        | e                                      |                    | 1.30E-01             | 6.43E-01             | 1.93E-07                       | 5.40E-07                  |
| Benzo(a)pyrene                           |                                        |                    | 1,30E-01             | 7.63E-01             | 2,29E-07                       | 6.41E-07                  |
| Benzo(b)fluoranthe                       | ene                                    |                    | 1.30E-01             | 8.22E-01             | 2.46E-07                       | 6.90E-07                  |
| Benzo(k)fluoranthe                       |                                        |                    | 1.30E-01             | 3.81E-01             | 1.14E-07                       | 3.20E-07                  |
| Dibenz(a,h)anthrac                       | ene                                    |                    | 1.30E-01             | 1.80E-01             | 5.40E-08                       | 1.51E-07                  |
| Dieldrin                                 |                                        |                    | 1.30E-01             | 2.11E-03             | 6.33E-10                       | 1.77E-09                  |
| Indeno(1,2,3-cd)py                       | rene                                   |                    | 1.30E-01             | 6.58E-01             | 1.97E-07                       | 5.52E-07                  |
| Iron                                     | ·                                      |                    | 1.00E-02             | 1.75E+04             | 4.03E-04                       | 1.13E-03                  |
| isopropyibenzene (                       | cumene)                                |                    | 1.30E-01             | 5.85E+00             | 1.75E-06                       | 4.91E-06                  |
| Lead<br>Napthalene                       |                                        |                    | 1.00E-02<br>1.30E-01 | 1.04E+02<br>2.65E-03 | 2,40E-06<br>7.95E-10           | 6.72E-06<br>2.22E-09      |
| INHALATION PATE                          | J\A/AV                                 |                    |                      |                      | ,.502.10                       |                           |
|                                          |                                        |                    |                      |                      |                                |                           |
|                                          | PEF + 1/VF)<br>F * ED) / AT *          | for carcinogens,   | a conversion         | is necessary t       | o get into proper units, ug/m3 |                           |
| Chemical                                 |                                        | Sc                 | VF                   | Ac                   | EAC for<br>Carcinogens         | EAC for<br>Noncarcinogens |
| 4,4-DDD                                  |                                        | 2.70E-04           |                      | 2.70E-13             | 6,60E-11                       | 1.85E-13                  |
| Aluminum                                 |                                        | 5.95E+03           |                      | 5.95E-06             | 1.45E-03                       | 4.07E-06                  |
| Aroclor-1254                             |                                        | 7.64E-01           |                      | 7.64E-10             | 1.87E-07                       | 5.23E-10                  |
| Benzo(a)anthracen                        | ie                                     | 9.03E-01           |                      | 9.03E-10             | 2.21E-07                       | 6.18E-10                  |
| Benzo(a)pyrene                           |                                        | 1.09E+00           |                      | 1.09E-09             | 2.65E-07                       | 7.43E-10                  |
| Benzo(b)fluoranthe                       | ne                                     | 1.10E+00           |                      | 1.10E-09             | 2.70E-07                       | 7.55E-10                  |
| Benzo(k)fluoranthe                       |                                        | 6.58E-01           |                      | 6,58E-10             | 1.61E-07                       | 4.51E-10                  |
| Dibenz(a,h)anthrac                       |                                        | 2.45E-01           |                      | 2.45E-10             | 5.99E-08                       | 1.68E-10                  |
| Dieldrin                                 |                                        | 3.14E-03           |                      | 3.14E-12             | 7.68E-10                       | 2.15E-12                  |
| Indeno(1,2,3-cd)py                       | rene                                   | 9.31E-01           |                      | 9.31E-10             | 2.28E-07                       | 6.38E-10                  |
| Iron                                     |                                        | 2.40E+04           |                      | 2.40E-05             | 5.86E-03                       | 1.64E-05                  |
| isopropylbenzene (                       | (cumene)                               | 5.85E+00           | 3.71E+04             | 1.58E-04             | 3,86E-02                       | 1.08E-04                  |
| Lead                                     |                                        | 1.47E+02           |                      | 1.47E-07             | 3.59E-05                       | 1.01E-07                  |
| Napthalene                               |                                        | 2.65E-03           |                      | 2.65E-12             | 6.48E-10                       | 1.82E-12                  |

APPENDIX C-2
INTAKE CALCULATIONS
NORTH OF MARLIN SOIL

TABLE C-9
EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs
SOIL NORTH OF MARLIN AVE.

| Parameter              | Average  |   | 95% UCL  | Statistic Used       |
|------------------------|----------|---|----------|----------------------|
| 1,2-Dichloroethane     | 1.95E-02 | < | 1.27E-04 | median               |
| Aluminum               | 1.23E+04 |   | 1.33E+04 | 95% Student's-t      |
| Aroclor-1254           | 1.81E-01 | < | 4.30E-03 | median               |
| Benzo(a)anthracene     | 1.09E-01 | < | 1.11E-02 | median               |
| Benzo(a)pyrene         | 9.37E-02 |   | 3.78E-01 | 97.5% KM (Chebyshev) |
| Benzo(b)fluoranthene   | 1.44E-01 |   | 2.52E-01 | 95% KM (Bootstrap)   |
| Dibenz(a,h)anthracene  | 6.88E-02 | < | 1.08E-02 | median               |
| Indeno(1,2,3-cd)pyrene | 1.15E-01 |   | 3.96E-01 | 97.5% KM (Chebyshev) |
| Iron                   | 2.09E+04 |   | 3.69E+04 | 95% Chebyshev        |
| Tetrachloroethene      | 1.26E-02 | < | 2.11E-04 | median               |

## TABLE C-10 EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCS SURFACE SOIL NORTH OF MARLIN AVE.

| Parameter              | Average  |   | 95% UCL  | Statistic Used       |
|------------------------|----------|---|----------|----------------------|
| 1,2-Dichloroethane     | 0        |   | 0        | NS                   |
| Aluminum               | 1.07E+04 |   | 1.22E+04 | 95% Student's-t      |
| Aroclor-1254           | 1.22E-02 | < | 4.29E-03 | median               |
| Benzo(a)anthracene     | 1.18E+00 | < | 1.10E-02 | median               |
| Benzo(a)pyrene         | 1.19E-01 | < | 1.16E-02 | median               |
| Benzo(b)fluoranthene   | 1.69E-01 |   | 3.73E-01 | 95% KM (BCA)         |
| Dibenz(a,h)anthracene  | 7.69E-02 | < | 1.10E-02 | median               |
| Indeno(1,2,3-cd)pyrene | 1.55E-01 |   | 6.82E-01 | 97.5% KM (Chebyshev) |
| iron                   | 1.95E+04 |   | 4.11E+04 | 95% Chebyshev        |
| Tetrachloroethene      | 0        |   | 0        | NS                   |

Notes:

NS -- Not Sampled in surface soil.

TABLE C-11
CALCULATION OF OUTDOOR AIR CONCENTRATION FROM EXPOSED SOIL - VOLATILE EMISSIONS

|                    | De = <u>H' * Da * na^3.33/n^2 + Dw * nw^3.33/n^2</u><br>Pb * Kd + nw + na * H' |                |                                  |           |              |          |        |             | Kd = Foc * Koc |          |  |  |
|--------------------|--------------------------------------------------------------------------------|----------------|----------------------------------|-----------|--------------|----------|--------|-------------|----------------|----------|--|--|
|                    | VF =                                                                           |                | De * T)^0.5 *<br>* Pb * De) * CF |           |              |          |        | na = n - nw | Source: EPA,   | 1996     |  |  |
| Parameter          | Definition                                                                     |                |                                  |           |              |          |        | Value       | Reference      |          |  |  |
| Da                 |                                                                                | efficent in ai | r (cm^2/sec)                     |           |              |          |        | see below   | EPA, 1996      |          |  |  |
| Dw                 |                                                                                |                | ater (cm^2/sec                   | 3         |              |          |        | see below   | EPA, 1996      |          |  |  |
| De                 |                                                                                |                | cient (cm^2/se                   |           |              |          |        | see below   | calculated     |          |  |  |
| VF                 | Volatilization                                                                 |                |                                  | -,        |              |          |        | see below   | calculated     |          |  |  |
| n                  | Total porosi                                                                   |                |                                  |           |              |          |        | 0.35        | TNRCC, 1993    |          |  |  |
| nw                 |                                                                                |                | (dimensionles                    | s)        |              |          |        | 0.15        | EPA, 1996      |          |  |  |
| na                 |                                                                                |                | mensionless)                     | -,        |              |          |        | 0.2         | n-nw           |          |  |  |
| H'                 |                                                                                |                | mensionless)                     |           |              |          |        | see below   | TRRP           |          |  |  |
| Pb                 | Dry Bulk De                                                                    |                |                                  |           |              |          |        | 1.5         | EPA, 1996      |          |  |  |
| Foc                | Fraction org                                                                   |                |                                  |           |              |          |        | 0,006       | EPA, 1996      |          |  |  |
| Koc                | -                                                                              |                | artition coeffici                | ent (cm^3 | 3/g)         |          |        | see below   | EPA, 1996      |          |  |  |
| Kd                 |                                                                                |                | icient (cm^3/g)                  |           | 0,           |          |        | see below   | calculated     |          |  |  |
| CF                 | Conversion                                                                     | factor (cm^2   | ?/m^2) `                         |           |              |          |        | 1.00E+04    | standard       |          |  |  |
| Q/C                | Inverse of the                                                                 | ne mean con    | c. at center of                  | source (g | /m^2-s per k | g/m^3)   |        | see below   | EPA, 1996      |          |  |  |
| Т                  | Exposure in                                                                    | terval (sec)   |                                  |           |              |          |        | see below   | EPA, 1996      |          |  |  |
| Chemical           | Da                                                                             | Dw             | De                               |           | H'           | Koc      | Kd     | Q/C         | T              | VF       |  |  |
| 1.2-Dichloroethane | 7.10E-02                                                                       | 7.90E-06       | 7.86E-05                         |           | 1.58E-02     | 4.37E+01 | 0.2622 | 68.81       | 9.50E+08       | 1,41E+04 |  |  |
| Tetrachloroethene  | 7.10E-02<br>7.20E-02                                                           | 8.20E-06       | 6.84E-03                         |           | 7.65E+00     | 1.55E+02 | 0.93   | 68.81       | 9.50E+08       | 1.51E+03 |  |  |

#### TABLE C-12 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE -- YOUTH TRESPASSER

| SOIL INGESTION                         |                                         |                   |                      |                      |                              |                                    |
|----------------------------------------|-----------------------------------------|-------------------|----------------------|----------------------|------------------------------|------------------------------------|
| INTAKE = (Sc * IR * E                  | EF * ED * CF) / (BW '                   | * AT)             |                      |                      |                              |                                    |
| Parameter                              | Definition                              |                   |                      |                      | Value                        | Reference                          |
| Intake                                 | Intake of chemical (                    | (mg/kg-day)       |                      |                      | calculated                   | 110,0100                           |
| Sc                                     | Soil concentration (                    |                   |                      |                      | see data page                |                                    |
| Ac                                     | Air concentration (n                    |                   |                      |                      | see below                    |                                    |
| EAC                                    | Effective air concer                    | ntration (mg/m^3  | 3)                   |                      | calculated                   |                                    |
| PEF                                    | Particulate Emissio                     | n Factor (m^3/k   | g)                   |                      | 1.00E+09                     | EPA, 2004a                         |
| VF                                     | Volatilization Factor                   | r (m^3/kg)        |                      |                      | calculated                   | EPA, 1996                          |
| IR                                     | Ingestion rate of so                    |                   |                      |                      | 100                          | TNRCC, 1998                        |
| SA                                     | Skin surface area (                     |                   |                      |                      | 3500                         | TNRCC, 1998                        |
| AF                                     | Soil to skin adherer                    |                   |                      |                      | 0.1                          | TNRCC, 1998                        |
| ABSd                                   | Dermal absorption                       | •                 | 3)                   |                      | see chemprop page            |                                    |
| EF                                     | Exposure frequency                      |                   |                      |                      | 25                           | professional judgment              |
| ED<br>CF                               | Exposure duration (                     |                   |                      |                      | 6<br>1.00E-06                | professional judgment<br>EPA, 1989 |
| BW                                     | Conversion factor (<br>Body weight (kg) | kg/mg)            |                      |                      | 40                           | EPA, 1991a                         |
| ATC                                    | Averaging time for                      | carcinogene (da   | ve)                  |                      | 25550                        | EPA, 1989                          |
| ATnc                                   | Averaging time for                      |                   |                      |                      | 9125                         | EPA, 1989                          |
|                                        | Averaging time for t                    |                   | (uuys)               |                      |                              | Li A, 1000                         |
| Oh a miani                             |                                         |                   |                      | Sc                   | Intake for                   | Intake for                         |
| Chemical                               | <del></del>                             |                   |                      |                      | Carcinogens                  | Noncarcinogens                     |
| 1.2 Dichloroothon-                     |                                         |                   |                      | 1.055.02             | 2 00= 40                     | 9 01E.10                           |
| 1,2-Dichloroethane                     |                                         |                   |                      | 1.95E-02             | 2.86E-10                     | 8.01E-10                           |
| Aluminum                               |                                         |                   |                      | 1.23E+04             | 1.80E-04                     | 5.04E-04                           |
| Aroclor-1254<br>Benzo(a)anthracene     |                                         |                   |                      | 1.81E-01<br>1.09E-01 | 2.66E-09<br>1.60E-09         | 7.44E-09<br>4.48E-09               |
| Benzo(a)pyrene                         |                                         |                   |                      | 9.37E-02             | 1.38E-09                     | 3.85E-09                           |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene | •                                       |                   |                      | 1.44E-01             | 2.11E-09                     | 5,92E-09                           |
| Dibenz(a,h)anthracen                   |                                         |                   |                      | 6.88E-02             | 1.01E-09                     | 2.83E-09                           |
| Indeno(1,2,3-cd)pyrer                  |                                         |                   |                      | 1.15E-01             | 1.69E-09                     | 4.73E-09                           |
| iron                                   | 10                                      |                   |                      | 2.09E+04             | 3.07E-04                     | 8.58E-04                           |
| Tetrachloroethene                      |                                         |                   |                      | 1.26E-02             | 1.85E-10                     | 5.18E-10                           |
| DERMAL CONTACT                         |                                         | <del></del>       | ·                    |                      |                              |                                    |
| INTAKE = (Sc * SA *                    | AF*ABSd*EF*ED                           | ) * CF) / (BW * / | AT)                  |                      |                              |                                    |
| Chemical                               |                                         |                   | ABSd                 | Sc                   | Intake for<br>Carcinogens    | Intake for<br>Noncarcinogens       |
|                                        |                                         |                   |                      |                      |                              |                                    |
| 1,2-Dichloroethane                     |                                         |                   | 1.30E-01             | 1.95E-02             | 1.30E-10                     | 3.65E-10                           |
| Aluminum                               |                                         |                   | 1.00E-02             | 1.23E+04             | 6.30E-06                     | 1.76E-05                           |
| Aroclor-1254                           |                                         |                   | 1.30E-01             | 1.81E-01             | 1.21E-09                     | 3,38E-09                           |
| Benzo(a)anthracene                     |                                         |                   | 1.30E-01             | 1.09E-01             | 7.28E-10                     | 2.04E-09                           |
| Benzo(a)pyrene                         |                                         |                   | 1.30E-01             | 9.37E-02             | 6.26E-10                     | 1.75E-09                           |
| Benzo(b)fluoranthene                   |                                         |                   | 1.30E-01             | 1.44E-01             | 9.62E-10                     | 2.69E-09                           |
| Dibenz(a,h)anthracen                   |                                         |                   | 1.30E-01             | 6.88E-02             | 4.59E-10                     | 1.29E-09                           |
| Indeno(1,2,3-cd)pyrer<br>Iron          | ie                                      |                   | 1.30E-01             | 1.15E-01             | 7.68E-10                     | 2.15E-09<br>3.00E-05               |
| iron<br>Tetrachloroethene              |                                         |                   | 1.00E-02<br>1.30E-01 | 2.09E+04<br>1.26E-02 | 1.07E-05<br>8.41E-11         | 3.00E-05<br>2.36E-10               |
| INHALATION PATHV                       | VAY                                     |                   |                      | <del></del>          |                              |                                    |
| Ac = Sc * (1/PE                        |                                         |                   |                      |                      |                              |                                    |
| EAC = (Ac * EF *                       | ED)/AI *f                               | or carcinogens,   | a conversion         | is necessary to      | get into proper units, ug/m3 |                                    |
|                                        |                                         | Sc                | VF                   | Ac                   | EAC for                      | EAC for                            |
| Chemical                               |                                         |                   |                      |                      | Carcinogens                  | Noncarcinogens                     |
| 1,2-Dichloroethane                     |                                         | 1.95E-02          | 1.41E+04             | 1.38E-06             | 8.10E-06                     | 2,27E-08                           |
| Aluminum                               |                                         | 1.07E+04          |                      | 1.07E-05             | 6.27E-05                     | 1.75E-07                           |
| Aroclor-1254                           |                                         | 1.22E-02          |                      | 1.07E-03<br>1.22E-11 | 7.16E-11                     | 2.01E-13                           |
| Benzo(a)anthracene                     |                                         | 1.18E+00          |                      | 1.18E-09             | 6.93E-09                     | 1.94E-11                           |
| Benzo(a)pyrene                         |                                         | 1.19E-01          |                      | 1.19E-10             | 6.99E-10                     | 1.96E-12                           |
| Benzo(b)fluoranthene                   | 1                                       | 1.69E-01          |                      | 1.69E-10             | 9.92E-10                     | 2.78E-12                           |
| Dibenz(a,h)anthracen                   |                                         | 7,69E-02          |                      | 7.69E-11             | 4.51E-10                     | 1.26E-12                           |
| Indeno(1,2,3-cd)pyrei                  |                                         | 1.55E-01          |                      | 1.55E-10             | 9.10E-10                     | 2,55E-12                           |
| fron                                   |                                         | 1.95E+04          |                      | 1.95E-05             | 1.14E-04                     | 3,20E-07                           |
|                                        |                                         |                   |                      |                      |                              |                                    |
| Tetrachloroethene                      |                                         | 1.26E-02          | 1.51E+03             | 8,32E-06             | 4.88E-05                     | 1.37E-07                           |

### TABLE C-13 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- YOUTH TRESPASSER (age 6 to 18)

| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL INGESTION        |                                 |                  | <del></del>    |                                 |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------|------------------|----------------|---------------------------------|-------------------|
| Parameter   Dafinition   Value   Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                 |                  |                |                                 |                   |
| Intake   Intake of chemical (mg/kg)   see data page   see below   Calculated   see data page   see below   Calculated   Ca | INTAKE = (Sc * IR * E | F * ED * CF) / (BW * AT)        |                  |                |                                 |                   |
| Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parameter             | Definition                      |                  |                | Value                           | Reference         |
| Ac Al Concentration (mg/m²s) see below calculated ERA (Effective air concentration (mg/m²s) calculated EFF (Effective air concentration (mg/m²s) calculated EFA, 1996 EFF (Effective air concentration (mg/m²s) calculated EFA, 1996 EFF (Effective air concentration (mg/m²s) calculated EFA, 1996 EFF, 2004a R (mgestion rate of soil (mg/day) 10.0 TNRCC, 1998 EFA, 2004a R (mgestion rate of soil (mg/day) 10.0 TNRCC, 1998 EFA, 2004a R (mgestion rate of soil (mg/day) 10.0 TNRCC, 1998 TNRCC, 1998 EFA, 2004a EFA, 1999 EFA, 2004a | Intake                |                                 |                  |                |                                 |                   |
| EAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sc                    | , , ,                           |                  |                |                                 |                   |
| Vicinitization Factor (m^3/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                 | -42)             |                |                                 |                   |
| PEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | , ,                             | 1.9)             |                |                                 | EPA 1996          |
| Indesidor rate of soil (migridary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                 | 3/ka)            |                |                                 |                   |
| ABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IR                    |                                 |                  |                |                                 |                   |
| ABSd Demnal absorption fraction (unities) EF Exposure frequency (daylyr) ED Exposure duration (yr) ED Exposure duration (y | SA                    | Skin surface area (cm2)         |                  |                | 3500                            |                   |
| EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AF                    |                                 |                  |                |                                 | TNRCC, 1998       |
| ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                 | ess)             |                |                                 | THE 00 4000       |
| CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                 |                  |                |                                 |                   |
| Bow   Body weight (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                 |                  |                |                                 |                   |
| Artic Averaging time for carcinogens (days) Artic Averaging time for noncarcinogens (days) Artic Averaging time for noncarcinogens (days)  Sc Intake for Carcinogens Noncarcinogens  1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Benzo (daynere 1,3-Benzo (daynere 1,3 | BW                    |                                 |                  |                |                                 | •                 |
| 1.2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATc                   |                                 | days)            |                | 25550                           |                   |
| 1,2Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATnc                  | Averaging time for noncarcinoge | ns (days)        |                | 9125                            | EPA, 1989         |
| 1,2Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                 |                  |                |                                 |                   |
| 1,2Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                 |                  | Sc             | Intake for                      | Intake for        |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chemical              |                                 |                  |                |                                 |                   |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 0 Diables - "       |                                 |                  | 4.075.04       | 7.405.40                        | D 00F 14          |
| Aroctor-1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                     |                                 |                  |                |                                 |                   |
| Benzzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                  |                |                                 |                   |
| Benzo(plyrene Benzo(plyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                 |                  |                |                                 |                   |
| Benzo(pilluoranthene   2.52E-01   1.48E-08   4.14E-08   Dibenz(a, li)anthracene   1.08E-02   6.34E-10   1.78E-09   Indeno(1,2,3-cd)pyrene   3.99E-01   2.32E-08   6.51E-08   Indeno(1,2,3-cd)pyrene   3.99E-04   2.17E-03   6.08E-03   Tetrachloroethene   2.11E-04   1.24E-11   3.47E-11   DERMAL CONTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                     |                                 |                  |                |                                 |                   |
| Indenot(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzo(b)fluoranthene  |                                 |                  |                |                                 | 4.14E-08          |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dibenz(a,h)anthracene | 9                               |                  | 1.08E-02       | 6.34E-10                        | 1.78E-09          |
| DERMAL CONTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | e                               |                  |                |                                 |                   |
| NTAKE = (Sc * SA *AF * ABSd * EF * ED * CF) / (BW * AT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Iron                  |                                 |                  |                |                                 |                   |
| ABSd   Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tetrachloroethene     |                                 |                  | 2.11E-04       | 1.24E-11                        | 3.47E-11          |
| Carcinogens   Carcinogens   Carcinogens     1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | AF * ABSd * EF * ED * CF) / (BW | * AT)            |                |                                 |                   |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chemical              |                                 | ABSd             | Sc             |                                 |                   |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2-Dichloroethane    |                                 | 1.30F-01         | 1 27F-04       | 3 39F-12                        | 9 50F-12          |
| Arocior-1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                 |                  |                |                                 |                   |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aroclor-1254          |                                 |                  |                |                                 |                   |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzo(a)anthracene    |                                 | 1.30E-01         | 1.11E-02       | 2.97E-10                        | 8,30E-10          |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzo(a)pyrene        |                                 |                  |                |                                 |                   |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo(b)fluoranthene  |                                 |                  |                |                                 |                   |
| Transpage   1.00E-02   3.69E+04   7.58E-05   2.12E-04   1.58E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                 |                  |                |                                 |                   |
| Tetrachloroethene 1.30E-01 2.11E-04 5.64E-12 1.58E-11  INHALATION PATHWAY  Ac = Sc * (1/PEF+1/VF) EAC = (Ac * EF * ED) / AT *for carcinogens, a conversion is necessary to get into proper units, ug/m3  Sc VF Ac EAC for Carcinogens Noncarcinogens  1,2-Dichloroethane 1.27E-04 1.41E+04 8.99E-09 2.11E-07 5.91E-10  Aluminum 1.22E+04 1.22E-05 2.86E-04 8.01E-07  Alroclor-1254 4.29E-03 4.29E-12 1.01E-10 2.82E-13  Benzo(a)anthracene 1.10E-02 1.10E-11 2.58E-10 7.23E-13  Benzo(a)pyrene 1.16E-02 1.16E-11 2.72E-10 7.63E-13  Benzo(a)pyrene 1.16E-02 1.10E-11 2.58E-10 7.23E-13  Benzo(b)fluoranthene 3.73E-01 3.73E-01 8.76E-09 2.45E-11  Dibenz(a,h)anthracene 1.10E-02 1.10E-11 2.58E-10 7.23E-13  Indeno(1,2,3-cd)pyrene 6.82E-01 6.82E-10 1.60E-08 4.48E-11  Iron 4.11E+04 4.11E-05 9.66E-04 2.70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | <del>u</del>                    |                  |                |                                 |                   |
| Ac = Sc * (1/PEF+1/VF) EAC = (Ac * EF * ED) / AT *for carcinogens, a conversion is necessary to get into proper units, ug/m3  Sc VF Ac EAC for Carcinogens Noncarcinogens  1,2-Dichloroethane 1.27E-04 1.41E+04 8.99E-09 2.11E-07 5.91E-10 Aluminum 1.22E+04 1.22E+05 2.86E-04 8.01E-07 Aroclor-1254 4.29E-03 4.29E-12 1.01E-10 2.82E-13 Benzo(a)anthracene 1.10E-02 1.10E-11 2.58E-10 7.23E-13 Benzo(a)pyrene 1.16E-02 1.16E-11 2.72E-10 7.63E-13 Benzo(a)pyrene 1.16E-02 1.16E-11 2.72E-10 7.63E-13 Benzo(a)pyrene 1.10E-02 1.10E-11 2.58E-10 7.23E-13 Dibenz(a,h)anthracene 1.10E-02 1.10E-11 2.58E-10 7.23E-13 Indeno(1,2,3-cd)pyrene 6.82E-01 6.82E-10 1.60E-08 4.48E-11 Iron 4.11E+04 4.11E-05 9.66E-04 2.70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tetrachloroethene     |                                 |                  |                |                                 |                   |
| Ac = Sc * (1/PEF+1/VF) EAC = (Ac * EF * ED) / AT *for carcinogens, a conversion is necessary to get into proper units, ug/m3  Sc VF Ac EAC for Carcinogens Noncarcinogens  1,2-Dichloroethane 1.27E-04 1.41E+04 8.99E-09 2.11E-07 5.91E-10 Aluminum 1.22E+04 1.22E+05 2.86E-04 8.01E-07 Aroclor-1254 4.29E-03 4.29E-12 1.01E-10 2.82E-13 Benzo(a)anthracene 1.10E-02 1.10E-11 2.58E-10 7.23E-13 Benzo(a)pyrene 1.16E-02 1.16E-11 2.72E-10 7.63E-13 Benzo(a)pyrene 1.16E-02 1.16E-11 2.72E-10 7.63E-13 Benzo(a)pyrene 1.10E-02 1.10E-11 2.58E-10 7.23E-13 Dibenz(a,h)anthracene 1.10E-02 1.10E-11 2.58E-10 7.23E-13 Indeno(1,2,3-cd)pyrene 6.82E-01 6.82E-10 1.60E-08 4.48E-11 Iron 4.11E+04 4.11E-05 9.66E-04 2.70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INHALATION DATUM      | 'AY                             |                  |                |                                 |                   |
| Chemical         Carcinogens         Noncarcinogens           1,2-Dichloroethane         1,27E-04         1.41E+04         8.99E-09         2.11E-07         5.91E-10           Aluminum         1,22E+04         1,22E-05         2.86E-04         8.01E-07           Aroclor-1254         4,29E-03         4,29E-12         1,01E-10         2.82E-13           Benzo(a)anthracene         1,10E-02         1,10E-11         2.58E-10         7.23E-13           Benzo(a)pyrene         1,16E-02         1,16E-11         2.72E-10         7.63E-13           Benzo(b)fluoranthene         3,73E-01         3,73E-00         8.76E-09         2,45E-11           Dibenz(a,h)anthracene         1,10E-02         1,10E-11         2.58E-10         7.23E-13           Indeno(1,2,3-cd)pyrene         6,82E-01         6,82E-01         1,60E-08         4,48E-11           Iron         4,11E+04         4,11E-05         9,66E-04         2,70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ac = Sc * (1/PE       | F+1 <i>N</i> /F)                | ns, a conversior | ı is necessary | to get into proper units, ug/m3 |                   |
| Aluminum 1.22E+04 1.22E-05 2.86E-04 8.01E-07 Aroclor-1254 4.29E-03 4.29E-12 1.01E-10 2.82E-13 Benzo(a)anthracene 1.10E-02 1.10E-11 2.58E-10 7.23E-13 Benzo(a)pyrene 1.16E-02 1.16E-11 2.72E-10 7.63E-13 Benzo(b)fluoranthene 3.73E-01 3.73E-10 8.76E-09 2.45E-11 Dibenz(a,h)anthracene 1.10E-02 1.10E-11 2.58E-10 7.23E-13 Indeno(1,2,3-cd)pyrene 6.82E-01 6.82E-10 1.60E-08 4.48E-11 Iron 4.11E+04 4.11E-05 9.66E-04 2.70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chemical              | Sc                              | VF               | Ac             |                                 |                   |
| Aluminum 1.22E+04 1.22E-05 2.86E-04 8.01E-07 Aroclor-1254 4.29E-03 4.29E-12 1.01E-10 2.82E-13 Benzo(a)anthracene 1.10E-02 1.10E-11 2.58E-10 7.23E-13 Benzo(a)pyrene 1.16E-02 1.16E-11 2.72E-10 7.63E-13 Benzo(b)fluoranthene 3.73E-01 3.73E-10 8.76E-09 2.45E-11 Dibenz(a,h)anthracene 1.10E-02 1.10E-11 2.58E-10 7.23E-13 Indeno(1,2,3-cd)pyrene 6.82E-01 6.82E-10 1.60E-08 4.48E-11 Iron 4.11E+04 4.11E-05 9.66E-04 2.70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2-Dichloroethane    | 1.27F-0                         | 4 1,41E+04       | 8,99E-09       | 2.11E-07                        | 5,91E-10          |
| Aroclor-1254     4.29E-03     4.29E-12     1.01E-10     2.82E-13       Benzo(a)anthracene     1.10E-02     1.10E-11     2.58E-10     7.23E-13       Benzo(a)pyrene     1.16E-02     1.16E-11     2.72E-10     7.63E-13       Benzo(b)fluoranthene     3.73E-01     3.73E-10     8.76E-09     2.45E-11       Dibenz(a,h)anthracene     1.10E-02     1.10E-11     2.58E-10     7.23E-13       Indeno(1,2,3-cd)pyrene     6.82E-01     6.82E-10     1.60E-08     4.48E-11       Iron     4.11E+04     4.11E-05     9.66E-04     2.70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aluminum              |                                 |                  |                |                                 |                   |
| Benzo(a)pyrene     1.16E-02     1.16E-11     2.72E-10     7.63E-13       Benzo(b)fluoranthene     3.73E-01     3.73E-01     8.76E-09     2.45E-11       Dibenz(a,h)anthracene     1.10E-02     1.10E-11     2.58E-10     7.23E-13       Indeno(1,2,3-cd)pyrene     6.82E-01     6.82E-10     1.60E-08     4.48E-11       Iron     4.11E+04     4.11E-05     9.66E-04     2.70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aroclor-1254          |                                 |                  |                |                                 |                   |
| Benzo(b)fluoranthene       3,73E-01       3,73E-10       8,76E-09       2,45E-11         Dibenz(a,h)anthracene       1,10E-02       1,10E-11       2,58E-10       7,23E-13         Indeno(1,2,3-cd)pyrene       6,82E-01       6,82E-10       1,60E-08       4,48E-11         Iron       4,11E+04       4,11E-05       9,66E-04       2,70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benzo(a)anthracene    |                                 |                  |                |                                 |                   |
| Dibenz(a,h)anthracene       1.10E-02       1.10E-11       2.58E-10       7.23E-13         Indeno(1,2,3-cd)pyrene       6.82E-01       6.82E-10       1.60E-08       4.48E-11         Iron       4.11E+04       4.11E-05       9.66E-04       2.70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzo(a)pyrene        |                                 |                  |                |                                 |                   |
| Indeno(1,2,3-cd)pyrene         6.82E-01         6.82E-10         1.60E-08         4.48E-11           Iron         4.11E+04         4.11E-05         9.66E-04         2.70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                 |                  |                |                                 |                   |
| Iron 4.11E+04 4.11E-05 9,66E-04 2.70E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                 |                  |                |                                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |                  |                |                                 |                   |
| 161140/11/01/05/11/10/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11/05/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                 |                  |                |                                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Totachioroethene      | Z.11E-U                         | T 1.01ETUS       | 1.55E-01       | 3,21E-00                        | 3,10 <u>L</u> -03 |

## TABLE D-10 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- YOUTH TRESPASSER (age 6 to 18)

|                           | or                     |             |                        |             |                 |                      |                      |                                       |
|---------------------------|------------------------|-------------|------------------------|-------------|-----------------|----------------------|----------------------|---------------------------------------|
| Danes - 4 - 4             | EAC * IUR              |             | <i>or</i><br>EAC / RfC |             |                 |                      |                      |                                       |
| Parameter                 | Definition             |             |                        |             |                 | Default              |                      |                                       |
|                           | Intake of chemical (   | mg/kg-dav)  | ·····                  |             |                 | see intake           |                      |                                       |
|                           | Effective Air Conce    |             | m^3)                   |             |                 | see intake           |                      |                                       |
| ľ                         | Cancer slope factor    | , -         | •                      |             |                 | see chemprop         | )                    |                                       |
|                           | Inhalation unit risk ( |             | •                      |             |                 | see chemprop         |                      |                                       |
|                           | Reference dose (mg     |             |                        |             |                 | see chemprop         |                      |                                       |
|                           | Inhalation reference   |             | on (ma/m^3)            |             |                 | see chemprop         |                      |                                       |
| "                         |                        | COMBONIA    | (g •)                  |             |                 | ooo onomprop         | ,                    |                                       |
| INGESTION                 |                        |             |                        |             |                 |                      |                      |                                       |
|                           |                        |             |                        |             |                 |                      |                      |                                       |
|                           | Slope                  |             |                        | Intake      | Intake          | Cancer               | Hazard               |                                       |
| Chemical                  | Factor                 | ·           |                        | Carc        | Noncarc         | Risk                 | Quotient             |                                       |
| 1,2-Dichloroethane        | 0 10E 0                | 2.00E-02    | )                      | 7.46E-12    | 2.09E-11        | 6.78E-13             | 1.04E-09             |                                       |
| l '                       |                        |             |                        |             |                 | 0.70=13              |                      |                                       |
| Aluminum                  | 2 00E+0                | 1.00E-01    |                        | 7.83E-04    | 2.19E-03        | E 05E 40             | 2.19E-02             |                                       |
| Aroclor-1254              |                        | 00 2.00E-05 | )                      | 2.52E-10    | 7.07E-10        | 5.05E-10             | 3.53E-05             |                                       |
| Benzo(a)anthracene        |                        |             |                        | 6.52E-10    | 1.82E-09        | 4.76E-10             |                      |                                       |
| Benzo(a)pyrene            | 7.30E+0                |             |                        | 2.22E-08    | 6.21E-08        | 1.62E-07             |                      |                                       |
| Benzo(b)fluoranther       |                        |             |                        | 1.48E-08    | 4.14E-08        | 1.08E-08             |                      |                                       |
| Dibenz(a,h)anthrace       | ene 7.30E+0            | 00          |                        | 6.34E-10    | 1.78E-09        | 4.63E-09             |                      |                                       |
| Indeno(1,2,3-cd)pyr       | ene 7.30E-0            | )1          |                        | 2.32E-08    | 6.51E-08        | 1.70E-08             |                      |                                       |
| Iron                      |                        | 7.00E-01    |                        | 2.17E-03    | 6.06E-03        |                      | 8.66E-03             |                                       |
| Tetrachloroethene         | 5.20E-0                |             |                        | 1.24E-11    | 3.47E-11        | 6.44E-13             | 3.47E-09             |                                       |
|                           |                        |             |                        |             |                 |                      |                      |                                       |
|                           |                        |             | PATH                   | ATOT YAW    | L=              | 1.95E-07             | 3.06E-02             |                                       |
|                           |                        |             |                        |             |                 |                      |                      |                                       |
| DERMAL CONTAC             | Γ                      |             |                        |             |                 |                      | -                    |                                       |
|                           | Slope                  | RfD         |                        | Intake      | Intake          | Cancer               | Hazard               |                                       |
| Chemical                  | Factor                 |             |                        | Carc        | Noncarc         | Risk                 | Quotient             |                                       |
| - Torritoai               | racio                  |             |                        | Jaio        | Honoard         | Mon                  | QUOTIENT             | <u> </u>                              |
| 1,2-Dichloroethane        | 9.10E-0                | 2.00E-02    | )                      | 3,39E-12    | 9.50E-12        | 3.09E-13             | 4.75E-10             |                                       |
|                           | 9. 10E-C               |             |                        |             |                 | J.U8E-13             |                      |                                       |
| Aluminum                  |                        | 1.00E-01    |                        | 2.74E-05    | 7.68E-05        | 0.005.40             | 7.68E-04             |                                       |
| Aroclor-1254              |                        | 00 2.00E-05 | •                      | 1.15E-10    | 3.22E-10        | 2.30E-10             | 1.61E-05             |                                       |
| Benzo(a)anthracene        |                        |             |                        | 2.97E-10    | 8.30E-10        | 2.16E-10             |                      |                                       |
| Benzo(a)pyrene            | 7.30E+0                |             |                        | 1.01E-08    | 2.83E-08        | 7.37E-08             |                      |                                       |
| Benzo(b)fluoranther       |                        |             |                        | 6.73E-09    | 1.88E-08        | 4.91E-09             |                      |                                       |
| Dibenz(a,h)anthrace       |                        |             |                        | 2.88E-10    | 8.08E-10        | 2.11E-09             |                      |                                       |
| Indeno(1,2,3-cd)pyr       | ene 7.30E-0            | )1          |                        | 1.06E-08    | 2.96E-08        | 7.72E-09             |                      |                                       |
| Iron                      |                        | 7.00E-01    | ĺ                      | 7.58E-05    | 2.12E-04        |                      | 3.03E-04             |                                       |
| Tetrachloroethene         | 5.20E-0                | 2 1.00E-02  | 2                      | 5.64E-12    | 1.58E-11        | 2.93E-13             | 1.58E-09             |                                       |
|                           |                        |             |                        | DAIAN/ ==== |                 | 0.005.00             | 4 005 00             |                                       |
|                           | <del></del>            |             | I PATI                 | ATOT YAW    | <u></u>         | 8.89E-08             | 1.09E-03             |                                       |
| INHALATION                |                        |             |                        |             |                 |                      |                      |                                       |
|                           | 1115                   | Dio         |                        | EAC         | EAC             | Conner               | Hazard               |                                       |
| Chemical                  | IUR                    | RfC         | C                      |             | Noncarc (mg/m3) | Cancer<br>Risk       | Quotient             |                                       |
|                           | <del></del>            |             |                        |             | (mg/mo)         |                      |                      |                                       |
| 1,2-Dichloroethane        | 2.60E-0                | 5 2,40E+00  | )                      | 2.11E-07    | 5.91E-10        | 5.49E-12             | 2.46E-10             |                                       |
| Aluminum                  |                        | 5.00E-03    |                        | 2.86E-04    | 8.01E-07        | · <del>-</del>       | 1.60E-04             |                                       |
| Aroclor-1254              | 5.70E-0                |             |                        | 1.01E-10    | 2.82E-13        | 5.74E-14             |                      |                                       |
| Benzo(a)anthracene        |                        |             |                        | 2.58E-10    | 7.23E-13        | 2.27E-14             |                      |                                       |
| Benzo(a)pyrene            | 8.80E-0                |             |                        | 2.72E-10    | 7.63E-13        | 2.40E-13             |                      |                                       |
| Benzo(b)fluoranther       |                        |             |                        | 8.76E-09    | 2.45E-11        | 7.71E-13             |                      |                                       |
|                           |                        |             |                        |             | 7.23E-13        | 2.27E-13             |                      |                                       |
| Dibenz(a,h)anthrace       |                        |             |                        | 2.58E-10    |                 |                      |                      |                                       |
| Indeno(1,2,3-cd)pyr       | ene 8.80E-0            | در          |                        | 1.60E-08    | 4.48È-11        | 1.41E-12             |                      |                                       |
| 11                        |                        |             |                        | 9.66E-04    | 2.70E-06        | 4.005.10             | 2 205 62             |                                       |
|                           | 5,80E-0                | 7 2.70E-01  | I                      | 3.27E-06    | 9.16E-09        | 1.90E-12             | 3.39E-08             |                                       |
| Iron<br>Tetrachloroethene |                        |             |                        |             |                 |                      |                      |                                       |
| Iron<br>Tetrachloroethene |                        |             | PATH                   | ATOT YAW    | L =             | 1.01E-11             | 1.60E-04             |                                       |
| ll .                      | <u> </u>               |             | PATH                   | ATOT YAWH   | L=              | 1.01E-11             | 1.60E-04             | ·                                     |
|                           |                        |             | PATH                   | ATOT YAWH   | L = TOTAL       | 1.01E-11<br>2.84E-07 | 1.60E-04<br>3.19E-02 | · · · · · · · · · · · · · · · · · · · |

### TABLE C-14 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE -- CONSTRUCTION WORKER

| SOIL INGESTION                                |                                                            |                      |                      | <del></del>                     | <del></del>                         |
|-----------------------------------------------|------------------------------------------------------------|----------------------|----------------------|---------------------------------|-------------------------------------|
| NTAKE - (0- + ID + E                          | C + CD + OD / (D)A/ + AT)                                  |                      |                      |                                 |                                     |
| INTAKE = (SC*IR*E                             | F * ED * CF) / (BW * AT)                                   |                      |                      |                                 |                                     |
| Parameter                                     | Definition                                                 |                      |                      | Value                           | Reference                           |
| Intake                                        | Intake of chemical (mg/kg-day                              | )                    |                      | calculated                      |                                     |
| Sc                                            | Soil concentration (mg/kg)                                 |                      |                      | see data page                   |                                     |
| Ac                                            | Air concentration (mg/m^3)                                 |                      |                      | see below                       |                                     |
| EAC                                           | Effective air concentration (mg                            | g/m^3)               |                      | calculated                      | EDA 4000                            |
| VF                                            | Volatilization Factor (m^3/kg)                             | - AO (I \            |                      | calculated                      | EPA, 1996                           |
| PEF<br>IR                                     | Particulate Emission Factor (n                             | 1°3/Kg)              |                      | 1.00E+09<br>165                 | EPA, 2004a<br>professional judgment |
| SA                                            | Ingestion rate of soil (mg/day)<br>Skin surface area (cm2) |                      |                      | 3300                            | EPA, 2004a                          |
| AF                                            | Soil to skin adherence factor (                            | ma/cm2)              |                      | 0.14                            | EPA, 2004b                          |
| ABSd                                          | Dermal absorption fraction (un                             |                      |                      | see chemprop page               | •                                   |
| EF                                            | Exposure frequency (day/yr)                                | initioody            |                      | 90                              | professional judgment               |
| ED                                            | Exposure duration (yr)                                     |                      |                      | 1                               | professional judgment               |
| CF                                            | Conversion factor (kg/mg)                                  |                      |                      | 1.00E-06                        | EPA, 1989                           |
| BW                                            | Body weight (kg)                                           |                      |                      | 70                              | EPA, 1989                           |
| ATc                                           | Averaging time for carcinogen                              |                      |                      | 25550                           | EPA, 1989                           |
| ATnc                                          | Averaging time for noncarcino                              | gens (days)          |                      | 365                             | EPA, 1989                           |
|                                               |                                                            |                      | 0-                   | ladalia faa                     | Indular form                        |
| Chemical                                      |                                                            |                      | Sc                   | Intake for<br>Carcinogens       | Intake for<br>Noncarcinogens        |
|                                               |                                                            |                      |                      |                                 |                                     |
| 1,2-Dichloroethane                            |                                                            |                      | 1.95E-02             | 1.62E-10                        | 1.13E-08                            |
| Aluminum                                      |                                                            |                      | 1.23E+04             | 1.02E-04                        | 7.13E-03                            |
| Aroclor-1254                                  |                                                            |                      | 1.81E-01             | 1.50E-09                        | 1.05E-07                            |
| Benzo(a)anthracene                            |                                                            | •                    | 1.09E-01             | 9.05E-10                        | 6.34E-08                            |
| Benzo(a)pyrene                                |                                                            |                      | 9.37E-02             | 7.78E-10                        | 5.45E-08                            |
| Benzo(b)fluoranthene                          |                                                            |                      | 1.44E-01             | 1.20E-09                        | 8.37E-08                            |
| Dibenz(a,h)anthracene                         |                                                            |                      | 6.88E-02             | 5.71E-10                        | 4.00E-08                            |
| Indeno(1,2,3-cd)pyren                         | e                                                          |                      | 1.15E-01             | 9.55E-10                        | 6.68E-08                            |
| Iron<br>Tetrachloroethene                     |                                                            |                      | 2.09E+04<br>1.26E-02 | 1.73E-04<br>1.05E-10            | 1.21E-02<br>7.32E-09                |
| redacillordelliene                            |                                                            |                      | 1,200-02             | 1,03E-10                        | 7.322-05                            |
| DERMAL CONTACT                                |                                                            |                      |                      |                                 |                                     |
| INTAKE = (Sc * SA * /                         | AF * ABSd * EF * ED * CF) / (8'                            | W * AT)              |                      |                                 |                                     |
|                                               |                                                            | ABSd                 | Sc                   | Intake for                      | Intake for                          |
| Chemical                                      |                                                            |                      |                      | Carcinogens                     | Noncarcinogens                      |
|                                               |                                                            |                      |                      |                                 |                                     |
| 1,2-Dichloroethane                            |                                                            | 1.30E-01             | 1.95E-02             | 5.89E-11                        | 4.13E-09                            |
| Aluminum                                      |                                                            | 1.00E-02             | 1.23E+04             | 2.85E-06                        | 2.00E-04                            |
| Aroclor-1254                                  |                                                            | 1.30E-01             | 1.81E-01             | 5.47E-10                        | 3.83E-08                            |
| Benzo(a)anthracene                            |                                                            | 1.30E-01             | 1.09E-01             | 3.29E-10                        | 2.31E-08                            |
| Benzo(a)pyrene                                |                                                            | 1.30E-01<br>1.30E-01 | 9,37E-02<br>1,44E-01 | 2.83E-10<br>4.35E-10            | 1.98E-08<br>3.05E-08                |
| Benzo(b)fluoranthene<br>Dibenz(a,h)anthracene |                                                            | 1.30E-01             | 1.44E-01<br>6.88E-02 | 4.35E-10<br>2.08E-10            | 1.46E-08                            |
| Indeno(1,2,3-cd)pyren                         |                                                            | 1.30E-01             | 1,15E-01             | 3.48E-10                        | 2,43E-08                            |
| Iron                                          | 5                                                          | 1.00E-02             | 2.09E+04             | 4.86E-06                        | 3,40E-04                            |
| Tetrachloroethene                             |                                                            | 1.30E-01             | 1.26E-02             | 3.81E-11                        | 2.67E-09                            |
| INHALATION PATHW                              | 'AY                                                        |                      |                      |                                 |                                     |
| Ac = Sc * (1/PE<br>EAC = (Ac * EF *           |                                                            | jens, a conversion   | n is necessarv       | to get into proper units, ug/m3 |                                     |
| ,                                             |                                                            |                      |                      |                                 |                                     |
| Chemical                                      | Sc                                                         | VF                   | Ac                   | EAC for<br>Carcinogens          | EAC for<br>Noncarcinogens           |
| 1,2-Dichloroethane                            | 1.95E                                                      | -02 1,41E+04         | 1.38E-06             | 4.86E-06                        | 3.40E-07                            |
| Aluminum                                      | 1.07E-                                                     |                      | 1.07E-05             | 3.76E-05                        | 2.63E-06                            |
| Aroclor-1254                                  | 1.22E                                                      |                      | 1.22E-11             | 4.30E-11                        | 3,01E-12                            |
| Benzo(a)anthracene                            | 1.18E-                                                     |                      | 1.18E-09             | 4.16E-09                        | 2.91E-10                            |
| Benzo(a)pyrene                                | 1.19E                                                      |                      | 1.19E-10             | 4.19E-10                        | 2.93E-11                            |
| Benzo(b)fluoranthene                          | 1.69E                                                      |                      | 1.69E-10             | 5.95E-10                        | 4.17E-11                            |
| Dibenz(a,h)anthracene                         |                                                            |                      | 7.69E-11             | 2.71E-10                        | 1.90E-11                            |
| Indeno(1,2,3-cd)pyren                         |                                                            |                      | 1.55E-10             | 5,46E-10                        | 3.82E-11                            |
| Iron                                          | 1.95E-                                                     |                      | 1.95E-05             | 6,86E-05                        | 4.80E-06                            |
| Tetrachloroethene                             | 1.26E                                                      | -02 1.51E+03         | 8.32E-06             | 2,93E-05                        | 2.05E-06                            |
|                                               |                                                            | ····                 |                      |                                 | <del></del>                         |

### TABLE C-15 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN RME – CONSTRUCTION WORKER

| SOIL INGESTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                                                                     |                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EE * ED * CE\ //D\A                          | / * AT\                                                                             |                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |
| INTAKE = (Sc * IR * I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EF - ED - CF) / (BW                          | ( AI)                                                                               |                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Definition                                   | <del></del>                                                                         |                                                                                                                      | <del></del>                                                                                                                                                                    | Value                                                                                                                                                                                                                               | Reference                                                                                                                                                                                                     |
| Intake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Intake of chemical                           |                                                                                     |                                                                                                                      |                                                                                                                                                                                | calculated                                                                                                                                                                                                                          |                                                                                                                                                                                                               |
| Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Soil concentration                           |                                                                                     |                                                                                                                      |                                                                                                                                                                                | see data page                                                                                                                                                                                                                       |                                                                                                                                                                                                               |
| Ac<br>EAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Air concentration (                          |                                                                                     | »\                                                                                                                   |                                                                                                                                                                                | see below                                                                                                                                                                                                                           |                                                                                                                                                                                                               |
| VF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective air conce<br>Volatilization Factor |                                                                                     | P)                                                                                                                   |                                                                                                                                                                                | calculated<br>calculated                                                                                                                                                                                                            | EDA 1006                                                                                                                                                                                                      |
| PEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Particulate Emissi                           |                                                                                     | a)                                                                                                                   |                                                                                                                                                                                | 1.00E+09                                                                                                                                                                                                                            | EPA, 1996<br>EPA, 2004a                                                                                                                                                                                       |
| IR .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ingestion rate of se                         |                                                                                     | 9)                                                                                                                   |                                                                                                                                                                                | 330                                                                                                                                                                                                                                 | EPA, 2004a                                                                                                                                                                                                    |
| SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Skin surface area                            |                                                                                     |                                                                                                                      |                                                                                                                                                                                | 3300                                                                                                                                                                                                                                | EPA, 2004a                                                                                                                                                                                                    |
| AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Soil to skin adhere                          |                                                                                     | m2)                                                                                                                  |                                                                                                                                                                                | 0.3                                                                                                                                                                                                                                 | EPA, 2001b                                                                                                                                                                                                    |
| ABSd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dermal absorption                            |                                                                                     |                                                                                                                      |                                                                                                                                                                                | see chemprop page                                                                                                                                                                                                                   |                                                                                                                                                                                                               |
| EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Exposure frequence                           | •                                                                                   | •                                                                                                                    |                                                                                                                                                                                | 250                                                                                                                                                                                                                                 | professional judgment                                                                                                                                                                                         |
| ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Exposure duration                            | (yr)                                                                                |                                                                                                                      |                                                                                                                                                                                | 1                                                                                                                                                                                                                                   | professional judgment                                                                                                                                                                                         |
| CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conversion factor                            | (kg/mg)                                                                             |                                                                                                                      |                                                                                                                                                                                | 1.00E-06                                                                                                                                                                                                                            | EPA, 1989                                                                                                                                                                                                     |
| BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Body weight (kg)                             |                                                                                     |                                                                                                                      |                                                                                                                                                                                | 70                                                                                                                                                                                                                                  | EPA, 1989                                                                                                                                                                                                     |
| ATc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Averaging time for                           |                                                                                     |                                                                                                                      |                                                                                                                                                                                | 25550                                                                                                                                                                                                                               | EPA, 1989                                                                                                                                                                                                     |
| ATnc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Averaging time for                           | noncarcinogens                                                                      | (days)                                                                                                               |                                                                                                                                                                                | 365                                                                                                                                                                                                                                 | EPA, 1989                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                     |                                                                                                                      | Sc                                                                                                                                                                             | Intake for                                                                                                                                                                                                                          | Intake for                                                                                                                                                                                                    |
| Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | <del></del>                                                                         |                                                                                                                      |                                                                                                                                                                                | Carcinogens                                                                                                                                                                                                                         | Noncarcinogens                                                                                                                                                                                                |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                                     |                                                                                                                      | 1.27E-04                                                                                                                                                                       | 5,86E-12                                                                                                                                                                                                                            | 4.10E-10                                                                                                                                                                                                      |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                                                                     |                                                                                                                      | 1.33E+04                                                                                                                                                                       | 6.16E-04                                                                                                                                                                                                                            | 4.31E-02                                                                                                                                                                                                      |
| Aroclor-1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                                                                     |                                                                                                                      | 4.30E-03                                                                                                                                                                       | 1.98E-10                                                                                                                                                                                                                            | 1.39E-08                                                                                                                                                                                                      |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                                     |                                                                                                                      | 1.11E-02                                                                                                                                                                       | 5.12E-10                                                                                                                                                                                                                            | 3,58E-08                                                                                                                                                                                                      |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                                                                     |                                                                                                                      | 3.78E-01                                                                                                                                                                       | 1.74E-08                                                                                                                                                                                                                            | 1.22E-06                                                                                                                                                                                                      |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | е                                            |                                                                                     |                                                                                                                      | 2,52E-01                                                                                                                                                                       | 1.16E-08                                                                                                                                                                                                                            | 8,14E-07                                                                                                                                                                                                      |
| Dibenz(a,h)anthracer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                                                                     |                                                                                                                      | 1.08E-02                                                                                                                                                                       | 4.98E-10                                                                                                                                                                                                                            | 3,49E-08                                                                                                                                                                                                      |
| ndeno(1,2,3-cd)pyre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                                                                     |                                                                                                                      | 3.96E-01                                                                                                                                                                       | 1.83E-08                                                                                                                                                                                                                            | 1.28E-06                                                                                                                                                                                                      |
| ron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                                                                     |                                                                                                                      | 3.69E+04                                                                                                                                                                       | 1.70E-03                                                                                                                                                                                                                            | 1.19E-01                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                     |                                                                                                                      | 2.11E-04                                                                                                                                                                       | 9.73E-12                                                                                                                                                                                                                            |                                                                                                                                                                                                               |
| DERMAL CONTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | D * CF) / (BW * A                                                                   | AT)                                                                                                                  | 2.11E-04                                                                                                                                                                       | 0.702-12                                                                                                                                                                                                                            | 6.81E-10                                                                                                                                                                                                      |
| Tetrachloroethene  DERMAL CONTACT  INTAKE = (Sc * SA *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | D * CF) / (BW * /                                                                   | AT)<br>ABSd                                                                                                          | Sc                                                                                                                                                                             | Intake for                                                                                                                                                                                                                          | Intake for                                                                                                                                                                                                    |
| DERMAL CONTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | D * CF) / (BW * A                                                                   |                                                                                                                      |                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |
| DERMAL CONTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | D * CF) / (BW * #                                                                   | ABSd                                                                                                                 | Sc                                                                                                                                                                             | Intake for<br>Carcinogens                                                                                                                                                                                                           | Intake for<br>Noncarcinogens                                                                                                                                                                                  |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | D * CF) / (BW * /                                                                   | ABSd<br>1.30E-01                                                                                                     | Sc 1,27E-04                                                                                                                                                                    | Intake for<br>Carcinogens<br>2.28E-12                                                                                                                                                                                               | Intake for<br>Noncarcinogens<br>1.60E-10                                                                                                                                                                      |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane  Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              | D * CF) / (BW * A                                                                   | ABSd<br>1.30E-01<br>1.00E-02                                                                                         | Sc<br>1.27E-04<br>1.33E+04                                                                                                                                                     | Intake for<br>Carcinogens<br>2.28E-12<br>1.85E-05                                                                                                                                                                                   | Intake for<br>Noncarcinogens<br>1.60E-10<br>1.29E-03                                                                                                                                                          |
| DERMAL CONTACT INTAKE = (Sc * SA * Chemical 1,2-Dichloroethane Aluminum Aroclor-1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AF*ABSd*EF*E                                 | D * CF) / (BW * A                                                                   | ABSd<br>1.30E-01                                                                                                     | Sc 1,27E-04                                                                                                                                                                    | Intake for<br>Carcinogens<br>2.28E-12                                                                                                                                                                                               | Intake for<br>Noncarcinogens<br>1.60E-10                                                                                                                                                                      |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aluminum  Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AF*ABSd*EF*E                                 | D * CF) / (BW * A                                                                   | ABSd<br>1.30E-01<br>1.00E-02<br>1.30E-01<br>1.30E-01                                                                 | Sc<br>1.27E-04<br>1.33E+04<br>4.30E-03                                                                                                                                         | Intake for<br>Carcinogens<br>2.28E-12<br>1.85E-05<br>7.74E-11<br>2.00E-10                                                                                                                                                           | Intake for<br>Noncarcinogens<br>1.60E-10<br>1.29E-03<br>5.41E-09<br>1.40E-08                                                                                                                                  |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AF * ABSd * EF * E                           | D * CF) / (BW * /                                                                   | ABSd<br>1.30E-01<br>1.00E-02<br>1.30E-01                                                                             | Sc<br>1.27E-04<br>1.33E+04<br>4.30E-03<br>1.11E-02                                                                                                                             | Intake for<br>Carcinogens<br>2.28E-12<br>1.85E-05<br>7.74E-11                                                                                                                                                                       | Intake for<br>Noncarcinogens<br>1.60E-10<br>1.29E-03<br>5.41E-09                                                                                                                                              |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Bénzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AF * ABSd * EF * E                           | D * CF) / (BW * /                                                                   | 1.30E-01<br>1.00E-02<br>1.30E-01<br>1.30E-01<br>1.30E-01                                                             | Sc<br>1.27E-04<br>1.33E+04<br>4.30E-03<br>1.11E-02<br>3.78E-01                                                                                                                 | Intake for<br>Carcinogens<br>2.28E-12<br>1.85E-05<br>7.74E-11<br>2.00E-10<br>6.80E-09                                                                                                                                               | Intake for<br>Noncarcinogens<br>1.60E-10<br>1.29E-03<br>5.41E-09<br>1.40E-08<br>4.76E-07                                                                                                                      |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aluminum  Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AF * ABSd * EF * E                           | D * CF) / (BW * A                                                                   | ABSd<br>1.30E-01<br>1.00E-02<br>1.30E-01<br>1.30E-01<br>1.30E-01                                                     | Sc<br>1.27E-04<br>1.33E+04<br>4.30E-03<br>1.11E-02<br>3.78E-01<br>2.52E-01                                                                                                     | Intake for<br>Carcinogens<br>2.28E-12<br>1.85E-05<br>7.74E-11<br>2.00E-10<br>6.80E-09<br>4.53E-09                                                                                                                                   | Intake for<br>Noncarcinogens<br>1.60E-10<br>1.29E-03<br>5.41E-09<br>1.40E-08<br>4.76E-07<br>3.17E-07                                                                                                          |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracen ndeno(1,2,3-cd)pyre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AF * ABSd * EF * E                           | D * CF) / (BW * A                                                                   | 1.30E-01<br>1.00E-02<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01                                     | Sc<br>1.27E-04<br>1.33E+04<br>4.30E-03<br>1.11E-02<br>3.78E-01<br>2.52E-01<br>1.08E-02                                                                                         | Intake for<br>Carcinogens<br>2.28E-12<br>1.85E-05<br>7.74E-11<br>2.00E-10<br>6.80E-09<br>4.53E-09<br>1.94E-10                                                                                                                       | Intake for<br>Noncarcinogens<br>1.60E-10<br>1.29E-03<br>5.41E-09<br>1.40E-08<br>4.76E-07<br>3.17E-07<br>1.36E-08                                                                                              |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracer indeno(1,2,3-cd)pyre ron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AF * ABSd * EF * E                           | D * CF) / (BW * A                                                                   | ABSd  1.30E-01 1.00E-02 1.30E-01 1.30E-01 1.30E-01 1.30E-01 1.30E-01                                                 | Sc<br>1.27E-04<br>1.33E+04<br>4.30E-03<br>1.11E-02<br>3.78E-01<br>2.52E-01<br>1.08E-02<br>3.96E-01                                                                             | Intake for<br>Carcinogens<br>2.28E-12<br>1.88E-05<br>7.74E-11<br>2.00E-10<br>6.80E-09<br>4.53E-09<br>1.94E-10<br>7.12E-09                                                                                                           | Intake for<br>Noncarcinogens<br>1.60E-10<br>1.29E-03<br>5.41E-09<br>1.40E-08<br>4.76E-07<br>3.17E-07<br>1.36E-08<br>4.99E-07                                                                                  |
| DERMAL CONTACT INTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,f))anthracer Indeno(1,2,3-cd)pyre Iron Tetrachloroethene  INHALATION PATHV  Ac = Sc * (1/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ene WAY  EF + 1/VF)                          |                                                                                     | 1.30E-01<br>1.00E-02<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01             | Sc<br>1.27E-04<br>1.33E+04<br>4.30E-03<br>1.11E-02<br>3.78E-01<br>2.52E-01<br>1.08E-02<br>3.96E-01<br>3.69E+04<br>2.11E-04                                                     | Intake for<br>Carcinogens<br>2.28E-12<br>1.88E-05<br>7.74E-11<br>2.00E-10<br>6.80E-09<br>4.53E-09<br>1.94E-10<br>7.12E-09<br>5.11E-05                                                                                               | Intake for<br>Noncarcinogens<br>1.60E-10<br>1.29E-03<br>5.41E-09<br>1.40E-08<br>4.76E-07<br>3.17E-07<br>1.36E-08<br>4.99E-07<br>3.57E-03                                                                      |
| Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracer Indeno(1,2,3-cd)pyre Iron Tetrachloroethene  INHALATION PATHV Ac = Sc*(1/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eneway                                       |                                                                                     | 1.30E-01<br>1.00E-02<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01             | Sc<br>1.27E-04<br>1.33E+04<br>4.30E-03<br>1.11E-02<br>3.78E-01<br>2.52E-01<br>1.08E-02<br>3.96E-01<br>3.69E+04<br>2.11E-04                                                     | Intake for<br>Carcinogens<br>2.28E-12<br>1.85E-05<br>7.74E-11<br>2.00E-10<br>6.80E-09<br>4.53E-09<br>1.94E-10<br>7.12E-09<br>5.11E-05<br>3.80E-12                                                                                   | Intake for<br>Noncarcinogens<br>1.60E-10<br>1.29E-03<br>5.41E-09<br>1.40E-08<br>4.76E-07<br>3.17E-07<br>1.36E-08<br>4.99E-07<br>3.57E-03                                                                      |
| Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(a)hjuoranthene Dibenz(a,h)anthracer indeno(1,2,3-cd)pyre ron Tetrachloroethene  NHALATION PATHV Ac = Sc*(1/PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eneway                                       |                                                                                     | 1.30E-01<br>1.00E-02<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01             | Sc<br>1.27E-04<br>1.33E+04<br>4.30E-03<br>1.11E-02<br>3.78E-01<br>2.52E-01<br>1.08E-02<br>3.96E-01<br>3.69E+04<br>2.11E-04                                                     | Intake for<br>Carcinogens<br>2.28E-12<br>1.85E-05<br>7.74E-11<br>2.00E-10<br>6.80E-09<br>4.53E-09<br>1.94E-10<br>7.12E-09<br>5.11E-05<br>3.80E-12                                                                                   | Intake for<br>Noncarcinogens<br>1.60E-10<br>1.29E-03<br>5.41E-09<br>1.40E-08<br>4.76E-07<br>3.17E-07<br>1.36E-08<br>4.99E-07<br>3.57E-03                                                                      |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracer Indeno(1,2,3-cd)pyre Iron Tetrachloroethene  NHALATION PATH  Ac = Sc * (1/PE EAC = (Ac * EF *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eneway                                       | for carcinogens,                                                                    | 1.30E-01<br>1.00E-02<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01<br>1.30E-01             | Sc<br>1.27E-04<br>1.33E+04<br>4.30E-03<br>1.11E-02<br>3.78E-01<br>1.08E-02<br>3.96E-01<br>3.69E+04<br>2.11E-04                                                                 | Intake for Carcinogens  2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12  et into proper units, ug/m3                                                                                      | Intake for<br>Noncarcinogens<br>1.60E-10<br>1.29E-03<br>5.41E-09<br>1.40E-08<br>4.76E-07<br>3.17E-07<br>1.36E-08<br>4.99E-07<br>3.57E-03<br>2.66E-10                                                          |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracer Indeno(1,2,3-cd)pyre Iron Tetrachloroethene  NHALATION PATHV  Ac = Sc * (1/PI EAC = (Ac * EF *  Chemical  1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eneway                                       | for carcinogens,                                                                    | 1,30E-01<br>1,00E-02<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01 | Sc<br>1.27E-04<br>1.33E+04<br>4.30E-03<br>1.11E-02<br>3.78E-01<br>2.52E-01<br>1.08E-02<br>3.96E-01<br>3.69E+04<br>2.11E-04                                                     | Intake for Carcinogens  2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12  et into proper units, ug/m3  EAC for Carcinogens                                                                 | Intake for Noncarcinogens  1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10  EAC for Noncarcinogens                                                                  |
| Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dienz(a,h)anthracer International (1,2,3-cd)pyre International (1,2,3-cd)pyre International (1,2,3-cd) International (1,2-cd)  | eneway                                       | for carcinogens,<br>Sc<br>1.27E-04                                                  | 1,30E-01<br>1,00E-02<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01 | Sc  1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04                                                                                           | Intake for Carcinogens  2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12  et into proper units, ug/m3  EAC for Carcinogens 8.80E-08                                                        | Intake for<br>Noncarcinogens  1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10  EAC for Noncarcinogens 6.16E-09                                                      |
| Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracen deno(1,2,3-cd)pyre ron Fetrachloroethene  NHALATION PATHV Ac = Sc * (1/PE EAC = (Ac * EF *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eneenee                                      | for carcinogens,<br>Sc<br>1.27E-04<br>1.22E+04                                      | 1,30E-01<br>1,00E-02<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01 | Sc  1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04  a is necessary to go Ac  8.99E-09 1.22E-05                                      | Intake for Carcinogens  2.28E-12 1.88E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12  et into proper units, ug/m3  EAC for Carcinogens  8.80E-08 1.19E-04                                              | Intake for Noncarcinogens  1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10  EAC for Noncarcinogens 6.16E-09 8.35E-06                                                |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracen Certachloroethene  NHALATION PATHA  Ac = Sc * (1/PE EAC = (Ac * EF *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eneenee                                      | for carcinogens, Sc 1.27E-04 1.22E+04 4.29E-03                                      | 1,30E-01<br>1,00E-02<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01 | Sc  1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04  Ac  8.99E-09 1.22E-05 4.29E-12                                                           | Intake for Carcinogens  2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12  et into proper units, ug/m3  EAC for Carcinogens  8.80E-08 1.19E-04 4.20E-11                                     | Intake for<br>Noncarcinogens  1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10  EAC for Noncarcinogens 6.16E-09 8.35E-06 2.94E-12                                    |
| DERMAL CONTACT  NTAKE = {Sc * SA *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracer ron Tetrachloroethene  NHALATION PATHV  Ac = Sc * (1/PE EAC = (Ac * EF *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e ene ene e                                  | for carcinogens,<br>Sc<br>1.27E-04<br>1.22E-03<br>1.10E-02                          | 1,30E-01<br>1,00E-02<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01 | Sc  1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04  Ac  8.99E-09 1.22E-05 4.29E-12 1.10E-11                                         | Intake for Carcinogens  2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12  et into proper units, ug/m3  EAC for Carcinogens  8.80E-08 1.19E-04 4.20E-11 1.08E-10                            | Intake for Noncarcinogens  1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10  EAC for Noncarcinogens  6.16E-09 8.35E-06 2.94E-12 7.53E-12                             |
| Chemical  1,2-Dichloroethane Aluminum Arcalor(1,2,3-cd)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracer Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)py | ene way  Way  EF + 1/VF)  * ED) / AT         | *for carcinogens,<br>Sc<br>1.27E-04<br>1.22E+04<br>4.29E-03<br>1.10E-02<br>1.16E-02 | 1,30E-01<br>1,00E-02<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01 | Sc  1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04  Ac  8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11                                         | Intake for Carcinogens  2.28E-12 1.88E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12  et into proper units, ug/m3  EAC for Carcinogens  8.80E-08 1.19E-04 4.20E-11 1.08E-10 1.14E-10                   | Intake for Noncarcinogens  1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10  EAC for Noncarcinogens  6.16E-09 8.35E-06 2.94E-12 7.55E-12                             |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracer Indeno(1,2,3-cd)pyre Iron Tetrachloroethene  NHALATION PATH  Ac = Sc * (1/PE EAC = (Ac * EF *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)aynerae Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eneemee                                      | 1.27E-04<br>1.22E+04<br>4.29E-03<br>1.10E-02<br>1.16E-02<br>3.73E-01                | 1,30E-01<br>1,00E-02<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01 | Sc  1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04  a is necessary to go  Ac  8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10 | Intake for Carcinogens  2.28E-12 1.88E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12  et into proper units, ug/m3  EAC for Carcinogens  8.80E-08 1.19E-04 4.20E-11 1.08E-10 1.14E-10 3.65E-09          | Intake for Noncarcinogens  1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10  EAC for Noncarcinogens  6.16E-09 8.35E-06 2.94E-12 7.53E-12 7.95E-12 2.55E-10           |
| DERMAL CONTACT  NTAKE = (Sc * SA *  Chemical  1,2-Dichloroethane Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracer Indeno(1,2,3-cd)pyrer ron Tetrachloroethene  NHALATION PATH  Ac = Sc * (1/PE EAC = (Ac * EF *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eneemee                                      | 1.27E-04<br>1.22E+04<br>4.29E-03<br>1.10E-02<br>1.16E-02<br>3.73E-01<br>1.10E-02    | 1,30E-01<br>1,00E-02<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01<br>1,30E-01 | Sc  1.27E-04 1.33E+04 4.30E-03 1.11E-02 3.78E-01 2.52E-01 1.08E-02 3.96E-01 3.69E+04 2.11E-04  Ac  8.99E-09 1.22E-05 4.29E-12 1.10E-11 1.16E-11 3.73E-10 1.10E-11              | Intake for Carcinogens  2.28E-12 1.85E-05 7.74E-11 2.00E-10 6.80E-09 4.53E-09 1.94E-10 7.12E-09 5.11E-05 3.80E-12  et into proper units, ug/m3  EAC for Carcinogens  8.80E-08 1.19E-04 4.20E-11 1.08E-10 1.14E-10 3.65E-09 1.08E-10 | Intake for Noncarcinogens  1.60E-10 1.29E-03 5.41E-09 1.40E-08 4.76E-07 3.17E-07 1.36E-08 4.99E-07 3.57E-03 2.66E-10   EAC for Noncarcinogens  6.16E-09 8.35E-06 2.94E-12 7.53E-12 7.95E-12 2.55E-10 7.53E-12 |

### TABLE C-16 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE -- INDUSTRIAL WORKER

| SOIL INGESTION                                                                                                               |                                           |                                                                                              | <u></u>              |                                                                                  |                                                                                  |                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                                                              |                                           |                                                                                              |                      |                                                                                  |                                                                                  |                                                                                  |
| INTAKE = (Sc * IR * E                                                                                                        | F * ED * CF) / (BV                        | V*AT)                                                                                        |                      |                                                                                  |                                                                                  |                                                                                  |
| Parameter                                                                                                                    | Definition                                |                                                                                              |                      |                                                                                  | Value                                                                            | Reference                                                                        |
| Intake                                                                                                                       | Intake of chemica                         |                                                                                              |                      |                                                                                  | calculated                                                                       |                                                                                  |
| Sc                                                                                                                           | Soil concentration                        |                                                                                              |                      |                                                                                  | see data page                                                                    | •                                                                                |
| Ac                                                                                                                           | Air concentration                         |                                                                                              |                      |                                                                                  | see below                                                                        |                                                                                  |
| EAC<br>VF                                                                                                                    | Effective air conc<br>Volatilization Fact |                                                                                              | ))                   |                                                                                  | calculated<br>calculated                                                         | EPA, 1996                                                                        |
| PEF                                                                                                                          | Particulate Emiss                         |                                                                                              | a)                   |                                                                                  | 1.00E+09                                                                         | EPA, 2004a                                                                       |
| IR                                                                                                                           | Ingestion rate of s                       | •                                                                                            | 9/                   |                                                                                  | 50                                                                               | EPA, 2004a                                                                       |
| SA                                                                                                                           | Skin surface area                         |                                                                                              |                      |                                                                                  | 3300                                                                             | EPA, 2004a                                                                       |
| AF                                                                                                                           | Soil to skin adher                        |                                                                                              |                      |                                                                                  | 0.021                                                                            | EPA, 2001a                                                                       |
| ABSd                                                                                                                         | Dermal absorption                         |                                                                                              | s)                   |                                                                                  | see chemprop page                                                                |                                                                                  |
| EF<br>ED                                                                                                                     | Exposure frequen                          |                                                                                              |                      |                                                                                  | 250                                                                              | EPA, 2004a                                                                       |
| CF                                                                                                                           | Exposure duration<br>Conversion factor    |                                                                                              |                      |                                                                                  | 25<br>1.00E-06                                                                   | EPA, 2004a<br>EPA, 1989                                                          |
| вw                                                                                                                           | Body weight (kg)                          | (kg/mg)                                                                                      |                      | •                                                                                | 70                                                                               | EPA, 1989                                                                        |
| ATc                                                                                                                          | Averaging time fo                         | r carcinogens (da                                                                            | vs)                  |                                                                                  | 25550                                                                            | EPA, 1989                                                                        |
| ATnc                                                                                                                         | Averaging time fo                         |                                                                                              |                      |                                                                                  | 9125                                                                             | EPA, 1989                                                                        |
|                                                                                                                              |                                           |                                                                                              |                      |                                                                                  | · · · · · · · · · · · · · · · · · · ·                                            |                                                                                  |
|                                                                                                                              |                                           |                                                                                              |                      | Sc                                                                               | Intake for                                                                       | Intake for                                                                       |
| Chemical                                                                                                                     |                                           |                                                                                              |                      |                                                                                  | Carcinogens                                                                      | Noncarcinogens                                                                   |
| 1.2 Diablaracthan-                                                                                                           |                                           |                                                                                              |                      | 1.055.02                                                                         | 9.445.00                                                                         | 0.545.00                                                                         |
| 1,2-Dichloroethane<br>Aluminum                                                                                               |                                           |                                                                                              |                      | 1.95E-02<br>1.23E+04                                                             | 3.41E-09<br>2.14E-03                                                             | 9,54E-09<br>6,00E-03                                                             |
| Aroclor-1254                                                                                                                 |                                           |                                                                                              |                      | 1.23E+04<br>1.81E-01                                                             | 2.14E-03<br>3.16E-08                                                             | 8.86E-08                                                                         |
| Benzo(a)anthracene                                                                                                           |                                           |                                                                                              |                      | 1.09E-01                                                                         | 1.90E-08                                                                         | 5.33E-08                                                                         |
| Benzo(a)pyrene                                                                                                               |                                           |                                                                                              |                      | 9.37E-02                                                                         | 1.64E-08                                                                         | 4,58E-08                                                                         |
| Benzo(b)fluoranthene                                                                                                         |                                           |                                                                                              |                      | 1.44E-01                                                                         | 2.52E-08                                                                         | 7.05E-08                                                                         |
| Dibenz(a,h)anthracen                                                                                                         | е                                         |                                                                                              |                      | 6.88E-02                                                                         | 1.20E-08                                                                         | 3.37E-08                                                                         |
| Indeno(1,2,3-cd)pyrer                                                                                                        | е                                         |                                                                                              |                      | 1.15E-01                                                                         | 2.01E-08                                                                         | 5.63E-08                                                                         |
| Iron                                                                                                                         |                                           |                                                                                              |                      | 2.09E+04                                                                         | 3.65E-03                                                                         | 1.02E-02                                                                         |
| Tetrachloroethene                                                                                                            |                                           |                                                                                              |                      | 1.26E-02                                                                         | 2.20E-09                                                                         | 6.16E-09                                                                         |
| DERMAL CONTACT                                                                                                               |                                           |                                                                                              |                      |                                                                                  |                                                                                  |                                                                                  |
| INTAKE = (Sc * SA * /                                                                                                        | AF*ABSd*EF*E                              | ED * CF) / (BW * A                                                                           | AT)                  |                                                                                  |                                                                                  |                                                                                  |
| Chemical                                                                                                                     | <u></u>                                   |                                                                                              | ABSd                 | Sc                                                                               | Intake for<br>Carcinogens                                                        | Intake for<br>Noncarcinogens                                                     |
| 1.2 Diablaracibana                                                                                                           |                                           |                                                                                              | 1 205 01             | 1.055.03                                                                         | 6 14E 10                                                                         | 1 725 00                                                                         |
| 1,2-Dichloroethane<br>Aluminum                                                                                               |                                           |                                                                                              | 1.30E-01<br>1.00E-02 | 1.95E-02<br>1.23E+04                                                             | 6.14E-10<br>2.97E-05                                                             | 1.72E-09<br>8,32E-05                                                             |
| Aroclor-1254                                                                                                                 | •                                         |                                                                                              | 1.30E-02             | 1.81E-01                                                                         | 5.70E-09                                                                         | 1.60E-08                                                                         |
| Benzo(a)anthracene                                                                                                           |                                           |                                                                                              | 1.30E-01             | 1.09E-01                                                                         | 3.43E-09                                                                         | 9,61E-09                                                                         |
| Benzo(a)pyrene                                                                                                               |                                           |                                                                                              | 1.30E-01             | 9.37E-02                                                                         | 2.95E-09                                                                         | 8.26E-09                                                                         |
| Benzo(b)fluoranthene                                                                                                         |                                           |                                                                                              | 1.30E-01             | 1.44E-01                                                                         | 4,53E-09                                                                         | 1.27E-08                                                                         |
| Dibenz(a,h)anthracen                                                                                                         | е                                         |                                                                                              | 1.30E-01             | 6.88E-02                                                                         | 2.17E-09                                                                         | 6.06E-09                                                                         |
| Indeno(1,2,3-cd)pyrer                                                                                                        | e                                         |                                                                                              | 1.30E-01             | 1.15E-01                                                                         | 3.62E-09                                                                         | 1.01E-08                                                                         |
| iron                                                                                                                         |                                           |                                                                                              | 1.00E-02             | 2.09E+04                                                                         | 5.06E-05                                                                         | 1.42E-04                                                                         |
| Tetrachloroethene                                                                                                            |                                           |                                                                                              | 1.30E-01             | 1.26E-02                                                                         | 3.97E-10                                                                         | 1.11E-09                                                                         |
| INHALATION PATHV                                                                                                             | /AY                                       |                                                                                              |                      |                                                                                  |                                                                                  | <del></del>                                                                      |
| Ac = Sc * (1/PE<br>EAC = (Ac * EF *                                                                                          |                                           | *for carcinogens,                                                                            | a conversior         | is necessary t                                                                   | o get into proper units, ug/m3                                                   |                                                                                  |
| Chemical                                                                                                                     |                                           | Sc                                                                                           | VF                   | Ac                                                                               | EAC for<br>Carcinogens                                                           | EAC for<br>Noncarcinogens                                                        |
| ı                                                                                                                            |                                           | 1.95E-02                                                                                     | 1.41E+04             | 1.38E-06                                                                         | 3.38E-04                                                                         | 9.45E-07                                                                         |
| 1.2-Dichloroethane                                                                                                           |                                           |                                                                                              |                      |                                                                                  | 2.61E-03                                                                         | 7.31E-06                                                                         |
| 1,2-Dichloroethane                                                                                                           |                                           |                                                                                              |                      | 1.071=-05                                                                        |                                                                                  |                                                                                  |
| Aluminum                                                                                                                     |                                           | 1.07E+04                                                                                     | •                    | 1.07E-05<br>1.22E-11                                                             |                                                                                  |                                                                                  |
| Aluminum<br>Aroclor-1254                                                                                                     |                                           | 1.07E+04<br>1.22E-02                                                                         |                      | 1.07E-05<br>1.22E-11<br>1.18E-09                                                 | 2.98E-09<br>2.89E-07                                                             | 8.36E-12                                                                         |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthracene                                                                               |                                           | 1.07E+04                                                                                     | ٠                    | 1.22E-11                                                                         | 2.98E-09                                                                         |                                                                                  |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthracene                                                                               |                                           | 1.07E+04<br>1.22E-02<br>1.18E+00                                                             | ٠                    | 1.22E-11<br>1.18E-09                                                             | 2.98E-09<br>2.89E-07                                                             | 8.36E-12<br>8.08E-10                                                             |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthracene<br>Benzo(a)pyrene                                                             |                                           | 1.07E+04<br>1.22E-02<br>1.18E+00<br>1.19E-01                                                 | ٠                    | 1.22E-11<br>1.18E-09<br>1.19E-10                                                 | 2.98E-09<br>2.89E-07<br>2.91E-08                                                 | 8.36E-12<br>8.08E-10<br>8.15E-11                                                 |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(b)fluoranthene                                     | е                                         | 1.07E+04<br>1.22E-02<br>1.18E+00<br>1.19E-01<br>1.69E-01                                     |                      | 1.22E-11<br>1.18E-09<br>1.19E-10<br>1.69E-10                                     | 2.98E-09<br>2.89E-07<br>2.91E-08<br>4.13E-08                                     | 8.36E-12<br>8.08E-10<br>8.15E-11<br>1.16E-10                                     |
| Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracen Indeno(1,2,3-cd)pyrer Iron | е                                         | 1.07E+04<br>1.22E-02<br>1.18E+00<br>1.19E-01<br>1.69E-01<br>7.69E-02<br>1.55E-01<br>1.95E+04 |                      | 1.22E-11<br>1.18E-09<br>1.19E-10<br>1.69E-10<br>7.69E-11<br>1.55E-10<br>1.95E-05 | 2.98E-09<br>2.89E-07<br>2.91E-08<br>4.13E-08<br>1.88E-08<br>3.79E-08<br>4.76E-03 | 8.36E-12<br>8.08E-10<br>8.15E-11<br>1.16E-10<br>5.27E-11<br>1.06E-10<br>1.33E-05 |
| Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracen                            | е                                         | 1.07E+04<br>1.22E-02<br>1.18E+00<br>1.19E-01<br>1.69E-01<br>7.69E-02<br>1.55E-01             | 1.51E+03             | 1.22E-11<br>1.18E-09<br>1.19E-10<br>1.69E-10<br>7.69E-11<br>1.55E-10             | 2.98E-09<br>2.89E-07<br>2.91E-08<br>4.13E-08<br>1.88E-08<br>3.79E-08             | 8.36E-12<br>8.08E-10<br>8.15E-11<br>1.16E-10<br>5.27E-11<br>1.06E-10             |

### TABLE C-17 INTAKE CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- INDUSTRIAL WORKER

| CON INCCOTION                                 |                                                 |                      |                      |                      |                                       |                           |
|-----------------------------------------------|-------------------------------------------------|----------------------|----------------------|----------------------|---------------------------------------|---------------------------|
| SOIL INGESTION                                |                                                 |                      |                      |                      |                                       |                           |
| INTAKE = (Sc * IR * E                         | F * ED * CF) / (BW * A                          | n                    |                      |                      |                                       |                           |
| MAINE - (OC III E                             | LD OITHUR A                                     | ',                   |                      |                      |                                       |                           |
| Parameter                                     | Definition                                      |                      |                      |                      | Value                                 | Reference                 |
| Intake                                        | Intake of chemical (mg                          | /kg-day)             |                      |                      | calculated                            |                           |
| Sc                                            | Soil concentration (mg                          |                      |                      |                      | see data page                         |                           |
| Ac                                            | Air concentration (mg/i                         | m^3)                 |                      |                      | see below                             |                           |
| EAC                                           | Effective air concentra                         |                      | 3)                   |                      | calculated                            |                           |
| VF                                            | Volatilization Factor (m                        |                      |                      |                      | calculated                            | EPA, 1996                 |
| PEF                                           | Particulate Emission F                          |                      | g)                   |                      | 1.00E+09                              | EPA, 2004a                |
| IR                                            | Ingestion rate of soil (n                       |                      |                      |                      | 50                                    | EPA, 2004a                |
| SA                                            | Skin surface area (cm:                          |                      |                      |                      | 3300                                  | EPA, 2004a                |
| AF<br>ABSd                                    | Soil to skin adherence                          |                      |                      |                      | 0.2<br>see chemprop page              | EPA, 2004a                |
| EF                                            | Dermal absorption frac<br>Exposure frequency (d |                      | 9)                   |                      | 250                                   | EPA, 2004a                |
| ED                                            | Exposure duration (yr)                          |                      |                      |                      | 25                                    | EPA, 2004a                |
| CF                                            | Conversion factor (kg/i                         |                      |                      |                      | 1.00E-06                              | EPA, 1989                 |
| BW                                            | Body weight (kg)                                |                      |                      |                      | 70                                    | EPA, 1989                 |
| ATc                                           | Averaging time for care                         | cinogens (da         | vs)                  |                      | 25550                                 | EPA, 1989                 |
| ATnc                                          | Averaging time for non                          | carcinogens          | (days)               |                      | 9125                                  | EPA, 1989                 |
|                                               |                                                 |                      |                      |                      |                                       |                           |
|                                               |                                                 |                      |                      |                      | _                                     |                           |
|                                               |                                                 |                      |                      | Sc                   | Intake for                            | Intake for                |
| Chemical                                      |                                                 |                      |                      |                      | Carcinogens                           | Noncarcinogens            |
| 4 6 70 11 11                                  |                                                 |                      |                      |                      | 0.007.44                              |                           |
| 1,2-Dichloroethane                            |                                                 |                      |                      | 1.27E-04             | 2.22E-11                              | 6.21E-11                  |
| Aluminum                                      |                                                 |                      |                      | 1.33E+04             | 2,33E-03                              | 6.53E-03                  |
| Aroclor-1254 Benzo(a)anthracene               |                                                 |                      |                      | 4.30E-03<br>1.11E-02 | 7.51E-10<br>1.94E-09                  | 2.10E-09                  |
| Benzo(a)pyrene                                |                                                 |                      |                      | 3.78E-01             | 6.60E-08                              | 5.43E-09<br>1.85E-07      |
| Benzo(b)fluoranthene                          |                                                 |                      |                      | 2.52E-01             | 4.40E-08                              | 1,23E-07                  |
| Dibenz(a,h)anthracene                         | •                                               |                      |                      | 1.08E-02             | 1.89E-09                              | 5,28E-09                  |
| Indeno(1,2,3-cd)pyren                         |                                                 |                      |                      | 3.96E-01             | 6.92E-08                              | 1.94E-07                  |
| Iron                                          | -                                               |                      |                      | 3.69E+04             | 6,45E-03                              | 1.80E-02                  |
| Tetrachloroethene                             |                                                 |                      |                      | 2.11E-04             | 3.69E-11                              | 1,03E-10                  |
|                                               |                                                 |                      |                      |                      |                                       |                           |
| DERMAL CONTACT                                |                                                 |                      |                      |                      |                                       |                           |
|                                               | F + 400   + FF + F0 + 4                         | OE\                  |                      |                      |                                       |                           |
| N   AKE = (SC * SA * A                        | AF * ABSd * EF * ED * (                         | 2F) / (BAA \         | A1)                  |                      |                                       |                           |
|                                               | ·                                               |                      |                      |                      |                                       |                           |
|                                               |                                                 |                      | ABSd                 | Sc                   | Intake for                            | Intake for                |
| Chemical                                      |                                                 |                      |                      |                      | Carcinogens                           | Noncarcinogens            |
|                                               |                                                 |                      |                      |                      |                                       |                           |
| 1,2-Dichloroethane                            |                                                 |                      | 1.30E-01             | 1.27E-04             | 3.81E-11                              | 1.07E-10                  |
| Aluminum                                      |                                                 |                      | 1.00E-02             | 1.33E+04             | 3.08E-04                              | 8.62E-04                  |
| Aroclor-1254                                  |                                                 |                      | 1.30E-01             | 4.30E-03             | 1.29E-09                              | 3.61E-09                  |
| Benzo(a)anthracene                            |                                                 |                      | 1.30E-01             | 1.11E-02             | 3.33E-09                              | 9.32E-09                  |
| Benzo(a)pyrene                                |                                                 |                      | 1.30E-01<br>1.30E-01 | 3.78E-01<br>2.52E-01 | 1.13E-07<br>7.56E-08                  | 3.17E-07<br>2.12E-07      |
| Benzo(b)fluoranthene<br>Dibenz(a,h)anthracene |                                                 |                      | 1.30E-01             | 1.08E-02             | 7.56E-06<br>3.24E-09                  | 9.07E-09                  |
| Indeno(1,2,3-cd)pyren                         |                                                 |                      | 1.30E-01             | 3.96E-01             | 1.19E-07                              | 3.32E-07                  |
| Iron                                          | •                                               |                      | 1.00E-02             | 3.69E+04             | 8.51E-04                              | 2.38E-03                  |
| Tetrachloroethene                             |                                                 |                      | 1.30E-01             | 2.11E-04             | 6.33E-11                              | 1.77E-10                  |
| ,                                             |                                                 |                      |                      |                      | 5,552 7.                              |                           |
| INHALATION PATHW                              | 'AY                                             | ···-                 |                      |                      | · · · · · · · · · · · · · · · · · · · |                           |
|                                               |                                                 |                      |                      |                      |                                       |                           |
| Ac = Sc * (1/PE                               | F + 1/VF)                                       |                      |                      |                      |                                       |                           |
| EAC = (Ac * EF *                              | ED) / AT *for o                                 | carcinogens,         | a conversion         | is necessary t       | to get into proper units, ug/m3       |                           |
|                                               |                                                 |                      |                      |                      |                                       |                           |
|                                               |                                                 | 0-                   | VE                   | ^-                   | E40.f                                 | EAC 6                     |
| Chemical                                      |                                                 | Sc                   | VF                   | Ac                   | EAC for<br>Carcinogens                | EAC for<br>Noncarcinogens |
| Citerisca                                     |                                                 |                      |                      |                      | Calcillogens                          | Noncarcinogens            |
| 1,2-Dichloroethane                            |                                                 | 1.27E-04             | 1.41E+04             | 8.99E-09             | 2.20E-06                              | 6.16E-09                  |
| Aluminum                                      |                                                 | 1.27E+04             | 1.412.04             | 1.22E-05             | 2.98E-03                              | 8.35E-06                  |
| Aroclor-1254                                  |                                                 | 4.29E-03             |                      | 4.29E-12             | 1,05E-09                              | 2.94E-12                  |
| Benzo(a)anthracene                            |                                                 | 1.10E-02             |                      | 1.10E-11             | 2.69E-09                              | 7.53E-12                  |
| Benzo(a)pyrene                                |                                                 | 1.16E-02             |                      | 1.16E-11             | 2.84E-09                              | 7.95E-12                  |
| Benzo(b)fluoranthene                          |                                                 | 3.73E-01             |                      | 3.73E-10             | 9.12E-08                              | 2.55E-10                  |
| Dibenz(a,h)anthracene                         | •                                               | 1.10E-02             |                      | 1.10E-11             | 2.69E-09                              | 7.53E-12                  |
| Indeno(1,2,3-cd)pyren                         |                                                 | 6.82E-01             |                      | 6.82E-10             | 1.67E-07                              | 4.67E-10                  |
|                                               |                                                 |                      |                      |                      |                                       |                           |
| Iron                                          |                                                 | 4.11E+04             |                      | 4.11E-05             | 1.01E-02                              | 2.82E-05                  |
| Iron<br>Tetrachloroethene                     |                                                 | 4.11E+04<br>2.11E-04 | 1.51E+03             | 4.11E-05<br>1.39E-07 | 1.01E-02<br>3.41E-05                  | 2.82E-05<br>9.54E-08      |

APPENDIX C-3
INTAKE CALCULATIONS
SEDIMENT

# TABLE C-18 EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs SEDIMENT INTRACOASTAL WATERWAY

| Parameter             | Average  |   | 95% UCL  | r⊯Statistic Used -⊩- |  |
|-----------------------|----------|---|----------|----------------------|--|
| Benzo(a)pyrene        | 9.46E-02 | < | 1.58E-02 | median               |  |
| Dibenz(a,h)anthracene | 7.12E-02 | < | 1.57E-02 | median               |  |
| lron                  | 1.34E+04 |   | 2.20E+04 | 97.5% Chebyshev      |  |

### TABLE C-19 INTAKE CALCULATIONS FOR SEDIMENT INTRACOASTAL WATERWAY AVERAGE

| SEDIMENT INGESTI     | ON .                                  | <del></del>          |                      |                             |                              |
|----------------------|---------------------------------------|----------------------|----------------------|-----------------------------|------------------------------|
|                      |                                       |                      |                      |                             |                              |
| NTAKE                | EF * ED * CF) / (BW * AT)             |                      |                      |                             |                              |
| Parameter            | Definition                            |                      |                      | Value                       | Reference                    |
| Intake               | Intake of chemical (mg/kg-day)        |                      |                      | calculated                  |                              |
| Sc                   | Sediment concentration (mg/kg)        |                      |                      | see data page               |                              |
| IR .                 | Ingestion rate of soil (mg/day)       |                      |                      | 100                         | TRRP-24                      |
| SA                   | Skin surface area (cm2)               |                      |                      | 4400                        | TRRP-24                      |
| AF                   | Sediment to skin adherence factor (n  | ng/cm2)              |                      | 0.3                         | TRRP-24                      |
| ABSd                 | Dermal absorption fraction (unitless) |                      |                      | see chemprop pag            | e                            |
| EF                   | Exposure frequency (day/yr)           |                      |                      | 19                          | professional judgment        |
| ED                   | Exposure duration (yr)                |                      |                      | 13                          | professional judgment        |
| CF                   | Conversion factor (kg/mg)             |                      |                      | 1.00E-06                    | EPA, 1989                    |
| BW                   | Body weight (kg)                      |                      |                      | 70                          | EPA, 1989                    |
| ATc                  | Averaging time for carcinogens (days  | s)                   |                      | 25550                       | EPA, 1989                    |
| ATnc                 | Averaging time for noncarcinogens (   | days)                |                      | 9125                        | EPA, 1989                    |
|                      |                                       |                      |                      |                             |                              |
| 30.0                 | rengal programmers                    |                      | - Sc                 | Intake for                  | Intake for                   |
| Chemical             |                                       | AV. Mary             |                      | - Carcinogens               | Intake for<br>Noncarcinogens |
| Benzo(a)pyrene       |                                       |                      | 9.46E-02             | 1.31E-09                    | 3.66E-09                     |
| Dibenz(a,h)anthracen | e ·                                   |                      | 7.12E-02             | 9.83E-10                    | 2.75E-09                     |
| Iron                 |                                       |                      | 1.34E+04             | 1.84E-04                    | 5.16E-04                     |
| DERMAL CONTACT       |                                       |                      | <del></del>          | <del></del>                 |                              |
| DEI WINE CONTINOT    |                                       |                      |                      |                             | •                            |
| INTAKE = (Sc * SA *  | AF * ABSd * EF * ED * CF) / (BW * AT  | <u></u>              |                      |                             |                              |
|                      |                                       | ABSd                 |                      |                             |                              |
| Chemical             |                                       | ADOU -               | SC .                 | Intake for<br>Carcinogens ₃ | Intake for Noncarcinogens    |
| Benzo(a)pyrene       |                                       | 1.30E-01             | 9,46E-02             | 2.24E-09                    | 6.28E-09                     |
| Dibenz(a,h)anthracen | 9                                     | 1.30E-01             | 9.46E-02<br>7.12E-02 | 2.24E-09<br>1.69E-09        | 4.72E-09                     |
| Iron                 | <b>C</b>                              | 1.30E-01<br>1.00E-02 | 1.34E+04             | 1.69E-09<br>2.43E-05        | 4.72E-09<br>6.82E-05         |
| 11011                |                                       | 1.00L-02             | 1.046704             | 2.436-03                    | 0.02E-UU                     |

### TABLE C-20 INTAKE CALCULATIONS FOR SEDIMENT INTRACOASTAL WATERWAY RME

| SEDIMENT INGE     | STION                                     |          |          |                           |                |
|-------------------|-------------------------------------------|----------|----------|---------------------------|----------------|
| OLDIWLIA1 INGE    |                                           |          |          |                           |                |
| INTAKE = (Sc * I  | R * EF * ED * CF) / (BW * AT)             |          |          |                           |                |
| Parameter         | Definition                                |          |          | Value                     | Reference      |
| Intake            | Intake of chemical (mg/kg-day)            |          |          | calculated                |                |
| Sc                | Sediment concentration (mg/kg)            |          |          | see data page             |                |
| IR                | Ingestion rate of soil (mg/day)           |          |          | 100                       | TRRP-24        |
| SA                | Skin surface area (cm2)                   |          |          | 4400                      | TRRP-24        |
| AF                | Sediment to skin adherence factor (r      | ng/cm2)  |          | 0.3                       | TRRP-24        |
| ABSd              | Dermal absorption fraction (unitless)     | -        |          | see chemprop page         |                |
| EF                | Exposure frequency (day/yr)               |          |          | 39                        | TRRP-24        |
| ED                | Exposure duration (yr)                    |          |          | 25                        | EPA, 1989      |
| CF                | Conversion factor (kg/mg)                 |          |          | 1.00E-06                  | EPA, 1989      |
| BW                | Body weight (kg)                          |          |          | 70                        | EPA, 1989      |
| ATc               | Averaging time for carcinogens (days      | s)       |          | 25550                     | EPA, 1989      |
| ATnc              | Averaging time for noncarcinogens (       | days)    |          | 9125                      | EPA, 1989      |
|                   | en e  |          | -Sc      | Intake for                | Intake for     |
| Chemical A        |                                           |          |          | Carcinogens               | Noncarcinogens |
| Benzo(a)pyrene    |                                           |          | 1.58E-02 | 8.61E-10                  | 2.41E-09       |
| Dibenz(a,h)anthra | acene                                     |          | 1.57E-02 | 8.56E-10                  | 2.40E-09       |
| Iron              |                                           |          | 2.20E+04 | 1.20E-03                  | 3.36E-03       |
| DERMAL CONTA      | ACT                                       |          |          |                           |                |
| DE. WINE CONT     |                                           |          |          |                           |                |
| INTAKE = (Sc * S  | SA * AF * ABSd * EF * ED * CF) / (BW * A) | ח        | ·        |                           |                |
| Chemical          |                                           | ABSd     | SG :     | intake for<br>Carcinogens |                |
|                   |                                           | 4.005.01 | 4.505.00 |                           |                |
| Benzo(a)pyrene    |                                           | 1.30E-01 | 1.58E-02 | 1.48E-09                  | 4.14E-09       |
| Dibenz(a,h)anthra | acene                                     | 1.30E-01 | 1.57E-02 | 1.47E-09                  | 4.11E-09       |
| Iron              |                                           | 1.00E-02 | 2.20E+04 | 1.58E-04                  | 4.43E-04       |
|                   |                                           |          |          |                           |                |

# TABLE C-21 EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs SEDIMENT NORTH OF MARLIN AVE.

| Parameter              | Average  |   | 95% UCL  | Statistic Used       |
|------------------------|----------|---|----------|----------------------|
| Aluminum               | 1.32E+04 |   | 1.40E+04 | 95% Student's-t      |
| Benzo(a)pyrene         | 1.10E-01 |   | 3.47E-01 | 97.5% KM (Chebyshev) |
| Dibenz(a,h)anthracene  | 2.87E-01 | < | 3.75E-02 | median               |
| Indeno(1,2,3-cd)pyrene | 2.20E-01 |   | 3.17E-01 | 95% KM (BCA)         |
| Iron                   | 1.72E+04 |   | 1.88E+04 | 95% Student's-t      |

## TABLE C-22 INTAKE CALCULATIONS FOR SEDIMENT NORTH OF MARLIN AVE. AVERAGE

| SEDIMENT INGESTIO      | DN .                                  |          | · · · · · · · · · · · · · · · · · · ·    |                   |                       |
|------------------------|---------------------------------------|----------|------------------------------------------|-------------------|-----------------------|
| INITAKE - (Sa * ID * E | F * ED * CF) / (BW * AT)              |          |                                          |                   |                       |
| INTARE - (SC IK E      | F ED CF)/(BW AI)                      |          |                                          |                   | :                     |
| Parameter              | Definition                            |          |                                          | Value             | Reference             |
| Intake                 | Intake of chemical (mg/kg-day)        |          |                                          | calculated        |                       |
| Sc                     | Sediment concentration (mg/kg)        |          |                                          | see data page     | •                     |
| IR .                   | Ingestion rate of soil (mg/day)       |          |                                          | 100               | TRRP-24               |
| SA                     | Skin surface area (cm2)               |          |                                          | 4400              | TRRP-24               |
| AF                     | Sediment to skin adherence factor (   | mg/cm2)  |                                          | 0.3               | TRRP-24               |
| ABSd                   | Dermal absorption fraction (unitless) | )        |                                          | see chemprop page |                       |
| EF                     | Exposure frequency (day/yr)           |          |                                          | 19                | professional judgment |
| ED                     | Exposure duration (yr)                |          |                                          | 13                | professional judgment |
| CF                     | Conversion factor (kg/mg)             |          |                                          | 1.00E-06          | EPA, 1989             |
| BW                     | Body weight (kg)                      |          |                                          | 70                | EPA, 1989             |
| ATc                    | Averaging time for carcinogens (day   | s)       |                                          | 25550             | EPA, 1989             |
| ATnc                   | Averaging time for noncarcinogens (   | (days)   |                                          | 9125              | EPA, 1989             |
|                        |                                       |          |                                          |                   |                       |
| 200                    |                                       |          | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                   |                       |
|                        |                                       | 101      | Sc Sc                                    | Intaké for        | intake/for intake/for |
| Chemical -             |                                       |          |                                          | Carcinogens       | Noncarcinogens        |
| <b>.</b> .             |                                       |          |                                          |                   | - 40 04               |
| Aluminum               |                                       |          | 1.32E+04                                 | 1.83E-04          | 5.12E-04              |
| Benzo(a)pyrene         |                                       |          | 1.10E-01                                 | 1.52E-09          | 4.25E-09              |
| Dibenz(a,h)anthracene  |                                       |          | 2.87E-01                                 | 3.96E-09          | 1.11E-08              |
| Indeno(1,2,3-cd)pyren  | e                                     |          | 2.20E-01                                 | 3.04E-09          | 8.51E-09              |
| Iron                   |                                       |          | 1.72E+04                                 | 2.37E-04          | 6.63E-04              |
| DERMAL CONTACT         |                                       |          |                                          | <del></del>       |                       |
| BEING LE CONTINCT      |                                       |          |                                          |                   |                       |
| INTAKE = (Sc * SA * A  | AF * ABSd * EF * ED * CF) / (BW * A   | T)       |                                          |                   |                       |
| ,                      |                                       |          |                                          |                   |                       |
| 14 15 15 15            |                                       |          |                                          | 44444             |                       |
| 100                    |                                       | ABSd     | Sc                                       | ⊸Intake for       | ■ Intake for          |
| Chemical               |                                       |          |                                          | Carcinogens :     | Noncarcinogens        |
|                        |                                       |          |                                          |                   |                       |
| Aluminum               |                                       | 0.00E+00 | 1.32E+04                                 | 0.00E+00          | 0.00E+00              |
| Benzo(a)pyrene         |                                       | 1.30E-01 | 1.10E-01                                 | 2.61E-09          | 7.30E-09              |
| Dibenz(a,h)anthracene  |                                       | 1.30E-01 | 2.87E-01                                 | 6.80E-09          | 1.90E-08              |
| Indeno(1,2,3-cd)pyren  | e                                     | 0.00E+00 | 2.20E-01                                 | 0.00E+00          | 0.00E+00              |
| Iron                   |                                       | 1.00E-02 | 1.72E+04                                 | 3.13E-05          | 8.75E-05              |
| L                      | · · · · · · · · · · · · · · · · · · · |          |                                          |                   |                       |

### TABLE C-23 INTAKE CALCULATIONS FOR SEDIMENT NORTH OF MARLIN AVE. RME

| SEDIMENT INGEST      | TION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | <del></del>          |                        | <del></del>           |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|------------------------|-----------------------|
| OLDIMENT INCLO       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      |                        |                       |
| INTAKE = (Sc * IR *  | EF * ED * CF) / (BW * AT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                      |                        |                       |
| Parameter            | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                      | Value                  | Reference             |
| Intake               | Intake of chemical (mg/kg-day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                      | calculated             |                       |
| Sc                   | Sediment concentration (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                      | see data page          |                       |
| IR                   | Ingestion rate of soil (mg/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      | 100                    | TRRP-24               |
| SA                   | Skin surface area (cm2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                      | 4400                   | TRRP-24               |
| AF                   | Sediment to skin adherence factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (mg/cm2)         |                      | 0.3                    | TRRP-24               |
| ABSd                 | Dermal absorption fraction (unitless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                      | see chemprop page      |                       |
| EF                   | Exposure frequency (day/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                |                      | 39                     | TRRP-24               |
| ED                   | Exposure duration (yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                      | 25                     | EPA, 1989             |
| CF                   | Conversion factor (kg/mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                      | 1.00E-06               | EPA, 1989             |
| вw                   | Body weight (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                      | 70                     | EPA, 1989             |
| ATc                  | Averaging time for carcinogens (da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vs)              |                      | 25550                  | EPA, 1989             |
| ATnc                 | Averaging time for noncarcinogens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                      | 9125                   | EPA, 1989             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (,               |                      |                        | ,                     |
|                      | and the second s | e all the second | 200                  |                        |                       |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Sc                   | Intake for             | Intake for            |
| Chemical             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      | intake for Carcinogens | Noncarcinogens        |
| Onothion Sargers     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      | - Care Scholle Solle   | the near a magazine s |
| Aluminum             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1.40E+04             | 7.63E-04               | 2.14E-03              |
| Benzo(a)pyrene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 3.47E-01             | 1.89E-08               | 5.30E-08              |
| Dibenz(a,h)anthrace  | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 3.75E-02             | 2.04E-09               | 5.72E-09              |
| Indeno(1,2,3-cd)pyre |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 3.17E-02<br>3.17E-01 | 2.04E-09<br>1.73E-08   | 4.84E-08              |
| , , , , , ,          | ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                      | +-                     |                       |
| Iron                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1.88E+04             | 1.03E-03               | 2.87E-03              |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      | ·                      |                       |
| DERMAL CONTACT       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      |                        |                       |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      |                        |                       |
| INTAKE = (Sc * SA '  | * AF * ABSd * EF * ED * CF) / (BW * A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AI)              |                      |                        |                       |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      | intake for 45%         |                       |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.0             |                      | 7 20 2 23 23 24 25     | en arabidana se a     |
| 20 miles and a       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ABSd             | Sc                   | Intake for             | Intake for            |
| Chemical:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      | Carcinogens            | Noncarcinogens —      |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      |                        |                       |
| Aluminum             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00E+00         | 1.40E+04             | 0.00E+00               | 0.00E+00              |
| Benzo(a)pyrene       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.30E-01         | 3.47E-01             | 3.25E-08               | 9.09E-08              |
| Dibenz(a,h)anthrace  | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.30E-01         | 3.75E-02             | 3.51E-09               | 9.82E-09              |
| Indeno(1,2,3-cd)pyre | ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E+00         | 3.17E-01             | 0.00E+00               | 0.00E+00              |
| Iron                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00E-02         | 1.88E+04             | 1.35E-04               | 3.79E-04              |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                      |                        |                       |

# TABLE C-24 EXPOSURE POINT CONCENTATION (mg/kg) FOR COPCs POND SEDIMENT

| Parameter Parameter | Average  |       | RME    | Statistic Used  |
|---------------------|----------|-------|--------|-----------------|
| Aluminum            | 1.17E+04 | 1.4   | 0E+04  | 95% Student's t |
| Iron                | 1.53E+04 | 1.7   | '4E+04 | 95% Student's t |
| m,p-Cresol          | 3.75E-02 | < 2.3 | 34E-02 | median          |

## TABLE C-25 INTAKE CALCULATIONS FOR POND SEDIMENT AVERAGE

| SEDIMENT INGE                            | ESTION                                     |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>          |
|------------------------------------------|--------------------------------------------|----------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| GEDINIERI 11401                          | 2311014                                    |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| INTAKE = (Sc * I                         | IR * EF * ED * CF) / (BW * AT)             |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Parameter                                | Definition                                 |                |                               | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reference             |
| Intake                                   | Intake of chemical (mg/kg-day)             |                |                               | calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
| Sc                                       | Sediment concentration (mg/kg)             |                |                               | see data page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| IR                                       | Ingestion rate of soil (mg/day)            |                |                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRRP-24               |
| SA                                       | Skin surface area (cm2)                    |                |                               | 4400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRRP-24               |
| AF                                       | Sediment to skin adherence factor (mg      | g/cm2)         |                               | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRRP-24               |
| ABSd                                     | Dermal absorption fraction (unitless)      | •              |                               | see chemprop pag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e                     |
| EF                                       | Exposure frequency (day/yr)                |                |                               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | professional judgment |
| ED                                       | Exposure duration (yr)                     |                |                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | professional judgment |
| CF                                       | Conversion factor (kg/mg)                  |                |                               | 1.00E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA, 1989             |
| BW                                       | Body weight (kg)                           |                |                               | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA, 1989             |
| ATc                                      | Averaging time for carcinogens (days)      | l              |                               | 25550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA, 1989             |
| ATnc                                     | Averaging time for noncarcinogens (da      | ays)           |                               | 9125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA, 1989             |
|                                          |                                            | out while page | or any analysis of the second | and the same of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| CARL A SA                                |                                            |                | Sc. 4 English                 | Intake for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Intake for            |
| Chemical                                 |                                            |                |                               | The second secon | Noncarcinogens        |
|                                          |                                            |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Aluminum                                 |                                            |                | 1.17E+04                      | 1.62E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.54E-04              |
| Iron                                     |                                            |                | 1.53E+04                      | 2.11E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.91E-04              |
| m,p-Cresol                               |                                            |                | 3.75E-02                      | 5.18E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.45E-09              |
| DERMAL CONTA                             | ACT                                        |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>           |
|                                          |                                            |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                     |
| INTAKE                                   | SA * AF * ABSd * EF * ED * CF) / (BW * AT) |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                                            |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                                          |                                            | ABSd 📑         | Sc                            | Intake for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Intake for            |
| Chemical                                 |                                            |                |                               | Carcinogens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Noncarcinogens        |
| Aluminum                                 |                                            | 1.00E-02       | 1.17E+04                      | 2.14E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.00E-05              |
| Iron                                     |                                            | 1.00E-02       | 1.53E+04                      | 2.74E-05<br>2.78E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.80E-05              |
| m,p-Cresol                               | •                                          | 1.00E-02       | 3.75E-02                      | 6.84E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.91E-09              |
| n <sub>i</sub> p-oresor                  | •                                          |                | 3.70L-02                      | 0.07L-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.012-00              |

### TABLE C-26 INTAKE CALCULATIONS FOR POND SEDIMENT RME

| SEDIMENT INGES        | TION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                        | <del></del>          |                          |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|----------------------|--------------------------|
| SEDIMENT INGES        | HON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                        |                      | ,                        |
| INTAKE = (Sc * IR     | * EF * ED * CF) / (BW * AT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                        |                      | :                        |
| Parameter             | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                        | Value                | Reference                |
| Intake                | Intake of chemical (mg/kg-day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                        | calculated           |                          |
| Sc                    | Sediment concentration (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                        | see data page        |                          |
| IR                    | Ingestion rate of soil (mg/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        | 100                  | TRRP-24                  |
| SA                    | Skin surface area (cm2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                        | 4400                 | TRRP-24                  |
| AF                    | Sediment to skin adherence factor (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g/cm2)   |                        | 0.3                  | TRRP-24                  |
| ABSd                  | Dermal absorption fraction (unitless)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                        | see chemprop page    |                          |
| EF                    | Exposure frequency (day/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                        | 39                   | TRRP-24                  |
| ED                    | Exposure duration (yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                        | 25                   | EPA, 1989                |
| CF                    | Conversion factor (kg/mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                        | 1.00E-06             | EPA, 1989                |
| BW                    | Body weight (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                        | 70                   | EPA, 1989                |
| ATc                   | Averaging time for carcinogens (days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )        |                        | 25550                | EPA, 1989                |
| ATnc                  | Averaging time for noncarcinogens (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ays)     |                        | 9125                 | EPA, 1989                |
| L                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                      |                          |
| and the second second | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 100                    |                      |                          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Sc                     |                      | Intake for               |
| Chemical :            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        | Carcinogens          | Noncarcinogens           |
| Aluminum              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1.40E+04               | 7.63E-04             | 2.14E-03                 |
| Iron                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1.74E+04               | 9.49E-04             | 2.14E-03<br>2.66E-03     |
| m,p-Cresol            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 2.34E-02               | 9.49E-04<br>1.28E-09 | 2.66E-03<br>3.57E-09     |
| III,p-Cresor          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 2.34⊑-02               | 1.200-09             | 3.57⊑-09                 |
| DERMAL CONTAC         | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =        |                        | <del></del>          |                          |
| BENWAL CONTING        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                      |                          |
| INTAKE = (Sc * SA     | * AF * ABSd * EF * ED * CF) / (BW * AT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )        |                        |                      |                          |
| , , , , , ,           | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                        |                      |                          |
| 11/2017 12:00:00      | Control of the Contro | : WAYE   | tion of Court Services |                      | THE RESIDENCE AND STREET |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ABSd     | Sc                     | Intake for           | Intake for               |
| Chemical              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        | Carcinogens          | Noncarcinogens           |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                      |                          |
| Aluminum              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00E-02 | 1.40E+04               | 1.01E-04             | 2.82E-04                 |
| Iron                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00E-02 | 1.74E+04               | 1.25E-04             | 3.51E-04                 |
| m,p-Cresol            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00E-01 | 2.34E-02               | 1.68E-09             | 4.71E-09                 |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                      |                          |

APPENDIX D

RISK CALCULATIONS

APPENDIX D-1
RISK CALCULATIONS
SOUTH OF MARLIN SOIL

TABLE D-1
CHEMICAL SPECIFIC TOXICITY VALUES\*

| Compound                  | EPA weight-<br>of-evidence<br>classification | CAS Number | Chronic<br>RfD<br>mg/kg-day | Inhalaito<br>RfC<br>Notes: mg/m3 |   | Oral Slope<br>Factor<br>1/mg/kg-day | Notes: | Inhalation<br>Unit Risk<br>1/ug/m3 | Dermal<br>Absorption<br>Notes: (unitless) | Notes: |
|---------------------------|----------------------------------------------|------------|-----------------------------|----------------------------------|---|-------------------------------------|--------|------------------------------------|-------------------------------------------|--------|
| 4.4-DDD                   | B2                                           | 72-54-8    |                             |                                  |   | 2.40E-01                            |        |                                    | 1.30E-01                                  |        |
| Aluminum                  | Not available                                | 7429-90-5  | 1.00E+00                    | 5.00E-0                          | 3 |                                     |        |                                    | 1.00E-02                                  |        |
| Aroclor-1254              | B2                                           | 1336-36-3  | 2.00E-05                    |                                  |   | 2.00E+00                            |        | 5.70E-04                           | 1.40E-01                                  |        |
| Arsenic                   | Α                                            | 7440-38-2  | 3.00E-04                    |                                  |   | 1.50E+00                            |        | 4.30E-03                           | 3.00E-02                                  |        |
| Benzo(a)anthracene        | B2                                           | 56-55-3    |                             |                                  |   | 7.30E-01                            |        | 8.80E-05                           | 1.30E-01                                  |        |
| Benzo(a)pyrene            | B2                                           | 50-32-8    |                             |                                  |   | 7.30E+00                            |        | 8.80E-04                           | 1.30E-01                                  |        |
| Benzo(b)fluoranthene      | B2                                           | 205-99-2   |                             | <del></del>                      |   | 7.30E-01                            |        | 8.80E-05                           | 1.30E-01                                  |        |
| Benzo(k)fluoranthene      | B2                                           | 207-08-9   |                             |                                  |   | 7.30E-02                            |        | 8.80E-06                           | 1.30E-01                                  |        |
| Dibenz(a,h)anthracene     | B2                                           | 53-70-3    |                             | <del></del>                      |   | 7.30E+00                            |        | 8.80E-04                           | 1.30E-01                                  |        |
| Dieldrin                  | B2                                           | 60-57-1    | 5.00E-05                    |                                  |   | 1.60E+01                            |        | 4.60E-03                           | 1.30E-01                                  |        |
| Indeno(1,2,3-cd)pyrene    | B2                                           | 193-39-5   |                             | <del></del>                      |   | 7.30E-01                            |        | 8.80E-05                           | 1.30E-01                                  |        |
| Iron                      | Not available                                | 7439-89-6  | 7.00E-01                    | NCEA, 2006                       |   |                                     |        |                                    | 1.00E-02                                  |        |
| Isopropylbenzene (cumene) | D                                            | 98-82-8    | 1.00E-01                    | 4.00E-0                          | 1 |                                     |        |                                    | 1.30E-01                                  |        |
| Lead                      | B2                                           | 7439-92-1  |                             |                                  |   |                                     |        |                                    | 1.00E-02                                  |        |
| Napthalene                | D                                            | 91-20-3    | 2.00E-02                    | 3.00E-0                          | 3 |                                     |        |                                    | 1.30E-01                                  |        |

#### Notes

<sup>\*</sup> Unless otherwise noted, the values were obtained from the EPA's on-line database, IRIS.

#### TABLE D-2 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE -- YOUTH TRESPASSER

| Cancer Risk =                                                                                                                                                       | Intake*CSI              | F                                                                                | HQ =                     | Intake / RfD    |                                                                                                                                                          |                                                                                                                                                          |                                                                                  |                      |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------|--------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|-------------|
|                                                                                                                                                                     | or<br>TAO * II ID       |                                                                                  |                          | or<br>TAO / Dro |                                                                                                                                                          |                                                                                                                                                          |                                                                                  |                      |             |
|                                                                                                                                                                     | EAC * IUR               | <b>(</b>                                                                         |                          | EAC / RfC       |                                                                                                                                                          |                                                                                                                                                          |                                                                                  |                      |             |
| Parameter                                                                                                                                                           | Definition              |                                                                                  |                          |                 |                                                                                                                                                          |                                                                                                                                                          | Default                                                                          |                      |             |
| Intake                                                                                                                                                              |                         | hemical (mg                                                                      |                          |                 |                                                                                                                                                          |                                                                                                                                                          | see intake                                                                       |                      |             |
| EAC                                                                                                                                                                 |                         | ir Concentra                                                                     |                          |                 |                                                                                                                                                          |                                                                                                                                                          | see intake                                                                       |                      |             |
| CSF                                                                                                                                                                 |                         | pe factor (m                                                                     |                          | 1               |                                                                                                                                                          | :                                                                                                                                                        | see chemprop                                                                     |                      |             |
| IUR                                                                                                                                                                 |                         | unit risk (ug/                                                                   |                          |                 |                                                                                                                                                          |                                                                                                                                                          | see chemprop                                                                     |                      |             |
| RfD                                                                                                                                                                 | Reference               | dose (mg/k                                                                       | g-day)                   |                 |                                                                                                                                                          | :                                                                                                                                                        | see chemprop                                                                     |                      |             |
| RfC                                                                                                                                                                 | Inhalation i            | reference co                                                                     | oncentration             | n (mg/m^3)      |                                                                                                                                                          | :                                                                                                                                                        | see chemprop                                                                     |                      |             |
| INGESTION                                                                                                                                                           |                         |                                                                                  |                          |                 |                                                                                                                                                          |                                                                                                                                                          |                                                                                  |                      |             |
|                                                                                                                                                                     |                         | Slope                                                                            | RfD                      |                 | Intake                                                                                                                                                   | Intake                                                                                                                                                   | Cancer                                                                           | Hazard               |             |
| Chemical                                                                                                                                                            |                         | Factor                                                                           |                          |                 | Carc                                                                                                                                                     | Noncarc                                                                                                                                                  | Risk                                                                             | Quotient             |             |
| 4,4-DDD                                                                                                                                                             | •                       | 2.40E-01                                                                         | -                        |                 | 1.14E-10                                                                                                                                                 | 3.19E-10                                                                                                                                                 | 2.73E-11                                                                         |                      |             |
| Aluminum                                                                                                                                                            |                         |                                                                                  | 1.00E+00                 |                 | 9.47E-05                                                                                                                                                 | 2.65E-04                                                                                                                                                 |                                                                                  | 2.65E-04             |             |
| Aroclor-1254                                                                                                                                                        |                         | 2.00E+00                                                                         | 2.00E-05                 |                 | 3.17E-09                                                                                                                                                 | 8.88E-09                                                                                                                                                 | 6.34E-09                                                                         | 4.44E-04             |             |
| Benzo(a)anthracen                                                                                                                                                   | ie                      | 7.30E-01                                                                         | _                        |                 | 3.95E-09                                                                                                                                                 | 1.11E-08                                                                                                                                                 | 2.88E-09                                                                         |                      |             |
| Benzo(a)pyrene                                                                                                                                                      |                         | 7.30E+00                                                                         |                          |                 | 5.11E-09                                                                                                                                                 | 1.43E-08                                                                                                                                                 | 3.73E-08                                                                         |                      |             |
| Benzo(b)fluoranthe                                                                                                                                                  | ne                      | 7.30E-01                                                                         | _                        |                 | 7.00E-09                                                                                                                                                 | 1.96E-08                                                                                                                                                 | 5.11E-09                                                                         |                      |             |
| Benzo(k)fluoranthe                                                                                                                                                  |                         | 7.30E-02                                                                         | _                        |                 | 2.32E-09                                                                                                                                                 | 6.49E-09                                                                                                                                                 | 1.69E-10                                                                         |                      |             |
| Dibenz(a,h)anthrac                                                                                                                                                  |                         | 7.30E+00                                                                         | _                        |                 | 2.17E-09                                                                                                                                                 | 6.08E-09                                                                                                                                                 | 1.59E-08                                                                         |                      |             |
| Dieldrin                                                                                                                                                            |                         | 1.60E+01                                                                         | 5.005.05                 |                 | 1.30E-11                                                                                                                                                 | 3,65E-11                                                                                                                                                 | 2.09E-10                                                                         | 7.31E-07             |             |
|                                                                                                                                                                     | rono                    |                                                                                  | J,UU⊏-UÐ                 |                 |                                                                                                                                                          |                                                                                                                                                          |                                                                                  | 1.316-01             |             |
| Indeno(1,2,3-cd)py                                                                                                                                                  | IGUE                    | 7.30E-01                                                                         | 7.005.0                  |                 | 5.65E-09                                                                                                                                                 | 1.58E-08                                                                                                                                                 | 4.13E-09                                                                         | 0.005.04             |             |
| iron                                                                                                                                                                |                         | -                                                                                | 7.00E-01                 |                 | 2.10E-04                                                                                                                                                 | 5.87E-04                                                                                                                                                 |                                                                                  | 8.38E-04             |             |
| Isopropyibenzene (                                                                                                                                                  | cumene)                 | -                                                                                | 1.00E-01                 |                 | 1.22E-08                                                                                                                                                 | 3.42E-08                                                                                                                                                 |                                                                                  | 3.42E-07             |             |
| Lead                                                                                                                                                                |                         |                                                                                  |                          |                 | 7.86E-07                                                                                                                                                 | 2.20E-06                                                                                                                                                 |                                                                                  |                      |             |
| Napthalene                                                                                                                                                          |                         | -                                                                                | 2.00E-02                 |                 | 4.78E-09                                                                                                                                                 | 1.34E-08                                                                                                                                                 |                                                                                  | 6.70E-07             |             |
|                                                                                                                                                                     |                         |                                                                                  |                          | PATH            | WAY TOTAL                                                                                                                                                |                                                                                                                                                          | 7.20E-08                                                                         | 1.55E-03             |             |
| DERMAL CONTAC                                                                                                                                                       | `T                      |                                                                                  |                          |                 |                                                                                                                                                          |                                                                                                                                                          |                                                                                  |                      |             |
| DERMAL CONTAC                                                                                                                                                       | -1                      |                                                                                  |                          |                 |                                                                                                                                                          |                                                                                                                                                          |                                                                                  |                      |             |
| Chemical                                                                                                                                                            |                         | Slope<br>Factor                                                                  | RfD                      |                 | Intake<br>Carc                                                                                                                                           | Intake<br>Noncarc                                                                                                                                        | Cancer<br>Risk                                                                   | Hazard<br>Quotient   |             |
| Chemical                                                                                                                                                            |                         | 1 40101                                                                          | -                        |                 | Oaic                                                                                                                                                     | Noncarc                                                                                                                                                  | INON                                                                             | Quolient             | <del></del> |
| 4,4-DDD                                                                                                                                                             |                         | 2.40E-01                                                                         | -                        |                 | 5.18E-11                                                                                                                                                 | 1.45E-10                                                                                                                                                 | 1.24E-11                                                                         |                      |             |
| Aluminum                                                                                                                                                            |                         | _                                                                                | 1.00E+00                 |                 | 3.31E-06                                                                                                                                                 | 9.28E-06                                                                                                                                                 |                                                                                  | 9,28E-06             |             |
| Aroclor-1254                                                                                                                                                        |                         | 2.00E+00                                                                         | 2.00E-05                 |                 | 1.55E-09                                                                                                                                                 | 4.35E-09                                                                                                                                                 | 3,11E-09                                                                         | 2.17E-04             |             |
| Benzo(a)anthracen                                                                                                                                                   | e                       | 7.30E-01                                                                         |                          |                 | 1,80E-09                                                                                                                                                 | 5.03E-09                                                                                                                                                 | 1.31E-09                                                                         | 0-7                  |             |
| Benzo(a)pyrene                                                                                                                                                      |                         | 7.30E+00                                                                         | _                        |                 | 2.32E-09                                                                                                                                                 | 6.51E-09                                                                                                                                                 | 1.70E-08                                                                         |                      |             |
|                                                                                                                                                                     | no                      | 7.30E+00                                                                         | _                        |                 | 3.19E-09                                                                                                                                                 | 8.92E-09                                                                                                                                                 | 2.33E-09                                                                         |                      |             |
| Benzo(b)fluoranthe                                                                                                                                                  |                         |                                                                                  | _                        |                 |                                                                                                                                                          |                                                                                                                                                          |                                                                                  |                      |             |
| Benzo(k)fluoranthe                                                                                                                                                  |                         | 7.30E-02                                                                         | -                        |                 | 1.06E-09                                                                                                                                                 | 2.95E-09                                                                                                                                                 | 7.70E-11                                                                         |                      |             |
| Dibenz(a,h)anthrac                                                                                                                                                  | ene                     | 7.30E+00                                                                         |                          |                 | 9.88E-10                                                                                                                                                 | 2.77E-09                                                                                                                                                 | 7.22E-09                                                                         |                      |             |
| Dieldrin                                                                                                                                                            |                         | 1.60E+01                                                                         | 5.00E-05                 |                 | 5.94E-12                                                                                                                                                 | 1.66E-11                                                                                                                                                 | 9.50E-11                                                                         | 3.32E-07             |             |
| Indeno(1,2,3-cd)py                                                                                                                                                  | rene                    | 7.30E-01                                                                         | -                        |                 | 2.57E-09                                                                                                                                                 | 7.20E-09                                                                                                                                                 | 1.88E-09                                                                         |                      |             |
| Iron                                                                                                                                                                |                         | _                                                                                | 7.00E-01                 |                 | 7.33E-06                                                                                                                                                 | 2.05E-05                                                                                                                                                 |                                                                                  | 2.93E-05             |             |
| isopropylbenzene (                                                                                                                                                  | cumene)                 | -                                                                                | 1,00E-01                 |                 | 5.55E-09                                                                                                                                                 | 1.55E-08                                                                                                                                                 |                                                                                  | 1.55E-07             |             |
| Lead                                                                                                                                                                | <b>-</b> /              | _                                                                                |                          |                 | 2.75E-08                                                                                                                                                 | 7.70E-08                                                                                                                                                 |                                                                                  | ••                   |             |
| Napthalene                                                                                                                                                          |                         | _                                                                                | 2.00E-02                 |                 | 2.18E-09                                                                                                                                                 | 6.10E-09                                                                                                                                                 |                                                                                  | 3.05E-07             |             |
| . ,                                                                                                                                                                 |                         |                                                                                  |                          | DATE            |                                                                                                                                                          |                                                                                                                                                          | 3 305 00                                                                         |                      |             |
|                                                                                                                                                                     |                         |                                                                                  |                          | PAIF            | IWAY TOTAL                                                                                                                                               |                                                                                                                                                          | 3.30E-08                                                                         | 2.57E-04             |             |
| INHALATION                                                                                                                                                          |                         |                                                                                  |                          |                 |                                                                                                                                                          |                                                                                                                                                          |                                                                                  |                      |             |
|                                                                                                                                                                     |                         | IUR                                                                              | RfC                      |                 | EAC                                                                                                                                                      | EAC                                                                                                                                                      | Cancer                                                                           | Hazard               |             |
|                                                                                                                                                                     |                         |                                                                                  |                          | C               |                                                                                                                                                          | Noncarc (mg/m3)                                                                                                                                          | Risk                                                                             | Quotient             |             |
| Chemical                                                                                                                                                            |                         |                                                                                  |                          |                 |                                                                                                                                                          |                                                                                                                                                          |                                                                                  |                      |             |
| Chemical                                                                                                                                                            |                         | _                                                                                |                          |                 | 1.80E-11                                                                                                                                                 | 5.05F-14                                                                                                                                                 |                                                                                  |                      |             |
| 4,4-DDD                                                                                                                                                             |                         |                                                                                  | <br>5.00E-03             |                 | 1.80E-11<br>3.13E-05                                                                                                                                     | 5,05E-14<br>8,77E-08                                                                                                                                     |                                                                                  | 1.75E-05             |             |
| 4,4-DDD<br>Aluminum                                                                                                                                                 |                         | <br>5 70E-04                                                                     | 5.00E-03                 |                 | 3.13E-05                                                                                                                                                 | 8.77E-08                                                                                                                                                 | 4 80E-13                                                                         | 1.75E-05             |             |
| 4,4-DDD<br>Aluminum<br>Aroclor-1254                                                                                                                                 | •                       | <br>5.70E-04                                                                     | 5.00E-03                 |                 | 3.13E-05<br>8.57E-10                                                                                                                                     | 8.77E-08<br>2.40E-12                                                                                                                                     | 4.89E-13                                                                         | 1.75E-05             |             |
| 4,4-DDD<br>Aluminum<br>Aroclor-1254<br>Benzo(a)anthracen                                                                                                            | e                       | 8.80E-05                                                                         | _                        |                 | 3.13E-05<br>8.57E-10<br>2.10E-09                                                                                                                         | 8.77E-08<br>2.40E-12<br>5.87E-12                                                                                                                         | 1.84E-13                                                                         | 1.75E-05             |             |
| 4,4-DDD<br>Aluminum<br>Aroclor-1254<br>Benzo(a)anthracen<br>Benzo(a)pyrene                                                                                          |                         | 8.80E-05<br>8.80E-04                                                             | <u>-</u><br>-            |                 | 3.13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09                                                                                                             | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12                                                                                                             | 1.84E-13<br>2.34E-12                                                             | 1.75E-05             |             |
| 4,4-DDD<br>Aluminum<br>Aroclor-1254<br>Benzo(a)anthracen<br>Benzo(a)pyrene<br>Benzo(b)fluoranthe                                                                    | ne                      | 8.80E-05<br>8.80E-04<br>8.80E-05                                                 | _                        |                 | 3.13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09<br>3.45E-09                                                                                                 | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12<br>9.67E-12                                                                                                 | 1.84E-13<br>2.34E-12<br>3.04E-13                                                 | 1,75E-05             |             |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe                                                                | ne<br>ne                | 8.80E-05<br>8.80E-04<br>8.80E-05<br>8.80E-06                                     | <u>-</u><br>-            |                 | 3.13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09<br>3.45E-09<br>1.43E-09                                                                                     | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12<br>9.67E-12<br>4.01E-12                                                                                     | 1.84E-13<br>2.34E-12<br>3.04E-13<br>1.26E-14                                     | 1.75E-05             |             |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrace                                                           | ne<br>ne                | 8.80E-05<br>8.80E-04<br>8.80E-05<br>8.80E-06<br>8.80E-04                         | <u>-</u><br>-            |                 | 3.13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09<br>3.45E-09<br>1.43E-09<br>1.10E-09                                                                         | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12<br>9.67E-12<br>4.01E-12<br>3.07E-12                                                                         | 1.84E-13<br>2.34E-12<br>3.04E-13<br>1.26E-14<br>9.66E-13                         | 1.75E-05             |             |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrace                                                           | ne<br>ne                | 8.80E-05<br>8.80E-04<br>8.80E-05<br>8.80E-06                                     | -<br>-<br>-              |                 | 3.13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09<br>3.45E-09<br>1.43E-09                                                                                     | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12<br>9.67E-12<br>4.01E-12                                                                                     | 1.84E-13<br>2.34E-12<br>3.04E-13<br>1.26E-14                                     | 1.75E-05             |             |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthraco                                                           | ne<br>ne<br>ene         | 8.80E-05<br>8.80E-04<br>8.80E-05<br>8.80E-06<br>8.80E-04                         | -<br>-<br>-              |                 | 3.13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09<br>3.45E-09<br>1.43E-09<br>1.10E-09                                                                         | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12<br>9.67E-12<br>4.01E-12<br>3.07E-12                                                                         | 1.84E-13<br>2.34E-12<br>3.04E-13<br>1.26E-14<br>9.66E-13                         | 1.75E-05             |             |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dieldrin Indeno(1,2,3-cd)pyi                               | ne<br>ne<br>ene         | 8.80E-05<br>8.80E-04<br>8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03             | -<br>-<br>-              |                 | 3.13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09<br>3.45E-09<br>1.43E-09<br>1.10E-09<br>8.22E-12<br>2.84E-09                                                 | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12<br>9.67E-12<br>4.01E-12<br>3.07E-12<br>2.30E-14<br>7.94E-12                                                 | 1.84E-13<br>2.34E-12<br>3.04E-13<br>1.26E-14<br>9.66E-13<br>3.78E-14             | 1.75E-05             |             |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dibenz(a,h)anthrac Dideno(1,2,3-cd)pyr Iron | ne<br>ne<br>ene<br>rene | 8.80E-05<br>8.80E-04<br>8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05 | -                        |                 | 3,13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09<br>3.45E-09<br>1.43E-09<br>1.10E-09<br>8.22E-12<br>2.84E-09<br>9.56E-05                                     | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12<br>9.67E-12<br>4.01E-12<br>3.07E-12<br>2.30E-14<br>7.94E-12<br>2.68E-07                                     | 1.84E-13<br>2.34E-12<br>3.04E-13<br>1.26E-14<br>9.66E-13<br>3.78E-14             |                      |             |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(c))fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dieldrin Indeno(1,2,3-cd)pyl Iron Isopropylbenzene (      | ne<br>ne<br>ene<br>rene | 8.80E-05<br>8.80E-04<br>8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03             | -<br>-<br>-              |                 | 3.13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09<br>3.45E-09<br>1.43E-09<br>1.10E-09<br>8.22E-12<br>2.84E-09<br>9.56E-05<br>1.32E-04                         | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12<br>9.67E-12<br>4.01E-12<br>3.07E-12<br>2.30E-14<br>7.94E-12<br>2.68E-07<br>3.69E-07                         | 1.84E-13<br>2.34E-12<br>3.04E-13<br>1.26E-14<br>9.66E-13<br>3.78E-14             | 1.75E-05<br>9.22E-07 |             |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dieldrin Indeno(1,2,3-cd)py  Iron Isopropylbenzene ( Lead  | ne<br>ne<br>ene<br>rene | 8.80E-05<br>8.80E-04<br>8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05 | -                        |                 | 3,13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09<br>3.45E-09<br>1.43E-09<br>1.10E-09<br>8.22E-12<br>2.84E-09<br>9.56E-05                                     | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12<br>9.67E-12<br>4.01E-12<br>3.07E-12<br>2.30E-14<br>7.94E-12<br>2.68E-07                                     | 1.84E-13<br>2.34E-12<br>3.04E-13<br>1.26E-14<br>9.66E-13<br>3.78E-14             |                      |             |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(b)fluoranthe Dibenz(a,h)anthraco                                                           | ne<br>ne<br>ene<br>rene | 8.80E-05<br>8.80E-04<br>8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05 | <br><br><br><br>4.00E-01 | рать            | 3.13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09<br>3.45E-09<br>1.43E-09<br>1.10E-09<br>8.22E-12<br>2.84E-09<br>9.56E-05<br>1.32E-04<br>4.09E-07<br>1,91E-09 | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12<br>9.67E-12<br>4.01E-12<br>3.07E-12<br>2.30E-14<br>7.94E-12<br>2.68E-07<br>3.69E-07<br>1.14E-09<br>5.36E-12 | 1.84E-13<br>2.34E-12<br>3.04E-13<br>1.26E-14<br>9.66E-13<br>3.78E-14<br>2.50E-13 | 9.22E-07<br>1.79E-09 |             |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracen Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dieldrin Indeno(1,2,3-cd)py  Iron Isopropylbenzene ( Lead  | ne<br>ne<br>ene<br>rene | 8.80E-05<br>8.80E-04<br>8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05 | <br><br><br><br>4.00E-01 | PATI            | 3.13E-05<br>8.57E-10<br>2.10E-09<br>2.66E-09<br>3.45E-09<br>1.43E-09<br>1.10E-09<br>8.22E-12<br>2.84E-09<br>9.56E-05<br>1.32E-04<br>4.09E-07             | 8.77E-08<br>2.40E-12<br>5.87E-12<br>7.45E-12<br>9.67E-12<br>4.01E-12<br>3.07E-12<br>2.30E-14<br>7.94E-12<br>2.68E-07<br>3.69E-07<br>1.14E-09<br>5.36E-12 | 1.84E-13<br>2.34E-12<br>3.04E-13<br>1.26E-14<br>9.66E-13<br>3.78E-14             | 9.22E-07             |             |

#### TABLE D-3 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN RME -- YOUTH TRESPASSER (age 6 to 18)

| Cancer Risk = li                             | ntake*CSF                                     | HQ =       | Intake / RfD                          |                      |                      |                      |           |
|----------------------------------------------|-----------------------------------------------|------------|---------------------------------------|----------------------|----------------------|----------------------|-----------|
|                                              | or                                            |            | or                                    |                      |                      |                      |           |
|                                              | EAC * IUR                                     |            | EAC / RfC                             |                      |                      |                      |           |
|                                              | Definition                                    |            |                                       |                      |                      | Default              |           |
|                                              | ntake of chemical (r                          |            | -40\                                  |                      |                      | see intake           |           |
|                                              | ffective Air Concer                           |            |                                       |                      |                      | see intake           |           |
|                                              | Cancer slope factor<br>nhalation unit risk (t |            | 1                                     |                      |                      | see chemprop         |           |
|                                              | Reference dose (mg                            |            |                                       |                      |                      | see chemprop         |           |
|                                              | nhalation reference                           |            | n (mg/m^3)                            |                      |                      | see chemprop         |           |
| INGESTION                                    |                                               |            |                                       |                      |                      |                      |           |
| INGESTION                                    |                                               |            |                                       |                      |                      |                      |           |
| 01                                           | Slope                                         | RfD        |                                       | Intake               | Intake               | Cancer               | Hazard    |
| Chemical                                     | Factor                                        |            | · · · · · · · · · · · · · · · · · · · | Carc                 | Noncarc              | Risk                 | Quotient  |
| 4,4-DDD                                      | 2.40E-0                                       | 1 –        |                                       | 2.98E-09             | 8.35E-09             | 7.16E-10             |           |
| Aluminum                                     |                                               | 1.00E+00   |                                       | 4.81E-04             | 1.35E-03             |                      | 1.35E-03  |
| Aroclor-1254                                 | 2,00E+0                                       |            |                                       | 4.54E-08             | 1.27E-07             | 9.08E-08             | 6.35E-03  |
| Benzo(a)anthracene                           | 7.30E-0                                       |            |                                       | 3.77E-08             | 1.06E-07             | 2.76E-08             |           |
| Benzo(a)pyrene                               | 7.30E+0                                       |            |                                       | 4.48E-08             | 1.25E-07             | 3.27E-07             |           |
| Benzo(b)fluoranthene                         |                                               |            |                                       | 4.83E-08             | 1.35E-07             | 3.52E-08             |           |
| Benzo(k)fluoranthene                         |                                               |            |                                       | 2.24E-08<br>1.06E-08 | 6.26E-08<br>2.96E-08 | 1.63E-09<br>7.71E-08 |           |
| Dibenz(a,h)anthracer<br>Dieldrin             |                                               | 1 5.00E-05 |                                       | 1.24E-10             | 3.47E-10             | 1.71E-08<br>1.98E-09 | 6,94E-06  |
| Indeno(1,2,3-cd)pyre                         |                                               |            |                                       | 3.86E-08             | 1.08E-07             | 2.82E-08             | 0,04L-00  |
| iriderio(1,2,3-cd)pyre                       | - 7.30E-0                                     | 7.00E-01   |                                       | 1.02E-03             | 2.87E-03             | 2.021-00             | 4.10E-03  |
| isopropylbenzene (cu                         |                                               | 1.00E-01   |                                       | 3.43E-07             | 9.61E-07             |                      | 9.61E-06  |
| Lead                                         | _                                             | _          |                                       | 6.11E-06             | 1.71E-05             |                      |           |
| Napthalene                                   | -                                             | 2.00E-02   |                                       | 1.56E-10             | 4.36E-10             |                      | 2.18E-08  |
|                                              |                                               |            | PAT                                   | HWAY TOTA            | AL =                 | 5.90E-07             | 1.18E-02  |
|                                              |                                               |            |                                       |                      |                      |                      |           |
| DERMAL CONTACT                               |                                               |            |                                       |                      |                      |                      |           |
|                                              | Slope                                         | RfD        |                                       | Intake               | Intake               | Cancer               | Hazard    |
| Chemical                                     | Factor                                        |            |                                       | Carc                 | Noncarc              | Risk                 | Quotient  |
| 4,4-DDD                                      | 2.40E-0                                       | 1 -        |                                       | 1.36E-09             | 3.80E-09             | 3.26E-10             |           |
| Aluminum                                     |                                               | 1.00E+00   |                                       | 1.68E-05             | 4.72E-05             |                      | 4.72E-05  |
| Aroclor-1254                                 |                                               | 0 2.00E-05 |                                       | 2,22E-08             | 6.23E-08             | 4.45E-08             | 3.11E-03  |
| Benzo(a)anthracene                           | 7.30E-0                                       |            |                                       | 1.72E-08             | 4.81E-08             | 1.25E-08             |           |
| Benzo(a)pyrene                               | 7.30E+0                                       |            |                                       | 2.04E-08             | 5.71E-08             | 1.49E-07             |           |
| Benzo(b)fluoranthene                         |                                               |            |                                       | 2.20E-08             | 6.15E-08             | 1.60E-08             |           |
| Benzo(k)fluoranthene<br>Dibenz(a,h)anthracer |                                               |            |                                       | 1.02E-08<br>4.81E-09 | 2.85E-08<br>1.35E-08 | 7.43E-10<br>3.51E-08 |           |
| Dieldrin                                     |                                               | 1 5.00E-05 |                                       | 5.64E-11             | 1.58E-10             | 9.02E-10             | 3.16E-06  |
| Indeno(1,2,3-cd)pyre                         |                                               |            |                                       | 1.76E-08             | 4.92E-08             | 1.28E-08             | 5, 152-00 |
| Iron                                         | - 7.000-0                                     | 7.00E-01   |                                       | 3.59E-05             | 1.00E-04             | 1.202-00             | 1.43E-04  |
| Isopropylbenzene (cu                         | ımene) –                                      | 1.00E-01   |                                       | 1.56E-07             | 4.37E-07             |                      | 4.37E-06  |
| Lead                                         | -                                             | -          |                                       | 2.14E-07             | 5.98E-07             |                      |           |
| Napthalene                                   | -                                             | 2.00E-02   |                                       | 7.08E-11             | 1.98E-10             |                      | 9.91E-09  |
|                                              |                                               |            | PAT                                   | HWAY TOTA            | AL =                 | 2.72E-07             | 3.31E-03  |
|                                              |                                               |            |                                       |                      |                      |                      |           |
| INHALATION                                   |                                               |            |                                       |                      |                      |                      |           |
|                                              | IUR                                           | RfC        |                                       | EAC                  | EAC                  | Cancer               | Hazard    |
| Chemical                                     |                                               |            |                                       | Carc (ug/m3)         | Noncarc (mg/m3)      | Risk                 | Quotient  |
| 4,4-DDD                                      |                                               | _          |                                       | 6.34E-12             | 1.78E-14             |                      |           |
| Aluminum                                     |                                               | 5.00E-03   |                                       | 1.40E-04             | 3.91E-07             |                      | 7.82E-05  |
| Aroclor-1254                                 | 5.70E-0                                       | )4 –       |                                       | 1.79E-08             | 5.02E-11             | 1.02E-11             |           |
| Benzo(a)anthracene                           | 8.80E-0                                       |            |                                       | 2.12E-08             | 5.94E-11             | 1.87E-12             |           |
| Benzo(a)pyrene                               | 8.80E-0                                       |            |                                       | 2.55E-08             | 7.13E-11             | 2.24E-11             |           |
| Benzo(b)fluoranthene                         |                                               |            |                                       | 2.59E-08             | 7.25E-11             | 2.28E-12             |           |
| Benzo(k)fluoranthene                         |                                               |            |                                       | 1.55E-08             | 4.33E-11             | 1,36E-13             |           |
| Dibenz(a,h)anthrace                          |                                               |            |                                       | 5.75E-09             | 1.61E-11             | 5.06E-12<br>3,39E-13 |           |
| Dieldrin<br>Indeno(1,2,3-cd)pyre             | 4.60E-0<br>ne 8.80E-0                         |            |                                       | 7.37E-11<br>2.19E-08 | 2.06E-13<br>6.12E-11 | 3,39E-13<br>1.92E-12 |           |
| inaeno(1,2,3-ca)pyre<br>iron                 | 0.0UE-U                                       |            |                                       | 5.63E-04             | 1.58E-06             | 1.945-14             |           |
| iron<br>Isopropylbenzene (cu                 | ımene) -                                      | 4.00E-01   |                                       | 3.71E-03             | 1.04E-05             |                      | 2.59E-05  |
| Lead                                         | -                                             | -1.50L-01  |                                       | 3.45E-06             | 9.66E-09             |                      |           |
| Napthalene                                   | -                                             | 3.00E-03   |                                       | 6.22E-11             | 1.74E-13             |                      | 5.81E-11  |
|                                              |                                               |            | PAT                                   | HWAY TOTA            | AL =                 | 4.43E-11             | 1.04E-04  |
|                                              |                                               |            |                                       |                      |                      |                      |           |
|                                              |                                               |            |                                       |                      | TOTAL                | 8.62E-07             | 1.52E-02  |
|                                              |                                               |            |                                       |                      |                      |                      |           |

#### TABLE D-4 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE -- CONSTRUCTION WORKER

| Cancer Risk =                                                                                                                   | Intake*CSI      | =              | HQ =                 | Intake / RfD    |                      | =                      |                |                      |  |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------------|-----------------|----------------------|------------------------|----------------|----------------------|--|
|                                                                                                                                 | or<br>EAC * IUR |                |                      | or<br>EAC / RfC |                      |                        |                |                      |  |
|                                                                                                                                 | EAC IOR         |                |                      | LACTRIC         |                      |                        |                |                      |  |
| Parameter                                                                                                                       | Definition      |                |                      |                 |                      |                        | Default        |                      |  |
| Intake                                                                                                                          |                 | nemical (mg    |                      | .40\            |                      |                        | see intake     |                      |  |
| EAC                                                                                                                             |                 | ir Concentra   |                      |                 |                      |                        | see intake     |                      |  |
| CSF                                                                                                                             |                 | pe factor (m   |                      | 1               |                      |                        | see chemprop   |                      |  |
| IUR                                                                                                                             |                 | unit risk (ug/ |                      |                 |                      |                        | see chemprop   |                      |  |
| RfD                                                                                                                             |                 | dose (mg/kg    |                      |                 |                      |                        | see chemprop   |                      |  |
| RfC                                                                                                                             | Inhalation i    | reference co   | ncentration          | n (mg/m^3)      |                      |                        | see chemprop   |                      |  |
| INGESTION                                                                                                                       | <del></del>     |                |                      |                 |                      | <del></del>            | ,,             |                      |  |
|                                                                                                                                 |                 | Slope          | RfD                  |                 | Intake               | Intake                 | Cancer         | Hazard               |  |
| Chemical                                                                                                                        |                 | Factor         |                      |                 | Carc                 | Noncarc                | Risk           | Quotient             |  |
| 4.4-DDD                                                                                                                         |                 | 2,40E-01       | _                    |                 | 6.44E-11             | 4.51E-09               | 1,55E-11       |                      |  |
| Aluminum                                                                                                                        |                 |                | 1.00E+00             |                 | 5.36E-05             | 3.75E-03               |                | 3,75E-03             |  |
| Aroclor-1254                                                                                                                    |                 | 2.00E+00       | 2.00E-05             |                 | 1.79E-09             | 1.26E-07               | 3.59E-09       | 6.28E-03             |  |
|                                                                                                                                 | _               | 7.30E-01       | U.L-U3               |                 | 2.23E-09             | 1.56E-07               | 1.63E-09       | J.EJE-00             |  |
| Benzo(a)anthracen                                                                                                               | 6               |                | _                    |                 |                      |                        |                |                      |  |
| Benzo(a)pyrene                                                                                                                  |                 | 7.30E+00       | -                    |                 | 2.89E-09             | 2.02E-07               | 2.11E-08       |                      |  |
| Benzo(b)fluoranthe                                                                                                              |                 | 7.30E-01       | -                    |                 | 3.96E-09             | 2.77E-07               | 2.89E-09       |                      |  |
| Benzo(k)fluoranthe                                                                                                              |                 | 7.30E-02       | -                    |                 | 1.31E-09             | 9.18E-08               | 9.58E-11       |                      |  |
| Dibenz(a,h)anthrac                                                                                                              | ene             | 7.30E+00       | -                    |                 | 1.23E-09             | 8.60E-08               | 8.97E-09       |                      |  |
| Dieldrin                                                                                                                        |                 | 1.60E+01       | 5.00E-05             |                 | 7.38E-12             | 5.17E-10               | 1.18E-10       | 1.03E-05             |  |
| Indeno(1,2,3-cd)py                                                                                                              | rene            | 7.30E-01       |                      |                 | 3.20E-09             | 2.24E-07               | 2.33E-09       |                      |  |
| fron                                                                                                                            |                 | -              | 7.00E-01             |                 | 1.19E-04             | 8.30E-03               |                | 1,19E-02             |  |
|                                                                                                                                 | cumone)         | _              | 1.00E-01             |                 | 6.90E-09             | 4.83E-07               |                | 4.83E-06             |  |
| Isopropylbenzene (                                                                                                              | culticité)      | _              | 1.000-01             |                 |                      |                        |                | 7.002-00             |  |
| Lead<br>Nanthalana                                                                                                              |                 | _              | 2 00= 02             |                 | 4.44E-07             | 3.11E-05<br>1.89E-07   |                | 0 47E 06             |  |
| Napthalene                                                                                                                      |                 | _              | 2.00E-02             |                 | 2.71E-09             | 1.09E-0/               |                | 9.47E-06             |  |
|                                                                                                                                 |                 |                |                      | PATI            | ATOT YAW             | Ĺ =                    | 4.07E-08       | 2.19E-02             |  |
| DERMAL CONTAC                                                                                                                   | <u></u>         |                |                      |                 | <del></del>          |                        |                |                      |  |
| DERWAL CONTAC                                                                                                                   | <b>,</b> I      |                |                      |                 |                      |                        |                |                      |  |
|                                                                                                                                 |                 | Slope          | RfD                  |                 | Intake               | Intake                 | Cancer         | Hazard               |  |
| Chemical                                                                                                                        |                 | Factor         |                      |                 | Carc                 | Noncarc                | Risk           | Quotient             |  |
| 4,4-DDD                                                                                                                         |                 | 2,40E-01       | _                    |                 | 2.35E-11             | 1.64E-09               | 5.63E-12       |                      |  |
| Aluminum                                                                                                                        |                 |                | 1.00E+00             |                 | 1.50E-06             | 1.05E-04               | <del></del>    | 1.05E-04             |  |
| Aroclor-1254                                                                                                                    |                 | 2.00E+00       | 2.00E-05             |                 | 7.03E-10             | 4.92E-08               | 1.41E-09       | 2.46E-03             |  |
|                                                                                                                                 | •               |                | 2.00⊏-03             |                 |                      |                        |                | 2.702-00             |  |
| Benzo(a)anthracen                                                                                                               | <del>-</del>    | 7.30E-01       | -                    |                 | 8.13E-10             | 5.69E-08               | 5.93E-10       |                      |  |
| Benzo(a)pyrene                                                                                                                  |                 | 7.30E+00       |                      |                 | 1.05E-09             | 7.36E-08               | 7.68E-09       |                      |  |
| Benzo(b)fluoranthe                                                                                                              |                 | 7.30E-01       | -                    |                 | 1.44E-09             | 1.01E-07               | 1.05E-09       |                      |  |
| Benzo(k)fluoranthe                                                                                                              |                 | 7.30E-02       | -                    |                 | 4.78E-10             | 3.34E-08               | 3.49E-11       |                      |  |
| Dibenz(a,h)anthrac                                                                                                              | ene             | 7.30E+00       | -                    |                 | 4.47E-10             | 3.13E-08               | 3.27E-09       |                      |  |
| Dieldrin                                                                                                                        |                 | 1.60E+01       | 5.00E-05             |                 | 2.69E-12             | 1.88E-10               | 4.30E-11       | 3.76E-06             |  |
| Indeno(1,2,3-cd)py                                                                                                              | rene            | 7.30E-01       | _                    |                 | 1.16E-09             | 8,15E-08               | 8.49E-10       | -                    |  |
| Iron                                                                                                                            | • • •           | -              | 7.00E-01             |                 | 3,32E-06             | 2,32E-04               | ••             | 3.32E-04             |  |
| lsopropylbenzene (                                                                                                              | cumenc)         |                | 1.00E-01             |                 | 2.51E-09             | 1.76E-07               |                | 1.76E-06             |  |
|                                                                                                                                 | ouriend)        | -              | 1.00E-01             |                 |                      |                        |                | 1.7012-00            |  |
| Lead<br>Napthalene                                                                                                              |                 | _              | 2.00E-02             |                 | 1,24E-08<br>9,85E-10 | 8.71E-07<br>6.90E-08   |                | 3.45E-06             |  |
| , tapulalelle                                                                                                                   |                 | -              | 2.00L-02             |                 |                      |                        |                |                      |  |
|                                                                                                                                 |                 |                |                      | PATI            | ATOT YAW             | L=                     | 1.49E-08       | 2.91E-03             |  |
| INHALATION                                                                                                                      |                 |                |                      |                 |                      |                        |                |                      |  |
|                                                                                                                                 |                 |                |                      |                 |                      |                        | _              |                      |  |
| Chemical                                                                                                                        |                 | IUR            | RfC                  | ,               | EAC<br>Carc (un/m3)  | EAC<br>Noncarc (mg/m3) | Cancer<br>Risk | Hazard<br>Quotient   |  |
| CHOTHOR                                                                                                                         |                 |                |                      |                 | Jaro (ug/IIIo)       | (riigiiio)             | 1/10/1         | - acastrolit         |  |
| 4,4-DDD                                                                                                                         |                 | _              | -                    |                 | 1.08E-11             | 7.57E-13               |                |                      |  |
| Aluminum                                                                                                                        |                 | _              | 5.00E-03             |                 | 1.88E-05             | 1.32E-06               |                | 2.63E-04             |  |
| Aroclor-1254                                                                                                                    |                 | 5.70E-04       | -                    |                 | 5.14E-10             | 3.60E-11               | 2.93E-13       |                      |  |
| Arocioi-1254<br>Benzo(a)anthracen                                                                                               | Δ               | 8.80E-05       | _                    |                 | 1.26E-09             | 8.80E-11               | 1.11E-13       |                      |  |
|                                                                                                                                 | •               |                |                      |                 |                      | 1.12E-10               |                |                      |  |
| Benzo(a)pyrene                                                                                                                  |                 | 8.80E-04       | -                    |                 | 1.60E-09             |                        | 1.40E-12       |                      |  |
| Benzo(b)fluoranthe                                                                                                              |                 | 8.80E-05       | -                    |                 | 2.07E-09             | 1.45E-10               | 1.82E-13       |                      |  |
|                                                                                                                                 |                 | 8.80E-06       | -                    |                 | 8.59E-10             | 6.02E-11               | 7.56E-15       |                      |  |
|                                                                                                                                 | ene             | 8.80E-04       | -                    |                 | 6.59E-10             | 4.61E-11               | 5.80E-13       |                      |  |
| Dibenz(a,h)anthrac                                                                                                              |                 | 4.60E-03       | -                    |                 | 4.93E-12             | 3.45E-13               | 2.27E-14       |                      |  |
| Dibenz(a,h)anthrac                                                                                                              | rene            | 8.80E-05       | _                    |                 | 1.70E-09             | 1.19E-10               | 1.50E-13       |                      |  |
| Dibenz(a,h)anthrac<br>Dieldrin                                                                                                  |                 |                | _                    |                 | 5.74E-05             | 4.02E-06               |                |                      |  |
| Dibenz(a,h)anthrac<br>Dieldrin<br>Indeno(1,2,3-cd)pyr                                                                           | 0110            | -              |                      |                 | 7.90E-05             | 5.53E-06               |                | 1.38E-05             |  |
| Dibenz(a,h)anthrac<br>Dieldrin<br>Indeno(1,2,3-cd)pyd<br>Iron                                                                   |                 |                | 4.00=-01             |                 | ,                    |                        |                | 1.002-00             |  |
| Dibenz(a,h)anthrac<br>Dieldrin<br>Indeno(1,2,3-cd)pyd<br>Iron<br>Isopropylbenzene (                                             |                 | _              | 4.00E-01             |                 | 2 455-07             | 1 72                   |                |                      |  |
| Dibenz(a,h)anthrac<br>Dieldrin<br>Indeno(1,2,3-cd)pyl<br>Iron<br>Isopropylbenzene (<br>Lead                                     |                 |                |                      |                 | 2.45E-07<br>1.15E-09 | 1.72E-08<br>8.04E-11   |                | 2.68E-08             |  |
| Dibenz(a,h)anthrac<br>Dieldrin<br>Indeno(1,2,3-cd)pyd<br>Iron<br>Isopropylbenzene (                                             |                 |                | 4.00E-01<br>3.00E-03 |                 | 1.15E-09             | 8.04E-11               |                | 2.68E-08             |  |
| Benzo(k)fluoranthe<br>Dibenz(a,h)anthrac<br>Dieldrin<br>Indeno(1,2,3-cd)pyi<br>Iron<br>Isopropylbenzene (<br>Lead<br>Napthalene |                 |                |                      | PATI            |                      | 8.04E-11               | 2.75E-12       | 2.68E-08<br>2.77E-04 |  |

#### TABLE D-5 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN RME -- CONSTRUCTION WORKER

| Cancer Risk =                                                                                                                                                          | Intake*CSI        | :                                                | HQ =                              | Intake / RfD    |                                                                                  |                                                                      |                      |                    |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------|-----------------------------------|-----------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|--------------------|-------------|
|                                                                                                                                                                        | or<br>EAC * IUR   |                                                  |                                   | or<br>EAC / RfC |                                                                                  |                                                                      |                      |                    |             |
| Dava                                                                                                                                                                   |                   |                                                  |                                   |                 |                                                                                  |                                                                      | D-f "                |                    |             |
| Parameter                                                                                                                                                              | Definition        | nominal /===                                     | /lea dout                         |                 |                                                                                  |                                                                      | Default              |                    |             |
| Intake                                                                                                                                                                 |                   | nemical (mg                                      |                                   | .40\            |                                                                                  |                                                                      | see intake           |                    |             |
| EAC                                                                                                                                                                    |                   | ir Concentra                                     |                                   |                 |                                                                                  |                                                                      | see intake           |                    |             |
| CSF                                                                                                                                                                    |                   | pe factor (m                                     |                                   | 1               |                                                                                  |                                                                      | see chemprop         |                    |             |
| IUR                                                                                                                                                                    |                   | ınit risk (ug/                                   | •                                 |                 |                                                                                  |                                                                      | see chemprop         |                    |             |
| RfD                                                                                                                                                                    | Reference         | dose (mg/k                                       | g-day)                            |                 |                                                                                  | ;                                                                    | see chemprop         |                    |             |
| RfC                                                                                                                                                                    | Inhalation r      | eference co                                      | ncentration                       | n (mg/m^3)      |                                                                                  |                                                                      | see chemprop         |                    |             |
| INGESTION                                                                                                                                                              |                   |                                                  |                                   |                 |                                                                                  |                                                                      | <del></del>          |                    | <del></del> |
| Chemical                                                                                                                                                               |                   | Slope<br>Factor                                  | RfD                               |                 | Intake<br>Carc                                                                   | Intake<br>Noncarc                                                    | Cancer<br>Risk       | Hazard<br>Quotlent |             |
| 4.4-DDD                                                                                                                                                                |                   | 2.40E-01                                         |                                   |                 | 2.34E-09                                                                         | 1.64E-07                                                             | 5.62E-10             |                    |             |
| Aluminum                                                                                                                                                               |                   | _                                                | 1.00E+00                          |                 | 3.78E-04                                                                         | 2.65E-02                                                             |                      | 2.65E-02           |             |
| Aroclor-1254                                                                                                                                                           |                   | 2.00E+00                                         | 2,00E-05                          |                 | 3.57E-08                                                                         | 2.50E-06                                                             | 7.13E-08             | 1.25E-01           |             |
|                                                                                                                                                                        | Δ.                | 7.30E-01                                         | Z.00E-03                          |                 |                                                                                  |                                                                      |                      | 1.205-01           |             |
| Benzo(a)anthracen                                                                                                                                                      | 6                 |                                                  | -                                 |                 | 2.97E-08                                                                         | 2.08E-06                                                             | 2.17E-08             |                    |             |
| Benzo(a)pyrene                                                                                                                                                         |                   | 7.30E+00                                         | -                                 |                 | 3.52E-08                                                                         | 2.46E-06                                                             | 2.57E-07             |                    |             |
| Benzo(b)fluoranthe                                                                                                                                                     |                   | 7.30E-01                                         | -                                 |                 | 3.79E-08                                                                         | 2,65E-06                                                             | 2.77E-08             |                    |             |
| Benzo(k)fluoranthe                                                                                                                                                     | ne                | 7.30E-02                                         | _                                 |                 | 1.76E-08                                                                         | 1.23E-06                                                             | 1.28E-09             |                    |             |
| Dibenz(a,h)anthrac                                                                                                                                                     | ene               | 7.30E+00                                         | _                                 |                 | 8.30E-09                                                                         | 5.81E-07                                                             | 6.06E-08             |                    |             |
| Dieldrin                                                                                                                                                               |                   | 1.60E+01                                         | 5.00E-05                          |                 | 9.73E-11                                                                         | 6,81E-09                                                             | 1.56E-09             | 1.36E-04           |             |
| Indeno(1,2,3-cd)py                                                                                                                                                     | rene              | 7.30E-01                                         | _                                 |                 | 3.04E-08                                                                         | 2.12E-06                                                             | 2.22E-08             |                    |             |
| Iron                                                                                                                                                                   |                   |                                                  | 7.00E-01                          |                 | 8.05E-04                                                                         | 5.64E-02                                                             |                      | 8.05E-02           |             |
|                                                                                                                                                                        | aumor -1          | _                                                |                                   |                 |                                                                                  |                                                                      |                      |                    |             |
| isopropylbenzene (                                                                                                                                                     | cumene)           | -                                                | 1.00E-01                          |                 | 2.70E-07                                                                         | 1.89E-05                                                             |                      | 1.89E-04           |             |
| Lead<br>Napthalene                                                                                                                                                     |                   | -                                                | 2.00E-02                          |                 | 4.80E-06<br>1.22E-10                                                             | 3,36E-04<br>8,56E-09                                                 |                      | 4.28E-07           |             |
| •                                                                                                                                                                      |                   |                                                  |                                   | DATI            | HWAY TOTAL                                                                       | 1                                                                    | 4.64E-07             | 2.32E-01           | 1           |
|                                                                                                                                                                        |                   |                                                  |                                   | I FAII          | WAL TOTAL                                                                        | <u> </u>                                                             | 7.046-07             | 4.04E-U1           |             |
| DERMAL CONTAC                                                                                                                                                          | T                 |                                                  |                                   |                 |                                                                                  |                                                                      |                      |                    |             |
|                                                                                                                                                                        |                   | Slope                                            | RfD                               |                 | Intake                                                                           | Intake                                                               | Cancer               | Hazard             |             |
| Chemical                                                                                                                                                               |                   | Factor                                           |                                   |                 | Carc                                                                             | Noncarc                                                              | Risk                 | Quotient           | <u></u>     |
| 4.4.000                                                                                                                                                                |                   | 2 400 04                                         |                                   |                 | 0.145.40                                                                         | 6 405 00                                                             | 2.405.40             |                    |             |
| 4,4-DDD                                                                                                                                                                |                   | 2.40E-01                                         | 4.005.00                          |                 | 9.14E-10                                                                         | 6.40E-08                                                             | 2.19E-10             | ·                  |             |
| Aluminum                                                                                                                                                               |                   |                                                  | 1.00E+00                          |                 | 1.13E-05                                                                         | 7.94E-04                                                             |                      | 7.94E-04           |             |
| Aroclor-1254                                                                                                                                                           |                   | 2.00E+00                                         | 2.00E-05                          |                 | 1.50E-08                                                                         | 1.05E-06                                                             | 3.00E-08             | 5.24E-02           |             |
| Benzo(a)anthracen                                                                                                                                                      | е                 | 7.30E-01                                         | -                                 |                 | 1.16E-08                                                                         | 8.10E-07                                                             | 8.44E-09             |                    |             |
| Benzo(a)pyrene                                                                                                                                                         |                   | 7.30E+00                                         | -                                 |                 | 1.37E-08                                                                         | 9.61E-07                                                             | 1.00E-07             |                    |             |
| Benzo(b)fluoranthe                                                                                                                                                     | ne                | 7.30E-01                                         | _                                 |                 | 1.48E-08                                                                         | 1.04E-06                                                             | 1.08E-08             |                    |             |
| Benzo(k)fluoranthe                                                                                                                                                     |                   | 7.30E-02                                         | _                                 |                 | 6.85E-09                                                                         | 4,80E-07                                                             | 5.00E-10             |                    |             |
| Dibenz(a,h)anthrac                                                                                                                                                     |                   | 7.30E+00                                         |                                   |                 | 3.24E-09                                                                         | 2,27E-07                                                             | 2.36E-08             |                    |             |
| Dieldrin                                                                                                                                                               | J., 10            | 1.60E+01                                         | 5.005.05                          |                 | 3.80E-11                                                                         | 2.66E-09                                                             | 6.07E-10             | 5.31E-05           |             |
|                                                                                                                                                                        | ·ona              |                                                  | J.JUE-U5                          |                 |                                                                                  |                                                                      |                      | 0.0 IE-U5          |             |
| Indeno(1,2,3-cd)py                                                                                                                                                     | ene               | 7.30E-01                                         | 7.005.0                           |                 | 1.18E-08                                                                         | 8.29E-07                                                             | 8.64E-09             | 0.485              |             |
| ron                                                                                                                                                                    |                   | -                                                | 7.00E-01                          |                 | 2.42E-05                                                                         | 1.69E-03                                                             |                      | 2.42E-03           |             |
| lsopropylbenzene (                                                                                                                                                     | cumene)           | -                                                | 1.00E-01                          |                 | 1.05E-07                                                                         | 7.36E-06                                                             |                      | 7.36E-05           |             |
| Lead                                                                                                                                                                   |                   | -                                                | -                                 |                 | 1.44E-07                                                                         | 1.01E-05                                                             |                      |                    |             |
| Napthalene                                                                                                                                                             |                   | -                                                | 2.00E-02                          |                 | 4.77E-11                                                                         | 3.34E-09                                                             |                      | 1.67E-07           |             |
|                                                                                                                                                                        |                   |                                                  |                                   | PATI            | HWAY TOTAL                                                                       | L =                                                                  | 1.83E-07             | 5,58E-02           |             |
| NHALATION                                                                                                                                                              |                   |                                                  |                                   |                 |                                                                                  |                                                                      |                      |                    |             |
| INTIALATION                                                                                                                                                            |                   |                                                  |                                   |                 |                                                                                  |                                                                      |                      |                    |             |
| Chemical                                                                                                                                                               |                   | IUR                                              | RfC                               |                 | EAC                                                                              | EAC<br>Noncarc (mg/m3)                                               | Cancer<br>Risk       | Hazard<br>Quotient |             |
| onomical .                                                                                                                                                             |                   |                                                  |                                   |                 | raro (ugritio)                                                                   | Tonear (my/ma)                                                       | Non                  | Ganasiii           |             |
| 4,4-DDD                                                                                                                                                                |                   | -                                                | _                                 |                 | 2.64E-12                                                                         | 1.85E-13                                                             |                      |                    |             |
| Aluminum                                                                                                                                                               |                   |                                                  | 5.00E-03                          |                 | 5.82E-05                                                                         | 4.07E-06                                                             |                      | 8,15E-04           |             |
|                                                                                                                                                                        |                   | 5.70E-04                                         | -                                 |                 | 7.48E-09                                                                         | 5.23E-10                                                             | 4.26E-12             |                    |             |
| Arocior-1254                                                                                                                                                           | e                 | 8.80E-05                                         | _                                 |                 | 8.84E-09                                                                         | 6,18E-10                                                             | 7.78E-13             |                    |             |
|                                                                                                                                                                        | -                 | 8.80E-04                                         | _                                 |                 | 1.06E-08                                                                         | 7.43E-10                                                             | 9.34E-12             |                    |             |
| Benzo(a)anthracen                                                                                                                                                      |                   |                                                  |                                   |                 |                                                                                  |                                                                      |                      |                    |             |
| Benzo(a)anthracen<br>Benzo(a)pyrene                                                                                                                                    |                   |                                                  | -                                 |                 | 1.08E-08                                                                         | 7.55E-10                                                             | 9.49E-13             |                    |             |
| Benzo(a)anthracen<br>Benzo(a)pyrene<br>Benzo(b)fluoranthe                                                                                                              |                   | 8,80E-05                                         |                                   |                 | 6.44E-09                                                                         | 4.51E-10                                                             | 5.67E-14             |                    |             |
| Benzo(a)anthracen<br>Benzo(a)pyrene<br>Benzo(b)fluoranthe<br>Benzo(k)fluoranthe                                                                                        | ne                | 8.80E-06                                         | -                                 |                 |                                                                                  |                                                                      |                      |                    |             |
| Benzo(a)anthracen<br>Benzo(a)pyrene<br>Benzo(b)fluoranthe<br>Benzo(k)fluoranthe<br>Dibenz(a,h)anthrac                                                                  | ne                | 8.80E-06<br>8.80E-04                             | _                                 |                 | 2.40E-09                                                                         | 1.68E-10                                                             | 2.11E-12             |                    |             |
| Benzo(a)anthracen<br>Benzo(a)pyrene<br>Benzo(b)fluoranthe<br>Benzo(k)fluoranthe<br>Dibenz(a,h)anthrac                                                                  | ne                | 8.80E-06                                         | -<br>-<br>-                       |                 |                                                                                  | 1.68E-10<br>2.15E-12                                                 | 2.11E-12<br>1.41E-13 |                    |             |
| Benzo(a)anthracen<br>Benzo(a)pyrene<br>Benzo(b)fluoranthe<br>Benzo(k)fluoranthe<br>Dibenz(a,h)anthrac<br>Dieldrin                                                      | ne<br>ene         | 8.80E-06<br>8.80E-04                             | -<br>-<br>-                       |                 | 2.40E-09                                                                         |                                                                      |                      |                    |             |
| Benzo(a)anthracen<br>Benzo(a)pyrene<br>Benzo(b)fluoranthe<br>Benzo(k)fluoranthe<br>Dibenz(a,h)anthrac<br>Dieldrin<br>Indeno(1,2,3-cd)pyi                               | ne<br>ene         | 8.80E-06<br>8.80E-04<br>4.60E-03                 | -<br>-<br>-<br>-                  |                 | 2.40E-09<br>3.07E-11<br>9.11E-09                                                 | 2.15E-12<br>6.38E-10                                                 | 1.41E-13             |                    |             |
| Aroclor-1254 Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Dibenz(a,h)anthrac Dieldrin Indeno(1,2,3-cd)pyl Iron                               | ne<br>ene<br>rene | 8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05     | -<br>-<br>-                       |                 | 2.40E-09<br>3.07E-11<br>9.11E-09<br>2.34E-04                                     | 2.15E-12<br>6.38E-10<br>1.64E-05                                     | 1.41E-13             | 2 70⊑ 04           |             |
| Benzo(a)anthracen<br>Benzo(a)pyrene<br>Benzo(b)fluoranthe<br>Benzo(k)fluoranthe<br>Dibenz(a,h)anthrac<br>Dieldrin<br>ndeno(1,2,3-cd)pyron<br>sopropylbenzene (         | ne<br>ene<br>rene | 8.80E-06<br>8.80E-04<br>4.60E-03                 | -<br>-<br>-<br>-<br>-<br>4.00E-01 |                 | 2.40E-09<br>3.07E-11<br>9.11E-09<br>2.34E-04<br>1.54E-03                         | 2.15E-12<br>6.38E-10<br>1.64E-05<br>1.08E-04                         | 1.41E-13             | 2.70E-04           |             |
| Benzo(a)anthracen<br>Benzo(a)pyrene<br>Benzo(b)fluoranthe<br>Benzo(k)fluoranthe<br>Dibenz(a,h)anthrac<br>Dieldrin<br>Indeno(1,2,3-cd)pyi                               | ne<br>ene<br>rene | 8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05     | -<br>-<br>-                       |                 | 2.40E-09<br>3.07E-11<br>9.11E-09<br>2.34E-04                                     | 2.15E-12<br>6.38E-10<br>1.64E-05                                     | 1.41E-13             |                    |             |
| Benzo(a)anthracen<br>Benzo(a)pyrene<br>Benzo(b)fluoranthe<br>Benzo(k)fluoranthe<br>Dibenz(a,h)anthrac<br>Dieldrin<br>Indeno(1,2,3-cd)pyl<br>Iosopropylbenzene (<br>ead | ne<br>ene<br>rene | 8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05<br> | <br><br><br>4.00E-01              |                 | 2.40E-09<br>3.07E-11<br>9.11E-09<br>2.34E-04<br>1.54E-03<br>1.44E-06<br>2.59E-11 | 2.15E-12<br>6.38E-10<br>1.64E-05<br>1.08E-04<br>1.01E-07<br>1.82E-12 | 1.41E-13<br>8.02E-13 | 6.05E-10           | 1           |
| Benzo(a)anthracen<br>Benzo(a)pyrene<br>Benzo(b)fluoranthe<br>Benzo(k)fluoranthe<br>Dibenz(a,h)anthrac<br>Dieldrin<br>ndeno(1,2,3-cd)pyron<br>sopropylbenzene (<br>ead  | ne<br>ene<br>rene | 8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05<br> | <br><br><br>4.00E-01              | PATI            | 2.40E-09<br>3.07E-11<br>9.11E-09<br>2.34E-04<br>1.54E-03<br>1.44E-06             | 2.15E-12<br>6.38E-10<br>1.64E-05<br>1.08E-04<br>1.01E-07<br>1.82E-12 | 1.41E-13             |                    | 1           |

### TABLE D-6 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN AVERAGE -- INDUSTRIAL WORKER

| Cancer Risk = In      | ntake*CSF             | HQ =          | Intake / RfD |                      |                      |                |                                       |             |
|-----------------------|-----------------------|---------------|--------------|----------------------|----------------------|----------------|---------------------------------------|-------------|
|                       | or                    |               | or           |                      |                      |                |                                       |             |
| E                     | AC * IUR              |               | EAC / RfC    |                      |                      |                |                                       |             |
| Parameter D           | efinition             |               |              |                      | 1                    | Default        |                                       |             |
|                       | take of chemical (m   | ng/kg-day)    |              |                      |                      | see intake     |                                       | <del></del> |
|                       | ffective Air Concent  |               | n^3)         |                      |                      | see intake     |                                       |             |
|                       | ancer slope factor (  |               |              |                      |                      | see chemprop   |                                       |             |
|                       | halation unit risk (u |               |              |                      |                      | see chemprop   |                                       |             |
|                       | eference dose (mg/    |               |              |                      |                      | see chemprop   |                                       |             |
| RfC In                | halation reference    | concentration | n (mg/m^3)   |                      | :                    | see chemprop   |                                       |             |
| INCECTION             |                       |               |              |                      |                      |                |                                       |             |
| INGESTION             |                       |               |              |                      |                      |                |                                       |             |
|                       | Slope                 | RfD           |              | intake               | Intake               | Cancer         | Hazard                                |             |
| Chemical              | Factor                |               |              | Carc                 | Noncarc              | Risk           | Quotient                              |             |
| 4.4.000               | 2.40E-01              | i             |              | 1 265 00             | 3.80E-09             | 3,25E-10       |                                       |             |
| 4,4-DDD<br>Aluminum   | 2.40E-01              | 1.00E+00      |              | 1,36E-09<br>1,13E-03 | 3.16E-03             | 3.25E-10       | 3.16E-03                              |             |
| Aroclor-1254          | 3 00E+0               | 2.00E-05      |              | 3.77E-08             | 1,06E-07             | 7,55E-08       | 5,28E-03                              |             |
| Benzo(a)anthracene    | 7.30E-01              |               |              | 4.70E-08             | 1.32E-07             | 3.43E-08       | J,20E-00                              |             |
| Benzo(a)pyrene        | 7.30E+00              |               |              | 6.08E-08             | 1.70E-07             | 4.44E-07       |                                       |             |
| Benzo(b)fluoranthene  |                       |               |              | 8,33E-08             | 2.33E-07             | 6.08E-08       |                                       |             |
| Benzo(k)fluoranthene  |                       |               |              | 2.76E-08             | 7.73E-08             | 2.02E-09       |                                       |             |
| Dibenz(a,h)anthracen  |                       |               |              | 2.70E-08             | 7.73E-08<br>7.24E-08 | 1.89E-07       |                                       |             |
| Dieldrin              | 1.60E+01              |               |              | 1.55E-10             | 4.35E-10             | 2.49E-09       | 8.70E-06                              |             |
| Indeno(1,2,3-cd)pyrer |                       |               |              | 6.73E-08             | 1.88E-07             | 4.91E-08       | J., UL-00                             |             |
| Iron                  |                       | 7.00E-01      |              | 2.49E-03             | 6.98E-03             | r.01L-00       | 9.98E-03                              |             |
| Isopropylbenzene (cu  | mene)                 | 1.00E-01      |              | 1.45E-07             | 4.07E-07             |                | 4.07E-06                              |             |
| Lead                  |                       | 1.00L-01      |              | 9.35E-06             | 2.62E-05             |                | L-00                                  |             |
| Napthalene            |                       | 2.00E-02      |              | 5.70E-08             | 1.59E-07             |                | 7.97E-06                              |             |
|                       |                       |               |              | J J.E. 30            |                      |                | 1 30                                  |             |
|                       |                       |               | DATI         | NAVAY TOTAL          |                      | 0.575.07       | 4 045 007                             |             |
|                       |                       |               | PAIL         | HWAY TOTAL           |                      | 8.57E-07       | 1.84E-02                              |             |
| DERMAL CONTACT        |                       |               |              |                      |                      |                |                                       |             |
|                       |                       |               |              |                      |                      | _              |                                       |             |
| Chemical              | Slope<br>Factor       | RfD           |              | Intake<br>Carc       | Intake<br>Noncarc    | Cancer<br>Risk | Hazard<br>Quotient                    | >_          |
| Onemical              |                       |               |              | Carc                 | Nondard              | Ulak           | GUOUBIIL                              |             |
| 4,4-DDD               | 2,40E-01              | ۱ -           |              | 2.44E-10             | 6,84E-10             | 5.86E-11       |                                       |             |
| Aluminum              | _                     | 1.00E+00      |              | 1.56E-05             | 4.37E-05             |                | 4.37E-05                              |             |
| Aroclor-1254          | 2.00E+00              | 2,00E-05      |              | 7.32E-09             | 2.05E-08             | 1.46E-08       | 1.03E-03                              |             |
| Benzo(a)anthracene    | 7.30E-01              |               |              | 8.47E-09             | 2.37E-08             | 6,18E-09       |                                       |             |
| Benzo(a)pyrene        | 7.30E+00              | )             |              | 1.10E-08             | 3.07E-08             | 8.00E-08       |                                       |             |
| Benzo(b)fluoranthene  |                       |               |              | 1.50E-08             | 4.20E-08             | 1.10E-08       |                                       |             |
| Benzo(k)fluoranthene  |                       |               |              | 4.97E-09             | 1.39E-08             | 3.63E-10       |                                       |             |
| Dibenz(a,h)anthracen  |                       |               |              | 4.66E-09             | 1.30E-08             | 3.40E-08       |                                       |             |
| Dieldrin              |                       | 1 5.00E-05    |              | 2.80E-11             | 7.84E-11             | 4.48E-10       | 1.57E-06                              |             |
| Indeno(1,2,3-cd)pyrer | ne 7.30E-01           |               |              | 1.21E-08             | 3.39E-08             | 8.85E-09       |                                       |             |
| Iron                  |                       | 7.00E-01      |              | 3.46E-05             | 9.68E-05             |                | 1.38E-04                              |             |
| isopropylbenzene (cu  | mene)                 | 1.00E-01      |              | 2.62E-08             | 7.33E-08             |                | 7.33E-07                              |             |
| Lead                  | _                     | 2 005 00      |              | 1.30E-07             | 3.63E-07             |                | 1 445 00                              |             |
| Napthalene            | _                     | 2,00E-02      |              | 1.03E-08             | 2,87E-08             |                | 1.44E-06                              |             |
|                       |                       |               |              |                      |                      |                |                                       |             |
|                       |                       |               | I PATH       | WAY TOTAL            | <del></del>          | 1,56E-07       | 1.21E-03                              |             |
| INHALATION            |                       |               |              |                      |                      | <del></del>    | _                                     |             |
|                       |                       |               |              |                      |                      |                |                                       |             |
| Chemical              | IUR                   | RfC           | _            | EAC                  | EAC                  | Cancer         | Hazard                                |             |
| OTIETHICAL            |                       |               |              | arc (ug/m3)          | Noncarc (mg/m3)      | Risk           | Quotient                              |             |
|                       |                       |               |              |                      |                      |                |                                       |             |
| 4,4-DDD               | -                     |               |              | 7.51E-10             | 2.10E-12             |                |                                       |             |
| Aluminum              |                       | 5.00E-03      |              | 1.31E-03             | 3.65E-06             |                | 7.31E-04                              |             |
| Aroclor-1254          | 5,70E-0               |               |              | 3.57E-08             | 1.00E-10             | 2.04E-11       |                                       |             |
| Benzo(a)anthracene    | 8.80E-0               |               |              | 8.73E-08             | 2.45E-10             | 7.68E-12       |                                       |             |
| Benzo(a)pyrene        | 8,80E-0               |               |              | 1.11E-07             | 3,10E-10             | 9.75E-11       |                                       | *           |
| Benzo(b)fluoranthene  |                       |               |              | 1.44E-07             | 4.03E-10             | 1.27E-11       |                                       |             |
| Benzo(k)fluoranthene  |                       |               |              | 5.97E-08             | 1.67E-10             | 5.25E-13       |                                       |             |
| Dibenz(a,h)anthracen  |                       |               |              | 4.57E-08             | 1.28E-10             | 4,03E-11       |                                       |             |
| Dieldrin              | 4.60E-0               |               |              | 3.42E-10             | 9.59E-13             | 1.58E-12       |                                       |             |
| Indeno(1,2,3-cd)pyrer | re 8.80E-0            | 5             |              | 1.18E-07             | 3.31E-10             | 1.04E-11       |                                       |             |
| Iron                  |                       | 4 005 0       |              | 3,98E-03             | 1.12E-05             |                | 0.045.55                              |             |
| Isopropylbenzene (cu  | mene)                 | 4.00E-01      |              | 5.49E-03             | 1.54E-05             |                | 3.84E-05                              |             |
| Lead<br>Napthalene    | _                     | 3.00E-03      |              | 1.70E-05<br>7.97E-08 | 4.77E-08<br>2.23E-10 |                | 7.44E-08                              |             |
|                       | _                     | 0,002-03      |              |                      |                      |                | , , , , , , , , , , , , , , , , , , , |             |
|                       |                       |               | PATI         | IATOT YAWI           | .=                   | 1.91E-10       | 7.69E-04                              |             |
|                       |                       |               |              |                      | TOTAL                | 1.01E-06       | 2.04E-02                              |             |
|                       |                       |               |              |                      | IOIAL                | 1.0 IL-00      | 2.07L-UZ                              |             |
|                       |                       |               |              |                      |                      |                |                                       |             |

#### TABLE D-7 RISK/HAZARD CALCULATIONS FOR SOIL SOUTH OF MARLIN RME -- INDUSTRIAL WORKER

| Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (currene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (currene) Lead Napthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hemical (mg ir Concentr ipe factor (n unit risk (ug dose (mg/k reference co  Slope Factor  2.40E-01  -2.00E+00 7.30E-01 7.30E-01 7.30E-02 7.30E-02 7.30E-02           | ation (mg/m<br>ng/kg-day)-<br>/m^3)-1<br>:g-day)                           | 1 'n (mg/m^3)           | Intake<br>Carc<br>8.88E-09<br>1.43E-03<br>1.35E-07<br>1.12E-07<br>1.33E-07<br>1.44E-07<br>1.66E-08<br>3.69E-10<br>1.15E-07<br>3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10 | Intake<br>Noncarc<br>2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.66E-06<br>5.09E-05<br>1.30E-09 | Default see intake see intake see chemprop see chemprop see chemprop see chemprop  Cancer Risk  2.13E-09  2.70E-07 8.20E-08 9.73E-07 1.05E-07 4.86E-09 2.30E-07 5.90E-09 8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| Parameter Definition Intake Intake of ch EAC Effective Ai CSF Cancer slop IUR Inhalation to RfD Reference of INGESTION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Iron Indeno(1,2,3-cd)pyrene Iron Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  Indeno(1,2,3-cd)pyrene Iron Indeno(1,2,3-cd)pyrene Iron Indeno(1,2,3-cd)pyrene Iron Indeno(1,2,3-cd)pyrene Iron Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Dibenz(a,h)anthracene Iron Isopropylbenzene (cumene) Lead Napthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hemical (mg ir Concentr ipe factor (n unit risk (ug dose (mg/k reference co  Slope Factor  2.40E-01  - 2.00E+00 7.30E-01 7.30E-01 7.30E-02 7.30E+00 1.60E+01 7.30E-01 | etlon (mg/m<br>g/kg-day)-<br>/m^3)-1<br>/g-day)<br>pncentration<br>RfD<br> | n^3)<br>1<br>n (mg/m^3) | 8.88E-09 1.43E-03 1.35E-07 1.12E-07 1.33E-07 1.44E-07 6.66E-08 3.15E-08 3.69E-10 1.15E-07 3.05E-03 1.02E-06 1.82E-05 4.63E-10                                              | 2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09          | see intake see intake see intake see chemprop see chemprop see chemprop see chemprop  Cancer Risk  2.13E-09  2.70E-07 8.20E-08 9.73E-07 1.05E-07 4.86E-09 2.30E-07 5.90E-09 8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hazard<br>Quotient<br>4.01E-03<br>1.89E-02<br>2.06E-05<br>1.22E-02<br>2.86E-05<br>6.48E-08 |  |
| Intake Intake of ch EAC Effective Air CSF Cancer slop IUR Inhalation u RfD Reference of RfC Inhalation re INGESTION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | slope Factor (number actor) with the kerel (up dose (mg/k) reference cc. Slope Factor 2.40E-01 - 2.00E+00 7.30E-01 7.30E-01 7.30E-02 7.30E+00 1.60E+01 7.30E-01       | etlon (mg/m<br>g/kg-day)-<br>/m^3)-1<br>/g-day)<br>pncentration<br>RfD<br> | 1 'n (mg/m^3)           | 8.88E-09 1.43E-03 1.35E-07 1.12E-07 1.33E-07 1.44E-07 6.66E-08 3.15E-08 3.69E-10 1.15E-07 3.05E-03 1.02E-06 1.82E-05 4.63E-10                                              | 2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09          | see intake see intake see intake see chemprop see chemprop see chemprop see chemprop  Cancer Risk  2.13E-09  2.70E-07 8.20E-08 9.73E-07 1.05E-07 4.86E-09 2.30E-07 5.90E-09 8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hazard<br>Quotient<br>4.01E-03<br>1.89E-02<br>2.06E-05<br>1.22E-02<br>2.86E-05<br>6.48E-08 |  |
| Intake Intake of ch EAC Effective Air CSF Cancer slop IUR Inhalation u RfD Reference of RfC Inhalation re INGESTION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | slope Factor (number actor) with the kerel (up dose (mg/k) reference cc. Slope Factor 2.40E-01 - 2.00E+00 7.30E-01 7.30E-01 7.30E-02 7.30E+00 1.60E+01 7.30E-01       | etlon (mg/m<br>g/kg-day)-<br>/m^3)-1<br>/g-day)<br>pncentration<br>RfD<br> | 1 'n (mg/m^3)           | 8.88E-09 1.43E-03 1.35E-07 1.12E-07 1.33E-07 1.44E-07 6.66E-08 3.15E-08 3.69E-10 1.15E-07 3.05E-03 1.02E-06 1.82E-05 4.63E-10                                              | 2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09          | see intake see intake see intake see chemprop see chemprop see chemprop see chemprop  Cancer Risk  2.13E-09  2.70E-07 8.20E-08 9.73E-07 1.05E-07 4.86E-09 2.30E-07 5.90E-09 8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hazard<br>Quotient<br>4.01E-03<br>1.89E-02<br>2.06E-05<br>1.22E-02<br>2.86E-05<br>6.48E-08 |  |
| EAC Effective Air CSF Cancer slop IUR Inhalation u RiD Reference CRfC Inhalation re RiC Inhalation re Ricc Inhalation Ricc Inhalation Inhalation Inhalation Ricc Inhal | slope Factor (number actor) with the kerel (up dose (mg/k) reference cc. Slope Factor 2.40E-01 - 2.00E+00 7.30E-01 7.30E-01 7.30E-02 7.30E+00 1.60E+01 7.30E-01       | etlon (mg/m<br>g/kg-day)-<br>/m^3)-1<br>/g-day)<br>pncentration<br>RfD<br> | 1 'n (mg/m^3)           | 8.88E-09 1.43E-03 1.35E-07 1.12E-07 1.33E-07 1.44E-07 6.66E-08 3.15E-08 3.69E-10 1.15E-07 3.05E-03 1.02E-06 1.82E-05 4.63E-10                                              | 2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09          | see intake see chemprop see chemprop see chemprop see chemprop see chemprop 2.70E-07 8.20E-08 9.73E-07 1.05E-07 4.86E-09 2.30E-07 5.90E-09 8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hazard<br>Quotient<br>4.01E-03<br>1.89E-02<br>2.06E-05<br>1.22E-02<br>2.86E-05<br>6.48E-08 |  |
| IUR Inhalation u RID Reference o RfC Inhalation re  INGESTION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Slope<br>Factor<br>2.40E-01<br>2.00E+00<br>7.30E-01<br>7.30E-01<br>7.30E-02<br>7.30E-02<br>7.30E-01<br>7.30E-02                                                       | RfD                                                                        | n (mg/m^3)              | 8.88E-09 1.43E-03 1.35E-07 1.12E-07 1.33E-07 1.44E-07 6.66E-08 3.15E-08 3.69E-10 1.15E-07 3.05E-03 1.02E-06 1.82E-05 4.63E-10                                              | 2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09          | see chempropsee ch | Hazard<br>Quotient<br>4.01E-03<br>1.89E-02<br>2.06E-05<br>1.22E-02<br>2.86E-05<br>6.48E-08 |  |
| IUR Inhalation u RID Reference o RfC Inhalation re  INGESTION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Slope<br>Factor 2.40E-01 2.00E+00 7.30E-01 7.30E-02 7.30E-01 7.30E-01 7.30E-01                                                                                        | 9-day) nncentratior  RfD  1.00E+00 2.00E-05 5.00E-05 7.00E-01 1.00E-01     |                         | 8.88E-09 1.43E-03 1.35E-07 1.12E-07 1.33E-07 1.44E-07 6.66E-08 3.15E-08 3.69E-10 1.15E-07 3.05E-03 1.02E-06 1.82E-05 4.63E-10                                              | 2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09          | see chempropsee ch | Hazard<br>Quotient<br>4.01E-03<br>1.89E-02<br>2.06E-05<br>1.22E-02<br>2.86E-05<br>6.48E-08 |  |
| RfC Inhalation re  INGESTION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Slope<br>Factor<br>2.40E-01<br><br>2.00E+00<br>7.30E-01<br>7.30E-01<br>7.30E-02<br>7.30E-01<br>1.60E+01<br>7.30E-01                                                   | RfD  1.00E+00 2.00E-05 5.00E-05 7.00E-01 1.00E-01 2.00E-02                 |                         | 8.88E-09 1.43E-03 1.35E-07 1.12E-07 1.33E-07 1.44E-07 6.66E-08 3.15E-08 3.69E-10 1.15E-07 3.05E-03 1.02E-06 1.82E-05 4.63E-10                                              | 2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09          | Cancer<br>Risk  2.13E-09  2.70E-07  8.20E-08  9.73E-07  1.05E-07  4.86E-09  2.30E-07  5.90E-09  8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hazard<br>Quotient<br>4.01E-03<br>1.89E-02<br>2.06E-05<br>1.22E-02<br>2.86E-05<br>6.48E-08 |  |
| INGESTION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Slope<br>Factor<br>2.40E-01<br>-<br>2.00E+00<br>7.30E-01<br>7.30E-01<br>7.30E-02<br>7.30E-01<br>1.60E+01<br>7.30E-01                                                  | RfD                                                                        |                         | 8.88E-09 1.43E-03 1.35E-07 1.12E-07 1.33E-07 1.44E-07 6.66E-08 3.15E-08 3.69E-10 1.15E-07 3.05E-03 1.02E-06 1.82E-05 4.63E-10                                              | 2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09          | Cancer<br>Risk<br>2.13E-09<br>2.70E-07<br>8.20E-08<br>9.73E-07<br>1.05E-07<br>4.86E-09<br>2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hazard<br>Quotient<br>4.01E-03<br>1.89E-02<br>2.06E-05<br>1.22E-02<br>2.86E-05<br>6.48E-08 |  |
| Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.40E-01 2.00E+00 7.30E-01 7.30E-02 7.30E+00 7.30E+00 7.30E+01 7.30E-01 7.30E-01                                                                                      | 1.00E+00<br>2.00E-05<br>                                                   | PAT                     | 8.88E-09 1.43E-03 1.35E-07 1.12E-07 1.33E-07 1.44E-07 6.66E-08 3.15E-08 3.69E-10 1.15E-07 3.05E-03 1.02E-06 1.82E-05 4.63E-10                                              | 2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09          | Risk<br>2.13E-09<br>2.70E-07<br>8.20E-08<br>9.73E-07<br>1.05E-07<br>4.86E-09<br>2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quotient 4.01E-03 1.89E-02 2.06E-05 1.22E-02 2.86E-05 6.48E-08                             |  |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.40E-01 2.00E+00 7.30E-01 7.30E-02 7.30E+00 7.30E+00 7.30E+01 7.30E-01 7.30E-01                                                                                      | 1.00E+00<br>2.00E-05<br>                                                   | PAT                     | 8.88E-09 1.43E-03 1.35E-07 1.12E-07 1.33E-07 1.44E-07 6.66E-08 3.15E-08 3.69E-10 1.15E-07 3.05E-03 1.02E-06 1.82E-05 4.63E-10                                              | 2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09          | Risk<br>2.13E-09<br>2.70E-07<br>8.20E-08<br>9.73E-07<br>1.05E-07<br>4.86E-09<br>2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quotient 4.01E-03 1.89E-02 2.06E-05 1.22E-02 2.86E-05 6.48E-08                             |  |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.40E-01 2.00E+00 7.30E-01 7.30E-02 7.30E+00 7.30E+00 7.30E+01 7.30E-01 7.30E-01                                                                                      | 1.00E+00<br>2.00E-05<br>                                                   | PAT                     | 8.88E-09 1.43E-03 1.35E-07 1.12E-07 1.33E-07 1.44E-07 6.66E-08 3.15E-08 3.69E-10 1.15E-07 3.05E-03 1.02E-06 1.82E-05 4.63E-10                                              | 2.49E-08<br>4.01E-03<br>3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09          | Risk<br>2.13E-09<br>2.70E-07<br>8.20E-08<br>9.73E-07<br>1.05E-07<br>4.86E-09<br>2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quotient 4.01E-03 1.89E-02 2.06E-05 1.22E-02 2.86E-05 6.48E-08                             |  |
| Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.00E+00<br>7.30E-01<br>7.30E+00<br>7.30E-01<br>7.30E-02<br>7.30E+00<br>1.60E+01<br>7.30E-01                                                                          | 2.00E-05<br><br><br>5.00E-05<br><br>7.00E-01<br>1.00E-01<br>2.00E-02       | PAT                     | 1.43E-03<br>1.35E-07<br>1.12E-07<br>1.33E-07<br>1.44E-07<br>6.66E-08<br>3.15E-08<br>3.69E-10<br>1.15E-07<br>3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10                   | 4.01E-03<br>3.78E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09                                  | 2.70E-07<br>8.20E-08<br>9.73E-07<br>1.05E-07<br>4.86E-09<br>2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.06E-05<br>1.22E-02<br>2.86E-05<br>6.48E-08                                               |  |
| Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,30E-01<br>7,30E+00<br>7,30E-01<br>7,30E-02<br>7,30E+00<br>1,60E+01<br>7,30E-01                                                                                      | 2.00E-05<br><br><br>5.00E-05<br><br>7.00E-01<br>1.00E-01<br>2.00E-02       | PAT                     | 1.35E-07<br>1.12E-07<br>1.33E-07<br>1.44E-07<br>6.66E-08<br>3.15E-08<br>3.69E-10<br>1.15E-07<br>3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10                               | 3.78E-07<br>3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09                                  | 8.20E-08<br>9.73E-07<br>1.05E-07<br>4.86E-09<br>2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.06E-05<br>1.22E-02<br>2.86E-05<br>6.48E-08                                               |  |
| Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,30E-01<br>7,30E+00<br>7,30E-01<br>7,30E-02<br>7,30E+00<br>1,60E+01<br>7,30E-01                                                                                      | 5.00E-05<br>7.00E-01<br>1.00E-01<br>2.00E-02                               | PAT                     | 1.12E-07<br>1.33E-07<br>1.44E-07<br>1.666E-08<br>3.15E-08<br>3.69E-10<br>1.15E-07<br>3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10                                          | 3.15E-07<br>3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09                                              | 8.20E-08<br>9.73E-07<br>1.05E-07<br>4.86E-09<br>2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.06E-05<br>1.22E-02<br>2.86E-05<br>6.48E-08                                               |  |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.30E+00<br>7.30E-01<br>7.30E-02<br>7.30E+00<br>1.60E+01<br>7.30E-01                                                                                                  | 5.00E-05<br>7.00E-01<br>1.00E-01<br>2.00E-02                               | PAT                     | 1.33E-07<br>1.44E-07<br>6.66E-08<br>3.15E-08<br>3.69E-10<br>1.15E-07<br>3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10                                                       | 3.73E-07<br>4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09                                                          | 9.73E-07<br>1.05E-07<br>4.86E-09<br>2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.22E-02<br>2.86E-05<br>6.48E-08                                                           |  |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.30E-01<br>7.30E-02<br>7.30E+00<br>1.60E+01<br>7.30E-01                                                                                                              | 5.00E-05<br>7.00E-01<br>1.00E-01<br>2.00E-02                               | PAT                     | 1.44E-07<br>6.66E-08<br>3.15E-08<br>3.69E-10<br>1.15E-07<br>3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10                                                                   | 4.02E-07<br>1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09                                                                      | 1.05E-07<br>4.86E-09<br>2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.22E-02<br>2.86E-05<br>6.48E-08                                                           |  |
| Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.30E-02<br>7.30E+00<br>1.60E+01<br>7.30E-01                                                                                                                          | 5.00E-05<br>7.00E-01<br>1.00E-01<br>2.00E-02                               | PAT                     | 6.66E-08<br>3.15E-08<br>3.69E-10<br>1.15E-07<br>3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10                                                                               | 1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09                                                                                  | 4.86E-09<br>2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.22E-02<br>2.86E-05<br>6.48E-08                                                           |  |
| Benzo(k)fluoranthene Dibenz(a,h)anthracene Dibeldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibeldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Dibeldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.30E-02<br>7.30E+00<br>1.60E+01<br>7.30E-01                                                                                                                          | 5.00E-05<br>                                                               | PAT                     | 6.66E-08<br>3.15E-08<br>3.69E-10<br>1.15E-07<br>3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10                                                                               | 1.86E-07<br>8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09                                                                                  | 4.86E-09<br>2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.22E-02<br>2.86E-05<br>6.48E-08                                                           |  |
| Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.30E+00<br>1.60E+01<br>7.30E-01<br>—                                                                                                                                 | 7.00E-01<br>1.00E-01<br>-<br>2.00E-02                                      | PAT                     | 3.15E-08<br>3.69E-10<br>1.15E-07<br>3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10                                                                                           | 8.81E-08<br>1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09                                                                                              | 2.30E-07<br>5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.22E-02<br>2.86E-05<br>6.48E-08                                                           |  |
| Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.60E+01<br>7.30E-01<br>-<br>-                                                                                                                                        | 7.00E-01<br>1.00E-01<br>-<br>2.00E-02                                      | PAT                     | 3.69E-10<br>1.15E-07<br>3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10                                                                                                       | 1.03E-09<br>3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09                                                                                                          | 5.90E-09<br>8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.22E-02<br>2.86E-05<br>6.48E-08                                                           |  |
| Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.30E-01<br>-<br>-                                                                                                                                                    | 7.00E-01<br>1.00E-01<br>-<br>2.00E-02                                      | PAT                     | 1.15E-07<br>3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10                                                                                                                   | 3.22E-07<br>8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09                                                                                                                      | 8.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.22E-02<br>2.86E-05<br>6.48E-08                                                           |  |
| Iron Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                     | 1.00E-01<br>-<br>2.00E-02                                                  | PAT                     | 3.05E-03<br>1.02E-06<br>1.82E-05<br>4.63E-10                                                                                                                               | 8.54E-03<br>2.86E-06<br>5.09E-05<br>1.30E-09                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.86E-05<br>6.48E-08                                                                       |  |
| Isopropylbenzene (cumene) Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(k)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                     | 1.00E-01<br>-<br>2.00E-02                                                  | PAT                     | 1.02E-06<br>1.82E-05<br>4.63E-10                                                                                                                                           | 2.86E-06<br>5.09E-05<br>1.30E-09                                                                                                                                              | 1.76E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.86E-05<br>6.48E-08                                                                       |  |
| Lead Napthalene  DERMAL CONTACT  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       | 2.00E-02                                                                   | PAT                     | 1.82E-05<br>4.63E-10                                                                                                                                                       | 5.09E-05<br>1.30E-09                                                                                                                                                          | 1.76E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.48E-08                                                                                   |  |
| Napthalene  DERMAL CONTACT  Chemical  4,4-DDD  Aluminum Aroclor-1254 Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dibeldrin Indeno(1,2,3-cd)pyrene Iron Isopropyibenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                     |                                                                            | PAT                     | 4.63E-10                                                                                                                                                                   | 1.30E-09                                                                                                                                                                      | 1.76E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                          |  |
| Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                       | RfD                                                                        | PAT                     | HWAY TOTA                                                                                                                                                                  | L =                                                                                                                                                                           | 1.76E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,52E-02                                                                                   |  |
| Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                       | RfD                                                                        | 1                       | THIRT TOTAL                                                                                                                                                                |                                                                                                                                                                               | 1.702-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,02L-02                                                                                   |  |
| Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                       | RfD                                                                        | <u> </u>                |                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |  |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropyibenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       | RfD                                                                        |                         |                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |  |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropyibenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01                                                                                                                                                                    | RID                                                                        |                         | b. 4 - 1                                                                                                                                                                   | b-t-t                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |  |
| 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Slope<br>Factor                                                                                                                                                       |                                                                            |                         | Intake<br>Carc                                                                                                                                                             | Intake<br>Noncarc                                                                                                                                                             | Cancer<br>Risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hazard<br>Quotient                                                                         |  |
| Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropyibenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                       |                                                                            |                         |                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |  |
| Aluminum Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropyibenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.40E-01                                                                                                                                                              |                                                                            |                         | 1.52E-08                                                                                                                                                                   | 4.26E-08                                                                                                                                                                      | 3.66E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Aroclor-1254 Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Alumhinum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                     | 1.00E+00                                                                   |                         | 1.89E-04                                                                                                                                                                   | 5.29E-04                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.29E-04                                                                                   |  |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropyibenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.00E+00                                                                                                                                                              | 2.00E-05                                                                   |                         | 2.50E-07                                                                                                                                                                   | 6.99E-07                                                                                                                                                                      | 4.99E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,49E-02                                                                                   |  |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropyibenzene (cumene) Lead Napthalene  INHALATION  Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.30E-01                                                                                                                                                              | _                                                                          |                         | 1.93E-07                                                                                                                                                                   | 5.40E-07                                                                                                                                                                      | 1.41E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.30E+00                                                                                                                                                              | _                                                                          |                         | 2.29E-07                                                                                                                                                                   | 6.41E-07                                                                                                                                                                      | 1.67E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Benzo(k)fluoranthene Dibenz(a,h)anthracene Dibeldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Alumhum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.30E-01                                                                                                                                                              | _                                                                          |                         | 2.46E-07                                                                                                                                                                   | 6.90E-07                                                                                                                                                                      | 1.80E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Dibenz(a,h)anthracene Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropyibenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.30E-02                                                                                                                                                              | _                                                                          |                         | 1.14E-07                                                                                                                                                                   | 3,20E-07                                                                                                                                                                      | 8.34E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Dieldrin Indeno(1,2,3-cd)pyrene Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical 4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.30E+00                                                                                                                                                              | _                                                                          |                         | 5.40E-08                                                                                                                                                                   | 1.51E-07                                                                                                                                                                      | 3.94E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Indeno(1,2,3-cd)pyrene Iron Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       | 5.00E-05                                                                   |                         | 6.33E-10                                                                                                                                                                   | 1.77E-09                                                                                                                                                                      | 1.01E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.54E-05                                                                                   |  |
| Iron Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Alumhum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.30E-01                                                                                                                                                              | -                                                                          |                         | 1.97E-07                                                                                                                                                                   | 5,52E-07                                                                                                                                                                      | 1.44E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0 12 00                                                                                  |  |
| Isopropylbenzene (cumene) Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.50L-01                                                                                                                                                              | 7.00E-01                                                                   |                         | 4.03E-04                                                                                                                                                                   | 1.13E-03                                                                                                                                                                      | 1,-1-1L-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.61E-03                                                                                   |  |
| Lead Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                     | 1.00E-01                                                                   |                         | 4.03E-04<br>1.75E-06                                                                                                                                                       | 4.91E-06                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.91E-05                                                                                   |  |
| Napthalene  INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       | 1.00⊡-01                                                                   |                         | 1.75E-06<br>2.40E-06                                                                                                                                                       | 6.72E-06                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.016-00                                                                                   |  |
| INHALATION  Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                     | 2.00E-02                                                                   |                         | 7.95E-10                                                                                                                                                                   | 2.22E-09                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.11E-07                                                                                   |  |
| Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                       |                                                                            |                         |                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |  |
| Chemical  4,4-DDD Aluminum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                       |                                                                            | <u>PAT</u>              | HWAY TOTA                                                                                                                                                                  | L=                                                                                                                                                                            | 3.05E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.72E-02                                                                                   |  |
| Chemical 4,4-DDD Alumilnum Aroclor-1254 Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                       |                                                                            |                         |                                                                                                                                                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |  |
| 4,4-DDD<br>Aluminum<br>Aroclor-1254<br>Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u *=                                                                                                                                                                  | D-0                                                                        |                         | E40                                                                                                                                                                        | E4.0                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |  |
| 4,4-DDD<br>Aluminum<br>Aroclor-1254<br>Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iUR                                                                                                                                                                   | RfC                                                                        | (                       | EAC<br>Carc (ug/m3)                                                                                                                                                        | EAC<br>Noncarc (mg/m3)                                                                                                                                                        | Cancer<br>Risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hazard<br>Quotient                                                                         |  |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                       |                                                                            |                         | (-g/illo)                                                                                                                                                                  | (mgmlo)                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GGGGGG                                                                                     |  |
| Aluminum<br>Aroclor-1254<br>Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                       | _                                                                          |                         | 6.60E-11                                                                                                                                                                   | 1.85E-13                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |  |
| Aroclor-1254<br>Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       | 5.00E-03                                                                   |                         | 1.45E-03                                                                                                                                                                   | 4.07E-06                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.15E-04                                                                                   |  |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.70E-04                                                                                                                                                              | _                                                                          |                         | 1.87E-07                                                                                                                                                                   | 5.23E-10                                                                                                                                                                      | 1.07E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,80E-05                                                                                                                                                              |                                                                            |                         | 2.21E-07                                                                                                                                                                   | 6.18E-10                                                                                                                                                                      | 1.94E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                       | _                                                                          |                         | 2.65E-07                                                                                                                                                                   | 7.43E-10                                                                                                                                                                      | 2.34E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.80E-04                                                                                                                                                              |                                                                            |                         | 2.70E-07                                                                                                                                                                   | 7.55E-10                                                                                                                                                                      | 2.37E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.80E-04<br>8.80E-05                                                                                                                                                  |                                                                            |                         | 1.61E-07                                                                                                                                                                   | 4.51E-10                                                                                                                                                                      | 1.42E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.80E-05                                                                                                                                                              |                                                                            |                         | 5.99E-08                                                                                                                                                                   | 1.68E-10                                                                                                                                                                      | 5.27E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.80E-05<br>8.80E-06                                                                                                                                                  |                                                                            |                         | 7.68E-10                                                                                                                                                                   | 2.15E-12                                                                                                                                                                      | 3,53E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.80E-05<br>8.80E-06<br>8.80E-04                                                                                                                                      |                                                                            |                         | 2.28E-07                                                                                                                                                                   | 6.38E-10                                                                                                                                                                      | 2.00E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03                                                                                                                          | _                                                                          |                         | 5.86E-03                                                                                                                                                                   | 1.64E-05                                                                                                                                                                      | _,00L-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |
| lisopropylbenzene (cumene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.80E-05<br>8.80E-06<br>8.80E-04                                                                                                                                      | 4.00E-01                                                                   |                         | 3.86E-02                                                                                                                                                                   | 1.08E-04                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.70E-04                                                                                   |  |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05                                                                                                              | 7.00E-01                                                                   |                         | 3.59E-05                                                                                                                                                                   | 1.01E-07                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.705-04                                                                                   |  |
| Napthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05                                                                                                              |                                                                            |                         | 6.48E-10                                                                                                                                                                   | 1.82E-12                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.05E-10                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05                                                                                                              | 3.00E-03                                                                   |                         |                                                                                                                                                                            |                                                                                                                                                                               | 1015 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05                                                                                                              | 3.00E-03                                                                   | PAT                     | HWAY TOTA                                                                                                                                                                  | L =                                                                                                                                                                           | 4.61E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.08E-03                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.80E-05<br>8.80E-06<br>8.80E-04<br>4.60E-03<br>8.80E-05                                                                                                              | 3.00E-03                                                                   |                         |                                                                                                                                                                            |                                                                                                                                                                               | 4.81E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.34E-02                                                                                   |  |

APPENDIX D-2
RISK CALCULATIONS
NORTH OF MARLIN SOIL

TABLE D-8
CHEMICAL SPECIFIC TOXICITY VALUES\*

| Compound               | EPA weight-<br>of-evidence | CAS Number  | Chronic<br>RfD |            | Inhalaiton<br>RfC |        | Oral Slope<br>Factor |        | Inhalation<br>Unit Risk | Dermal<br>Absorption |        |
|------------------------|----------------------------|-------------|----------------|------------|-------------------|--------|----------------------|--------|-------------------------|----------------------|--------|
|                        | classification             | <del></del> | mg/kg-day      | Notes:     | mg/m3             | Notes: | 1/mg/kg-day          | Notes: | 1/ug/m3                 | Notes: (unitless)    | Notes: |
| 1,2-Dichloroethane     | B2                         | 107-06-2    | 2.00E-02       |            | 2.40E+00          |        | 9.10E-02             |        | 2.60E-05                | 1.30E-01             |        |
| Aluminum               | Not available              | 7429-90-5   | 1.00E-01       |            | 5.00E-03          |        |                      |        |                         | 1.00E-02             |        |
| Aroclor-1254           | B2                         | 1336-36-3   | 2.00E-05       |            | ,                 |        | 2.00E+00             |        | 5.70E-04                | 1.30E-01             |        |
| Benzo(a)anthracene     | B2                         | 56-55-3     |                |            |                   |        | 7.30E-01             |        | 8.80E-05                | 1.30E-01             |        |
| Benzo(a)pyrene         | B2                         | 50-32-8     |                |            |                   |        | 7.30E+00             |        | 8.80E-04                | 1.30E-01             |        |
| Benzo(b)fluoranthene   | B2                         | 205-99-2    |                |            |                   |        | 7.30E-01             |        | 8.80E-05                | 1.30E-01             |        |
| Dibenz(a,h)anthracene  | B2                         | 53-70-3     |                |            |                   |        | 7.30E+00             |        | 8.80E-04                | 1.30E-01             |        |
| Indeno(1,2,3-cd)pyrene | B2                         | 193-39-5    |                |            |                   |        | 7.30E-01             |        | 8.80E-05                | 1.30E-01             |        |
| Iron                   | Not available              | 7439-89-6   | 7.00E-01       | NCEA, 2006 |                   |        |                      |        |                         | 1.00E-02             |        |
| Tetrachloroethene      | B2                         | 127-18-4    | 1.00E-02       |            | 2.70E-01          |        | 5.20E-02             |        | 5.80E-07                | 1.30E-01             |        |

#### Notes:

<sup>\*</sup> Unless otherwise noted, the values were obtained from EPA's on-line database, IRIS.

## TABLE D-9 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE -- YOUTH TRESPASSER

| Cancer Risk =       | Intake*CSF               | HQ =        | Intake / RfD           |                |                   |                | <del></del>        |          |
|---------------------|--------------------------|-------------|------------------------|----------------|-------------------|----------------|--------------------|----------|
|                     | or<br>EAC * IIIB         |             | <i>or</i><br>EAC / RfC |                |                   |                |                    |          |
|                     | EAC * IUR                |             | EAC / RIC              |                |                   |                |                    |          |
| Parameter           | Definition               |             |                        |                |                   | Default        |                    |          |
| Intake              | Intake of chemical (mg   |             |                        |                |                   | see intake     |                    |          |
| EAC                 | Effective Air Concentra  |             | 1^3)                   |                |                   | see intake     |                    |          |
| CSF                 | Cancer slope factor (m   | ng/kg-day)- | 1                      |                |                   | see chemprop   |                    |          |
| IUR                 | Inhalation unit risk (ug |             |                        |                |                   | see chemprop   |                    |          |
| RfD                 | Reference dose (mg/k     | •           |                        |                |                   | see chemprop   |                    |          |
| RfC                 | Inhalation reference co  |             | n (mg/m^3)             |                |                   | see chemprop   |                    |          |
| INGESTION           |                          |             |                        |                |                   |                |                    |          |
| INGLOTION           |                          |             |                        |                |                   |                |                    |          |
| Chemical            | Slope<br>Factor          | RfD         |                        | Intake<br>Carc | Intake<br>Noncarc | Cancer<br>Risk | Hazard<br>Quotient |          |
| Crienical           | 1 actor                  |             |                        | Carc           | Noncarc           | 1/15/          | Quotient           |          |
| 1,2-Dichloroethane  | 9.10E-02                 | 2.00E-02    |                        | 2.86E-10       | 8.01E-10          | 2.60E-11       | 4.01E-08           |          |
| Aluminum            |                          | 1.00E-01    |                        | 1.80E-04       | 5.04E-04          |                | 5.04E-03           |          |
| Aroclor-1254        | 2.00E+00                 | 2.00E-05    |                        | 2.66E-09       | 7.44E-09          | 5.31E-09       | 3.72E-04           |          |
| Benzo(a)anthracen   |                          | -           |                        | 1,60E-09       | 4.48E-09          | 1.17E-09       | -                  |          |
| Benzo(a)pyrene      | 7.30E+00                 |             |                        | 1.38E-09       | 3.85E-09          | 1.00E-08       |                    |          |
| Benzo(b)fluoranthe  |                          | _           |                        | 2.11E-09       | 5.92E-09          | 1.54E-09       |                    |          |
| ll ' '              |                          | _           |                        | 1.01E-09       | 2.83E-09          | 7.37E-09       |                    |          |
| Dibenz(a,h)anthrac  |                          |             |                        | 1.69E-09       | 4.73E-09          |                |                    |          |
| Indeno(1,2,3-cd)py  |                          | 7.005.04    |                        |                |                   | 1.23E-09       | 4 005 00           |          |
| Iron                |                          | 7.00E-01    |                        | 3.07E-04       | 8.58E-04          | 0.005.40       | 1.23E-03           |          |
| Tetrachloroethene   | 5.20E-02                 | 1.00E-02    |                        | 1.85E-10       | 5.18E-10          | 9.62E-12       | 5.18E-08           |          |
|                     |                          |             | PATH                   | ATOT YAW       | L=                | 2.67E-08       | 6.64E-03           | <u> </u> |
| DEDMAL CONTAC       | Ť                        |             |                        |                |                   |                |                    |          |
| DERMAL CONTAC       | · I                      |             |                        |                |                   |                |                    |          |
|                     | Slope                    | RfD         |                        | Intake         | Intake            | Cancer         | Hazard             |          |
| Chemical            | Factor                   | ,.          |                        | Carc           | Noncarc           | Risk           | Quotient           |          |
|                     |                          |             |                        |                |                   |                |                    |          |
| 1,2-Dichloroethane  | 9.10E-02                 | 2.00E-02    |                        | 1.30E-10       | 3.65E-10          | 1.19E-11       | 1.82E-08           |          |
| Aluminum            |                          | 1.00E-01    |                        | 6.30E-06       | 1.76E-05          |                | 1.76E-04           |          |
| Aroclor-1254        | 2.00E+00                 | 2.00E-05    |                        | 1.21E-09       | 3.38E-09          | 2.42E-09       | 1.69E-04           |          |
| Benzo(a)anthracen   | e 7.30E-01               |             |                        | 7.28E-10       | 2.04E-09          | 5.31E-10       |                    |          |
| Benzo(a)pyrene      | 7.30E+00                 |             |                        | 6.26E-10       | 1.75E-09          | 4.57E-09       |                    |          |
| Benzo(b)fluoranthe  | ne 7.30E-01              |             |                        | 9.62E-10       | 2.69E-09          | 7.02E-10       |                    |          |
| Dibenz(a,h)anthrac  |                          |             |                        | 4.59E-10       | 1.29E-09          | 3.35E-09       |                    |          |
| Indeno(1,2,3-cd)pyr |                          |             |                        | 7.68E-10       | 2.15E-09          | 5.61E-10       |                    |          |
| Iron                |                          | 7.00E-01    |                        | 1.07E-05       | 3.00E-05          |                | 4.29E-05           |          |
| Tetrachloroethene   | 5.20E-02                 | 1.00E-02    |                        | 8.41E-11       | 2.36E-10          | 4.38E-12       | 2.36E-08           |          |
|                     |                          |             | DATE                   | HWAY TOTA      | <u> </u>          | 1.21E-08       | 3.89E-04           | 1        |
|                     | <del></del>              |             | I PAIR                 | IVVAT TOTAL    | <u>-</u>          | 1.415-00       | 3.08E-U4           | <u> </u> |
| INHALATION          |                          |             | <del></del>            |                |                   |                |                    |          |
|                     | IUR                      | RfC         |                        | EAC            | EAC               | Cancer         | Hazard             |          |
| Chemical            | 1011                     |             | C                      |                | Noncarc (mg/m3)   | Risk           | Quotient           |          |
| 4.0 Di-bl           | 0.005.00                 | 0.405:00    |                        | 0.405.00       | 0.075.00          |                |                    |          |
| 1,2-Dichloroethane  |                          | 2.40E+00    |                        | 8.10E-06       | 2.27E-08          |                | 0 545 05           |          |
| Aluminum            |                          | 5.00E-03    |                        | 6.27E-05       | 1.75E-07          |                | 3.51E-05           |          |
| Aroclor-1254        | 5.70E-04                 |             |                        | 7.16E-11       | 2.01E-13          | 4.08E-14       |                    |          |
| Benzo(a)anthracen   |                          |             |                        | 6.93E-09       | 1.94E-11          | 6.10E-13       |                    |          |
| Benzo(a)pyrene      | 8.80E-04                 |             |                        | 6.99E-10       | 1.96E-12          | 6.15E-13       |                    |          |
| Benzo(b)fluoranthe  |                          |             |                        | 9.92E-10       | 2.78E-12          | 8.73E-14       |                    |          |
| Dibenz(a,h)anthrac  | ene 8.80E-04             |             |                        | 4.51E-10       | 1.26E-12          | 3.97E-13       |                    |          |
| Indeno(1,2,3-cd)pyi | rene 8.80E-05            |             |                        | 9.10E-10       | 2.55E-12          | 8.01E-14       |                    |          |
| Iron                |                          |             |                        | 1.14E-04       | 3.20E-07          |                |                    |          |
| Tetrachloroethene   | 5.80E-07                 | 2.70E-01    |                        | 4.88E-05       | 1.37E-07          | 2.83E-11       | 5.06E-07           |          |
|                     |                          |             | РДТІ                   | ATOT YAWH      | <u> </u>          | 3.02E-11       | 3.56E-05           | 1        |
|                     |                          |             | 1,711                  |                |                   | J, J, L, T, T  | 3,002 00           | <u> </u> |
|                     |                          |             |                        |                | TOTAL             | 3.89E-08       | 7.06E-03           |          |
|                     |                          |             |                        |                |                   |                |                    |          |

#### TABLE D-10 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- YOUTH TRESPASSER (age 6 to 18)

| AC Effective Air Concentration (mg/m²s) SIF Cancer slope factor (mg/kg-day) IN Inhalation unit risk (ug/m²s)-1 See chemprop See chempr  | Cancer Risk =      | Intake*CSF               | HQ =        | Intake / RfD |              | <del></del>                                    | <del></del>  |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|-------------|--------------|--------------|------------------------------------------------|--------------|----------|
| Parameter   Definition   Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                          |             |              |              |                                                |              |          |
| Intake   Intake of chemical (mg/kg-day)   See Intake   See Chemprop   See Ch   |                    | EAC * IUR                |             | EAC / RfC    |              |                                                |              |          |
| Intake   Intake of chemical (mg/kg-day)   See Intake   See Chemprop   See Ch   | Parameter          | Definition               |             |              |              |                                                | Default      |          |
| Cancer   Architecture   Cancer   Canc   |                    |                          | /kg-day)    |              |              |                                                |              |          |
| SEF   Cancer slope factor (mg/kg-day)-1   see chemprop    |                    |                          |             | 1^3)         |              |                                                |              |          |
| Reference dose (mg/kg-day)   see chemprop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CSF                | Cancer slope factor (n   | ng/kg-day)- | 1            |              |                                                | see chemprop |          |
| NGESTION   Slope   RTD   Intake   Intake   Cancer   Hazard   Lote   Carcer     | IUR                | Inhalation unit risk (ug | /m^3)-1     |              |              |                                                | see chemprop |          |
| Simple   Remical   Simple   Remical   Intake   Cancer   Risk   Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RfD                | Reference dose (mg/k     | g-day)      |              |              |                                                | see chemprop |          |
| Slope   RTD   Intake   Intake   Cancer   Risk   Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RfC                | Inhalation reference c   | oncentratio | n (mg/m^3)   |              |                                                | see chemprop |          |
| 2-Dichirorethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INGESTION          |                          |             |              |              |                                                |              |          |
| 2-Dichirorethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | Slana                    | DfD         |              | Intoko       | Intoko                                         | Concor       | Hozord   |
| Numhum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chemical           |                          | KID         |              |              |                                                |              |          |
| Numhum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2 Diablemethens  | 0.105.03                 | 0.005.00    |              | 7.465.40     | 0.005.44                                       | 6.795.40     | 4.045.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 9. IUE-UZ                |             |              |              |                                                | 0./00-13     |          |
| Benzo(a) purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 2 NUE+UV                 |             |              |              |                                                | 5.05E-10     |          |
| Senzo (a) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                          |             |              |              |                                                |              | 0.50L-00 |
| Part      |                    |                          |             |              |              |                                                |              |          |
| Dibenz(a, h)anthracene   7.30E+00   -   6.34E+10   1.78E-09   4.85E-09   1.70E-08   1.70E-09   1.70E-08   1.   |                    |                          |             |              |              |                                                |              |          |
| Main      | 1 ''               |                          |             |              |              |                                                |              |          |
| Ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                          |             |              |              |                                                |              |          |
| PATHWAY TOTAL =   1.95E-07   3.06E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | ene 7.30E-01             |             |              |              |                                                | 1./∪⊏-08     | 9.665.03 |
| PATHWAY TOTAL =   1.95E-07   3.06E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tetrachioroethene  | 5.20E-02                 |             |              |              |                                                | 6.44E-13     |          |
| Slope   RfD   Intake   Intake   Cancer   Risk   Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                          |             | DAT          | INVAV TOTA   | · <u>- · - · - · - · · - · · · · · · · · ·</u> | 4.0FF 07     | 2.005.00 |
| Slope   RfD   Intake   Intake   Cancer   Hazard   Carc   Noncarc   Risk   Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>           | <del></del>              |             | PAII         | HVVAT TOTA   | L =                                            | 1.95E-07     | 3.00E-02 |
| Chemical   Factor   Carc   Noncarc   Risk   Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DERMAL CONTAC      | Т                        |             |              |              |                                                |              |          |
| Chemical   Factor   Carc   Noncarc   Risk   Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                  | Slope                    | RfD         |              | Intake       | Intake                                         | Cancer       | Hazard   |
| Numinum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chemical           | Factor                   |             |              | Carc         | Noncarc                                        | Risk         | Quotient |
| Numinum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2-Dichloroethane | 9.10E-02                 | 2.00E-02    |              | 3.39E-12     | 9.50E-12                                       | 3.09E-13     | 4.75E-10 |
| Senzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aluminum           |                          |             |              |              |                                                |              |          |
| Senzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                  | 2.00E+00                 |             |              |              |                                                | 2.30E-10     |          |
| Senzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J .                |                          |             |              |              |                                                |              |          |
| Senzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , ,                |                          |             |              |              |                                                |              |          |
| Dibenz(a,h)anthracene   7.30E+00   -   2.88E-10   8.08E-10   2.11E-09   7.30E-01   -   1.06E-08   2.96E-08   7.72E-09   7.30E-01   -   7.00E-01   7.58E-05   2.12E-04   3.03E-04   7.30E-01   7.58E-05   2.12E-04   3.03E-04   7.30E-01   7.58E-05   2.12E-04   3.03E-04   7.30E-01   7.58E-05   7.28E-01   7.58E-11   7.58E-09   7.30E-03   7.30E-01   7.58E-09   7.30E-03   7.30E-01   7.58E-09   7.30E-03   7.30E-01   7.58E-09   7.30E-03   7.30E-   |                    |                          |             |              |              |                                                |              |          |
| Table   Tabl   | , , <i>,</i>       |                          |             |              |              |                                                |              |          |
| TON - 7.00E-01 7.58E-05 2.12E-04 3.03E-04 7.58E-09    PATHWAY TOTAL = 8.89E-08 1.09E-03    NHALATION    IUR   RfC   EAC   EAC   EAC   Cancer   Hazard   Guetient   Carc (ug/m3) Noncarc (mg/m3)   Risk   Quotient   Carc (ug/m3) Noncarc (mg/m3)   Carc (ug/m3)   Car |                    |                          |             |              |              |                                                |              |          |
| NHALATION   IUR   RfC   EAC   EAC   Cancer   Hazard   Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Iron               |                          |             |              |              |                                                | 7.722 00     | 3 03F-04 |
| IUR   RfC   EAC   EAC   Cancer   Hazard   Carc (ug/m3)   Noncarc (mg/m3)   Risk   Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tetrachloroethene  | 5.20E-02                 |             |              |              |                                                | 2.93E-13     |          |
| IUR   RfC   EAC   EAC   Cancer   Hazard   Carc (ug/m3)   Noncarc (mg/m3)   Risk   Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | •                        |             | ΡΔΤ          | HWAY TOTA    |                                                | 8 89F-08     | 1 09F-03 |
| IUR   RfC   EAC   EAC   Cancer   Hazard   Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                          |             | 171          |              |                                                | 0.001.00     |          |
| Carc (ug/m3) Noncarc (mg/m3) Risk Quotient  1,2-Dichloroethane 2.60E-05 2.40E+00 2.11E-07 5.91E-10 5.49E-12 2.46E-10 1.60E-04 1.00E-1254 5.70E-04 1.01E-10 2.82E-13 5.74E-14 1.00E-04 1.00E-04 1.00E-05 1.00E-0    | INHALATION         |                          |             |              |              |                                                |              |          |
| 1,2-Dichloroethane 2.60E-05 2.40E+00 2.11E-07 5.91E-10 5.49E-12 2.46E-10 Aluminum 5.00E-03 2.86E-04 8.01E-07 1.60E-04 Aroclor-1254 5.70E-04 1.01E-10 2.82E-13 5.74E-14 Benzo(a)anthracene 8.80E-05 2.58E-10 7.23E-13 2.27E-14 Benzo(a)pyrene 8.80E-04 2.72E-10 7.63E-13 2.40E-13 Benzo(b)fluoranthene 8.80E-05 8.76E-09 2.45E-11 7.71E-13 Dibenz(a,h)anthracene 8.80E-04 2.58E-10 7.23E-13 2.27E-13 Indeno(1,2,3-cd)pyrene 8.80E-05 1.60E-08 4.48E-11 1.41E-12 Indeno(1,2,3-cd)pyrene 8.80E-05 9.66E-04 2.70E-06 Fetrachloroethene 5.80E-07 2.70E-01 3.27E-06 9.16E-09 1.90E-12 3.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | IUR                      | RfC         |              |              |                                                |              |          |
| Audminum 5.00E-03 2.86E-04 8.01E-07 1.60E-04 Arcolor-1254 5.70E-04 1.01E-10 2.82E-13 5.74E-14 Benzo(a)anthracene 8.80E-05 2.58E-10 7.23E-13 2.27E-14 Benzo(a)pyrene 8.80E-04 2.72E-10 7.63E-13 2.40E-13 Benzo(b)fluoranthene 8.80E-05 8.76E-09 2.45E-11 7.71E-13 Dibenz(a,h)anthracene 8.80E-04 2.58E-10 7.23E-13 2.27E-13 Dibenz(a,h)anthracene 8.80E-04 2.58E-10 7.23E-13 2.27E-13 Dibenz(a,h)anthracene 8.80E-05 1.60E-08 4.48E-11 1.41E-12 Ton 9.66E-04 2.70E-06 Tetrachloroethene 5.80E-07 2.70E-01 3.27E-06 9.16E-09 1.90E-12 3.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chemical           |                          |             |              | Carc (ug/m3) | Noncarc (mg/m3)                                | Risk         | Quotient |
| Audminum 5.00E-03 2.86E-04 8.01E-07 1.60E-04 Arcolor-1254 5.70E-04 1.01E-10 2.82E-13 5.74E-14 Benzo(a)anthracene 8.80E-05 2.58E-10 7.23E-13 2.27E-14 Benzo(a)pyrene 8.80E-04 2.72E-10 7.63E-13 2.40E-13 Benzo(b)fluoranthene 8.80E-05 8.76E-09 2.45E-11 7.71E-13 Dibenz(a,h)anthracene 8.80E-04 2.58E-10 7.23E-13 2.27E-13 Dibenz(a,h)anthracene 8.80E-04 2.58E-10 7.23E-13 2.27E-13 Dibenz(a,h)anthracene 8.80E-05 1.60E-08 4.48E-11 1.41E-12 Ton 9.66E-04 2.70E-06 Tetrachloroethene 5.80E-07 2.70E-01 3.27E-06 9.16E-09 1.90E-12 3.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-Dichloroethane | 2.60E-05                 | 2.40E+00    |              | 2.11E-07     | 5.91E-10                                       | 5.49E-12     | 2.46E-10 |
| Aroclor-1254 5.70E-04 1.01E-10 2.82E-13 5.74E-14 Benzo(a)anthracene 8.80E-05 2.58E-10 7.23E-13 2.27E-14 Benzo(a)pyrene 8.80E-04 2.72E-10 7.63E-13 2.40E-13 Benzo(b)fluoranthene 8.80E-05 8.76E-09 2.45E-11 7.71E-13 Dibenz(a,h)anthracene 8.80E-04 2.58E-10 7.23E-13 2.27E-13 Indeno(1,2,3-cd)pyrene 8.80E-05 1.60E-08 4.48E-11 1.41E-12 Iron 9.66E-04 2.70E-06 Tetrachloroethene 5.80E-07 2.70E-01 3.27E-06 9.16E-09 1.90E-12 3.39E-08  PATHWAY TOTAL = 1.01E-11 1.60E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aluminum           |                          |             |              |              |                                                |              |          |
| Benzo(a)anthracene       8.80E-05        2.58E-10       7.23E-13       2.27E-14         Benzo(a)pyrene       8.80E-04        2.72E-10       7.63E-13       2.40E-13         Benzo(b)fluoranthene       8.80E-05        8.76E-09       2.45E-11       7.71E-13         Bibenz(a,h)anthracene       8.80E-04        2.58E-10       7.23E-13       2.27E-13         Indeno(1,2,3-cd)pyrene       8.80E-05        1.60E-08       4.48E-11       1.41E-12         ron        9.66E-04       2.70E-06        9.66E-04       2.70E-06         Tetrachloroethene       5.80E-07       2.70E-01       3.27E-06       9.16E-09       1.90E-12       3.39E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aroclor-1254       |                          |             |              |              |                                                | 5,74E-14     |          |
| Benzo(a)pyrene       8.80E-04        2.72E-10       7.63E-13       2.40E-13         Benzo(b)filuoranthene       8.80E-05        8.76E-09       2.45E-11       7.71E-13         Dibenz(a,h)anthracene       8.80E-04        2.58E-10       7.23E-13       2.27E-13         ndeno(1,2,3-cd)pyrene       8.80E-05        1.60E-08       4.48E-11       1.41E-12         ron         9.66E-04       2.70E-06         Fetrachloroethene       5.80E-07       2.70E-01       3.27E-06       9.16E-09       1.90E-12       3.39E-08     PATHWAY TOTAL =  1.01E-11 1.60E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                          |             |              |              |                                                |              |          |
| Benzo(b)fitioranthene       8.80E-05        8.76E-09       2.45E-11       7.71E-13         Dibenz(a,h)anthracene       8.80E-04        2.58E-10       7.23E-13       2.27E-13         Indeno(1,2,3-cd)pyrene       8.80E-05        1.60E-08       4.48E-11       1.41E-12         Instruction of the control of the                                                                                                                                                                                                                                                                              | Benzo(a)pyrene     |                          |             |              |              |                                                |              | •        |
| Dibenz(a,h)anthracene       8.80E-04        2.58E-10       7.23E-13       2.27E-13         ndeno(1,2,3-cd)pyrene       8.80E-05        1.60E-08       4.48E-11       1.41E-12         ron         9.66E-04       2.70E-06         Tetrachloroethene       5.80E-07       2.70E-01       3.27E-06       9.16E-09       1.90E-12       3.39E-08     PATHWAY TOTAL = 1.01E-11 1.60E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                          |             |              |              |                                                |              |          |
| ndeno(1,2,3-cd)pyrene 8.80E-05 1.60E-08 4.48E-11 1.41E-12 ron 9.66E-04 2.70E-06  Tetrachloroethene 5.80E-07 2.70E-01 3.27E-06 9.16E-09 1.90E-12 3.39E-08  PATHWAY TOTAL = 1.01E-11 1.60E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                          |             |              |              |                                                |              |          |
| ron 9.66E-04 2.70E-06  Tetrachloroethene 5.80E-07 2.70E-01 3.27E-06 9.16E-09 1.90E-12 3.39E-08  PATHWAY TOTAL = 1.01E-11 1.60E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                          |             |              |              |                                                |              |          |
| Tetrachloroethene 5.80E-07 2.70E-01 3.27E-06 9.16E-09 1.90E-12 3.39E-08  PATHWAY TOTAL = 1.01E-11 1.60E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Iron               |                          |             |              |              |                                                |              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tetrachloroethene  | 5.80E-07                 | 2.70E-01    |              |              |                                                | 1.90E-12     | 3.39E-08 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |             | PAT          | HWAY TOTA    | L=                                             | 1.01E-11     | 1.60E-04 |
| TOTAL 2.84E-U/ 3.19E-U2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                          |             | <del></del>  | <del></del>  |                                                | *            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                          |             |              |              | IUIAL                                          | 2.84E-U/     | J.13E-UZ |

### TABLE D-11 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE -- CONSTRUCTION WORKER

| Cancer Risk = I      | ntake*CSF               | HQ =         | Intake / RfD |                      | <del></del>            |                      |                      |          |  |  |  |
|----------------------|-------------------------|--------------|--------------|----------------------|------------------------|----------------------|----------------------|----------|--|--|--|
|                      | or<br>540 t II IB       |              | or           |                      |                        |                      |                      |          |  |  |  |
| 1                    | EAC * IUR               |              | EAC / RfC    |                      |                        |                      |                      |          |  |  |  |
| Parameter I          | Definition              |              |              |                      |                        | Default              |                      |          |  |  |  |
| Intake 1             | ntake of chemical (mg   |              |              |                      |                        | see intake           |                      |          |  |  |  |
| EAC I                | Effective Air Concentr  | ation (mg/m  | ^3)          |                      |                        | see intake           |                      |          |  |  |  |
|                      | Cancer slope factor (n  |              |              |                      |                        | see chemprop         |                      |          |  |  |  |
| IUR I                | nhalation unit risk (ug | /m^3)-1      |              |                      |                        | see chemprop         |                      |          |  |  |  |
| RfD I                | Reference dose (mg/k    | g-day)       |              |                      |                        | see chemprop         |                      |          |  |  |  |
| RfC I                | nhalation reference co  | oncentration | (mg/m^3)     |                      |                        | see chemprop         |                      |          |  |  |  |
| INGESTION            |                         |              |              |                      |                        |                      |                      |          |  |  |  |
|                      | Slope                   | RfD          |              | Intake               | Intake                 | Cancer               | Hazard               |          |  |  |  |
| Chemical             | Factor                  |              |              | Carc                 | Noncarc                | Risk                 | Quotient             |          |  |  |  |
| 1,2-Dichloroethane   | 9.10E-02                | 2.00E-02     |              | 1.62E-10             | 1.13E-08               | 1.47E-11             | 5.67E-07             |          |  |  |  |
| Aluminum             |                         | 1.00E-01     |              | 1.02E-04             | 7.13E-03               |                      | 7.13E-02             |          |  |  |  |
| Aroclor-1254         |                         | 2.00E-05     |              | 1.50E-09             | 1.05E-07               | 3.01E-09             | 5.26E-03             |          |  |  |  |
| Benzo(a)anthracene   |                         |              |              | 9.05E-10             | 6.34E-08               | 6.61E-10             |                      |          |  |  |  |
| Benzo(a)pyrene       | 7.30E+00                |              |              | 7.78E-10             | 5,45E-08               | 5.68E-09             |                      |          |  |  |  |
| Benzo(b)fluoranthen  |                         |              |              | 1.20E-09             | 8.37E-08               | 8.73E-10             |                      |          |  |  |  |
| Dibenz(a,h)anthrace  |                         | _            |              | 5.71E-10             | 4.00E-08               | 4.17E-09             |                      |          |  |  |  |
| Indeno(1,2,3-cd)pyre |                         | _            |              | 9.55E-10             | 6.68E-08               | 4.17E-09<br>6.97E-10 |                      |          |  |  |  |
| lron                 | #IE 7.30E-01            | 7.00E-01     |              | 1.73E-04             | 1,21E-02               | 0.07 L-10            | 1.73E-02             |          |  |  |  |
| Tetrachloroethene    | 5.20E-02                |              |              | 1.73E-04<br>1.05E-10 | 7.32E-09               | 5.44E-12             | 7.32E-07             |          |  |  |  |
|                      |                         | i            | DΔTI         | WAY TOTA             | ΔI =                   | 1.51E-08             | 9.39E-02             | ٦        |  |  |  |
|                      |                         |              |              | 111/21 101/          | \ <u>_</u>             | 1.01L-00             | 5,55L-02             | <u> </u> |  |  |  |
| DERMAL CONTACT       |                         |              |              |                      |                        |                      |                      |          |  |  |  |
|                      | Slope                   | RfD          |              | Intake               | Intake                 | Cancer               | Hazard               |          |  |  |  |
| Chemical             | Factor                  |              |              | Carc                 | Noncarc                | Risk                 | Quotient             |          |  |  |  |
| 1,2-Dichloroethane   | 9.10F-02                | 2.00E-02     |              | 5.89E-11             | 4.13E-09               | 5.36E-12             | 2.06E-07             |          |  |  |  |
| Aluminum             |                         | 1.00E-01     |              | 2.85E-06             | 2.00E-04               | ******               | 2.00E-03             |          |  |  |  |
| Aroclor-1254         |                         | 2.00E-05     |              | 5.47E-10             | 3.83E-08               | 1.09E-09             | 1.91E-03             |          |  |  |  |
| Benzo(a)anthracene   |                         |              |              | 3.29E-10             | 2.31E-08               | 2.40E-10             | 1.012 00             |          |  |  |  |
| Benzo(a)pyrene       | 7.30E+00                |              |              | 2.83E-10             | 1.98E-08               | 2.07E-09             |                      |          |  |  |  |
| Benzo(b)fluoranthen  |                         |              |              | 4.35E-10             | 3.05E-08               | 3.18E-10             |                      |          |  |  |  |
| Dibenz(a,h)anthrace  |                         |              |              | 2.08E-10             | 1.46E-08               | 1.52E-09             |                      |          |  |  |  |
| Indeno(1,2,3-cd)pyre |                         |              |              | 3.48E-10             |                        |                      |                      |          |  |  |  |
| liron                |                         | 7.00E-01     |              | 4.86E-06             | 2.43E-08<br>3.40E-04   | 2.54E-10             | 4.86E-04             |          |  |  |  |
| Tetrachloroethene    |                         | 1.00E-01     |              | 3.81E-11             | 2.67E-09               | 1.98E-12             | 4.60E-04<br>2.67E-07 |          |  |  |  |
| T Calacinoroea erie  | 5.20E-02                | 1.005-02     |              | 0.012-11             | Z.07 E-09              |                      | 2.01 C-01            | _        |  |  |  |
|                      |                         |              | PATI         | WAY TOTA             | \L =                   | 5.50E-09             | 4.40E-03             | <u> </u> |  |  |  |
| INHALATION           |                         |              |              |                      | ·                      |                      |                      |          |  |  |  |
|                      | IIID                    | P.€C         |              | EAC                  | EAC                    | Conse                | Ucro                 |          |  |  |  |
| Chemical             | IUR                     | RfC          |              | EAC<br>arc (ug/m3)   | EAC<br>Noncarc (mg/m3) | Cancer<br>Risk       | Hazard<br>Quotient   |          |  |  |  |
| 4 0 Dialata II       |                         | 0.405:55     |              | 4.005.00             | 0.40= 0=               | 1.005 10             | 4 405 55             |          |  |  |  |
| 1,2-Dichloroethane   | 2.60E-05                | 2.40E+00     |              | 4.86E-06             | 3.40E-07               | 1.26E-10             | 1.42E-07             |          |  |  |  |
| Aluminum             |                         | 5.00E-03     |              | 3.76E-05             | 2.63E-06               | · ·                  | 5.26E-04             |          |  |  |  |
| Aroclor-1254         | 5.70E-04                |              |              | 4.30E-11             | 3.01E-12               | 2.45E-14             |                      |          |  |  |  |
| Benzo(a)anthracene   |                         |              |              | 4.16E-09             | 2.91E-10               | 3.66E-13             |                      |          |  |  |  |
| Benzo(a)pyrene       | 8.80E-04                |              |              | 4.19E-10             | 2.93E-11               | 3.69E-13             |                      |          |  |  |  |
| Benzo(b)fluoranthen  |                         |              |              | 5.95E-10             | 4.17E-11               | 5.24E-14             |                      |          |  |  |  |
| Dibenz(a,h)anthrace  |                         |              |              | 2.71E-10             | 1.90E-11               | 2.38E-13             |                      |          |  |  |  |
| Indeno(1,2,3-cd)pyre | ene 8.80E-05            |              |              | 5.46E-10             | 3.82E-11               | 4.80E-14             |                      |          |  |  |  |
| Iron                 |                         |              |              | 6.86E-05             | 4.80E-06               |                      |                      |          |  |  |  |
| Tetrachloroethene    | 5.80E-07                | 2.70E-01     |              | 2.93E-05             | 2.05E-06               | 1.70E-11             | 7.60E-06             |          |  |  |  |
|                      |                         |              | PATI         | HWAY TOTA            | \L =                   | 1.44E-10             | 5.34E-04             | <u> </u> |  |  |  |
|                      |                         |              |              |                      | TOTAL                  | 2.07E-08             | 9.88E-02             |          |  |  |  |
|                      |                         |              |              |                      | TOTAL                  | Z.01E-00             | J.00E-02             |          |  |  |  |
|                      |                         |              |              |                      |                        |                      |                      |          |  |  |  |

#### TABLE D-12 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- CONSTRUCTION WORKER

| Cancer Risk =       | Intake*CSF               | HQ =         | Intake / RfD |                |                                         |                      |                    | <del></del> |
|---------------------|--------------------------|--------------|--------------|----------------|-----------------------------------------|----------------------|--------------------|-------------|
|                     | or                       |              | or           |                |                                         |                      |                    |             |
|                     | EAC * IUR                |              | EAC / RfC    |                |                                         |                      |                    |             |
| Parameter           | Definition               |              |              |                |                                         | Default              |                    |             |
| Intake              | Intake of chemical (m    |              |              |                |                                         | see intake           |                    |             |
| EAC                 | Effective Air Concent    | ration (mg/m | 1^3)         |                |                                         | see intake           |                    |             |
| CSF                 | Cancer slope factor (    |              | 1            |                |                                         | see chemprop         |                    |             |
| IUR                 | Inhalation unit risk (ug |              |              |                |                                         | see chemprop         |                    |             |
| RfD                 | Reference dose (mg/      | • • •        |              |                |                                         | see chemprop         |                    |             |
| RfC                 | Inhalation reference of  | oncentration | n (mg/m^3)   |                |                                         | see chemprop         |                    |             |
| INGESTION           |                          |              |              |                |                                         |                      |                    | <del></del> |
|                     | Clana                    | · DfD        |              | Intelso        | Intoko                                  | Canaca               | Lloward            |             |
| Chemical            | Slope<br>Factor          | RfD          |              | Intake<br>Carc | Intake<br>Noncarc                       | Cancer<br>Risk       | Hazard<br>Quotient |             |
| Orientical          | T actor                  |              |              | Gaic           | TAOHCAIC                                | Mak                  | Quotient           |             |
| 1,2-Dichloroethane  | 9 10F-02                 | 2.00E-02     |              | 5.86E-12       | 4.10E-10                                | 5.33E-13             | 2.05E-08           |             |
| Aluminum            | 9.102-02                 | 1.00E-01     |              | 6.16E-04       | 4.31E-02                                | 0,00E-10             | 4.31E-01           |             |
| Aroclor-1254        |                          | 2.00E-05     |              | 1.98E-10       | 1.39E-08                                | 3,97E-10             | 6.94E-04           |             |
| Benzo(a)anthracen   |                          | 2.000-00     |              | 5.12E-10       | 3.58E-08                                | 3.74E-10             | J.57L-04           |             |
| Benzo(a)pyrene      | 7.30E+00<br>7.30E+00     |              |              | 1.74E-08       | 1.22E-06                                | 3.74E-10<br>1.27E-07 |                    |             |
|                     |                          |              |              |                |                                         |                      |                    |             |
| Benzo(b)fluoranthe  |                          |              |              | 1.16E-08       | 8.14E-07                                | 8.49E-09             |                    |             |
| Dibenz(a,h)anthrac  |                          |              |              | 4.98E-10       | 3.49E-08                                | 3.64E-09             |                    |             |
| Indeno(1,2,3-cd)pyr |                          |              |              | 1.83E-08       | 1.28E-06                                | 1.33E-08             |                    |             |
| Iron                |                          | 7.00E-01     |              | 1.70E-03       | 1.19E-01                                |                      | 1.70E-01           |             |
| Tetrachloroethene   | 5.20E-02                 | 1.00E-02     |              | 9.73E-12       | 6.81E-10                                | 5.06E-13             | 6.81E-08           |             |
|                     |                          |              | PATH         | IWAY TOTA      |                                         | 1.54E-07             | 6.02E-01           |             |
|                     |                          |              | 1711         | WAT TOTA       | <u> </u>                                | 1,042-07             | 0.021-01           | <del></del> |
| DERMAL CONTAC       | Ť                        |              |              |                |                                         |                      |                    |             |
|                     | Clone                    | RfD          |              | Intake         | Intake                                  | Cancer               | Hazard             |             |
| Chamical            | Slope<br>Factor          | KID          |              | Carc           | Noncarc                                 | Risk                 |                    |             |
| Chemical            | racio                    |              | <del></del>  | Carc           | Noncarc                                 | RISK                 | Quotient           |             |
| 4 2 Diablara athana | 0.405.00                 | 2.005.00     |              | 0.005.40       | 4 005 40                                | 0.005.40             | 9.005.00           |             |
| 1,2-Dichloroethane  |                          | 2.00E-02     |              | 2.28E-12       | 1.60E-10                                | 2.08E-13             | 8,00E-09           |             |
| Aluminum            |                          | 1.00E-01     |              | 1.85E-05       | 1.29E-03                                |                      | 1.29E-02           |             |
| Aroclor-1254        |                          | 2.00E-05     |              | 7.74E-11       | 5.41E-09                                | 1.55E-10             | 2.71E-04           |             |
| Benzo(a)anthracen   |                          |              |              | 2.00E-10       | 1.40E-08                                | 1.46E-10             |                    |             |
| Benzo(a)pyrene      | 7.30E+00                 |              |              | 6.80E-09       | 4.76E-07                                | 4.96E-08             |                    |             |
| Benzo(b)fluoranthe  |                          |              |              | 4.53E-09       | 3.17E-07                                | 3.31E-09             |                    |             |
| Dibenz(a,h)anthrac  | ene 7.30E+00             |              |              | 1.94E-10       | 1.36E-08                                | 1.42E-09             |                    |             |
| Indeno(1,2,3-cd)pyr | rene 7.30E-01            |              |              | 7.12E-09       | 4.99E-07                                | 5.20E-09             |                    |             |
| Iron                |                          | 7.00E-01     |              | 5.11E-05       | 3.57E-03                                |                      | 5.11E-03           |             |
| Tetrachloroethene   | 5.20E-02                 | 1.00E-02     |              | 3.80E-12       | 2.66E-10                                | 1.97E-13             | 2.66E-08           |             |
|                     |                          |              | PATH         | IWAY TOTA      | · = · · · · · · · · · · · · · · · · · · | 5.99E-08             | 1.83E-02           |             |
|                     |                          |              | 1,111        |                |                                         |                      |                    |             |
| INHALATION          |                          |              |              |                |                                         |                      |                    |             |
|                     | IUR                      | RfC          |              | EAC            | EAC                                     | Cancer               | Hazard             |             |
| Chemical            | 1011                     | NO           | С            |                | Noncarc (mg/m3)                         | Risk                 | Quotient           |             |
|                     |                          |              |              |                | · · · · · · · · · · · · · · · · · · ·   |                      |                    |             |
| 1,2-Dichloroethane  | 2.60E-05                 | 2.40E+00     |              | 8.80E-08       | 6.16E-09                                | 2.29E-12             | 2.57E-09           |             |
| Aluminum            |                          | 5.00E-03     |              | 1.19E-04       | 8.35E-06                                |                      | 1.67E-03           |             |
| Aroclor-1254        | 5.70E-04                 |              |              | 4.20E-11       | 2.94E-12                                | 2.39E-14             |                    |             |
| Benzo(a)anthracene  | e 8.80E-05               |              |              | 1.08E-10       | 7.53E-12                                | 9.47E-15             |                    |             |
| Benzo(a)pyrene      | 8.80E-04                 |              |              | 1.14E-10       | 7.95E-12                                | 9.99E-14             |                    |             |
| Benzo(b)fluoranthe  | ne 8.80E-05              |              |              | 3.65E-09       | 2.55E-10                                | 3.21E-13             |                    |             |
| Dibenz(a,h)anthrace |                          |              |              | 1.08E-10       | 7.53E-12                                | 9.47E-14             |                    |             |
| Indeno(1,2,3-cd)pyr |                          |              |              | 6.67E-09       | 4.67E-10                                | 5.87E-13             |                    |             |
| Iron                |                          |              |              | 4.02E-04       | 2.82E-05                                |                      |                    |             |
| Tetrachloroethene   | 5.80E-07                 | 2.70E-01     |              | 1.36E-06       | 9.54E-08                                | 7.91E-13             | 3.53E-07           |             |
|                     |                          | -            | DATI         | WAY TOTA       |                                         | 4.21E-12             | 1 675 00           |             |
|                     |                          |              | L PAIR       | IVVAT TOTA     |                                         | 4.215-12             | 1.67E-03           | <del></del> |
|                     |                          |              |              |                | TOTAL                                   | 2.13E-07             | 6.22E-01           |             |
|                     |                          |              |              |                |                                         |                      |                    |             |

#### TABLE D-13 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN AVERAGE -- INDUSTRIAL WORKER

| Cancer Risk =      | Intake*CSF               | HQ =        | Intake / RfD |                            |                                       | <del>-,</del>  |                    |  |  |  |
|--------------------|--------------------------|-------------|--------------|----------------------------|---------------------------------------|----------------|--------------------|--|--|--|
| Cancer Misk –      | or                       | 1102 -      | or           |                            |                                       |                |                    |  |  |  |
|                    | EAC * IUR                |             | EAC / RfC    |                            |                                       |                |                    |  |  |  |
| Parameter          | Definition               |             |              |                            |                                       | Default        |                    |  |  |  |
| Intake             | Intake of chemical (m    | g/kg-dav)   | ·            |                            | · · · · · · · · · · · · · · · · · · · | see intake     |                    |  |  |  |
| EAC                | Effective Air Concenti   |             | 1^3)         |                            | see intake                            |                |                    |  |  |  |
| CSF                | Cancer slope factor (r   | , ,         | ,            | see intake<br>see chemprop |                                       |                |                    |  |  |  |
| IUR                | Inhalation unit risk (ug |             | 1            |                            |                                       |                |                    |  |  |  |
| ti .               |                          |             |              |                            |                                       | see chemprop   |                    |  |  |  |
| RfD                | Reference dose (mg/l     |             |              |                            |                                       | see chemprop   |                    |  |  |  |
| RfC                | Inhalation reference of  | oncentratio | n (mg/m^3)   |                            |                                       | see chemprop   |                    |  |  |  |
| INGESTION          |                          |             |              |                            |                                       |                |                    |  |  |  |
|                    | Clana                    | DAD         |              | ladal.a                    | ladalaa                               | 0              | 11                 |  |  |  |
| Chemical           | Slope<br>Factor          | RfD         |              | Intake<br>Carc             | Intake<br>Noncarc                     | Cancer<br>Risk | Hazard<br>Quotient |  |  |  |
| Crieffical         | Factor                   |             |              | Carc                       | Noncarc                               | KISK           | Quotient           |  |  |  |
| 1,2-Dichloroethane | 9.10E-02                 | 2.00E-02    |              | 3.41E-09                   | 9.54E-09                              | 3.10E-10       | 4.77E-07           |  |  |  |
| Aluminum           |                          | 1.00E-01    |              | 2.14E-03                   | 6.00E-03                              |                | 6.00E-02           |  |  |  |
| Aroclor-1254       | 3 ∪∪⊑±∪∪                 | 2.00E-05    |              | 3.16E-08                   | 8.86E-08                              | 6.33E-08       | 4.43E-03           |  |  |  |
| 11                 |                          | 2.002-03    |              |                            |                                       |                |                    |  |  |  |
| Benzo(a)anthracen  |                          |             |              | 1.90E-08                   | 5,33E-08                              | 1.39E-08       | •                  |  |  |  |
| Benzo(a)pyrene     | 7.30E+00                 |             |              | 1.64E-08                   | 4.58E-08                              | 1.20E-07       |                    |  |  |  |
| Benzo(b)fluoranthe |                          |             |              | 2.52E-08                   | 7.05E-08                              | 1.84E-08       |                    |  |  |  |
| Dibenz(a,h)anthrac | ene 7.30E+00             |             |              | 1.20E-08                   | 3.37E-08                              | 8.78E-08       |                    |  |  |  |
| Indeno(1,2,3-cd)py | rene 7.30E-01            |             |              | 2.01E-08                   | 5.63E-08                              | 1.47E-08       |                    |  |  |  |
| Iron               |                          | 7.00E-01    |              | 3.65E-03                   | 1.02E-02                              | •              | 1.46E-02           |  |  |  |
| Tetrachloroethene  | 5.20E-02                 |             |              | 2.20E-09                   | 6.16E-09                              | 1.14E-10       | 6.16E-07           |  |  |  |
|                    |                          |             |              |                            |                                       |                | <del></del>        |  |  |  |
|                    |                          |             | PATI         | ATOT YAW                   | <u>L =</u>                            | 3.18E-07       | 7.90E-02           |  |  |  |
| DERMAL CONTAC      | T                        |             |              |                            |                                       |                | <del></del>        |  |  |  |
| BENWINE CONTING    | , ,                      |             |              |                            |                                       |                |                    |  |  |  |
|                    | Slope                    | RfD         |              | Intake                     | Intake                                | Cancer         | Hazard             |  |  |  |
| Chemical           | Factor                   |             |              | Carc                       | Noncarc                               | Risk           | Quotient           |  |  |  |
|                    |                          |             |              |                            |                                       |                |                    |  |  |  |
| 1,2-Dichloroethane | 9.10E-02                 | 2.00E-02    |              | 6.14E-10                   | 1.72E-09                              | 5.59E-11       | 8,59E-08           |  |  |  |
| Aluminum           | -                        | 1.00E-01    |              | 2.97E-05                   | 8.32E-05                              |                | 8.32E-04           |  |  |  |
| Aroclor-1254       | 2.00E+00                 | 2.00E-05    |              | 5.70E-09                   | 1.60E-08                              | 1.14E-08       | 7.98E-04           |  |  |  |
| Benzo(a)anthracen  |                          |             |              | 3.43E-09                   | 9.61E-09                              | 2.51E-09       |                    |  |  |  |
| Benzo(a)pyrene     | 7.30E+00                 |             |              | 2.95E-09                   | 8.26E-09                              | 2.15E-08       |                    |  |  |  |
|                    |                          |             |              |                            |                                       |                |                    |  |  |  |
| Benzo(b)fluoranthe |                          |             |              | 4.53E-09                   | 1.27E-08                              | 3.31E-09       |                    |  |  |  |
| Dibenz(a,h)anthrac |                          |             |              | 2.17E-09                   | 6.06E-09                              | 1.58E-08       |                    |  |  |  |
| Indeno(1,2,3-cd)py | rene 7.30E-01            |             |              | 3.62E-09                   | 1.01E-08                              | 2.64E-09       |                    |  |  |  |
| Iron               |                          | 7.00E-01    |              | 5.06E-05                   | 1.42E-04                              |                | 2.02E-04           |  |  |  |
| Tetrachloroethene  | 5.20E-02                 | 1.00E-02    |              | 3.97E-10                   | 1.11E-09                              | 2.06E-11       | 1.11E-07           |  |  |  |
|                    |                          |             | DATE         | WAY TOTA                   |                                       | 5.73E-08       | 1,83E-03           |  |  |  |
|                    |                          |             | PAIR         | IVVAT TOTA                 | L <del>-</del>                        | 0.73E-U8       | 1,00E-03           |  |  |  |
| INHALATION         | <del></del>              |             | <del></del>  |                            | <del></del>                           |                |                    |  |  |  |
|                    | шр                       | D#C         |              | EAC                        | EAC                                   | Canaca         | Hozord             |  |  |  |
| Chemical           | IUR                      | RfC         | C            | EAC<br>arc (ug/m3)         | EAC<br>Noncarc (mg/m3)                | Cancer<br>Risk | Hazard<br>Quotient |  |  |  |
|                    |                          |             |              |                            | (mg/mo)                               | ,              |                    |  |  |  |
| 1,2-Dichloroethane | 2.60E-05                 | 2.40E+00    |              | 3.38E-04                   | 9.45E-07                              | 8.78E-09       | 3.94E-07           |  |  |  |
| Aluminum           |                          | 5.00E-03    |              | 2.61E-03                   | 7.31E-06                              |                | 1.46E-03           |  |  |  |
| Aroclor-1254       | 5.70E-04                 |             |              | 2.98E-09                   | 8.36E-12                              | 1.70E-12       | •                  |  |  |  |
| Benzo(a)anthracen  |                          |             |              | 2.89E-07                   | 8.08E-10                              | 2.54E-11       |                    |  |  |  |
|                    |                          |             |              |                            |                                       |                |                    |  |  |  |
| Benzo(a)pyrene     | 8,80E-04                 |             |              | 2.91E-08                   | 8.15E-11                              | 2.56E-11       |                    |  |  |  |
| Benzo(b)fluoranthe |                          |             |              | 4.13E-08                   | 1.16E-10                              | 3.64E-12       |                    |  |  |  |
| Dibenz(a,h)anthrac |                          |             |              | 1.88E-08                   | 5.27E-11                              | 1.66E-11       |                    |  |  |  |
| Indeno(1,2,3-cd)py | rene 8.80E-05            |             |              | 3.79E-08                   | 1.06E-10                              | 3.34E-12       |                    |  |  |  |
| Iron               | -                        |             |              | 4.76E-03                   | 1.33E-05                              |                |                    |  |  |  |
| Tetrachloroethene  | 5.80E-07                 | 2.70E-01    |              | 2.03E-03                   | 5.70E-06                              | 1.18E-09       | 2.11E-05           |  |  |  |
|                    |                          |             | PATI         | ATOT YAW                   |                                       | 1.00E-08       | 1,48E-03           |  |  |  |
|                    |                          |             | <u> </u>     | WAT TOTA                   | <u> </u>                              | 1.002-00       | 1.701-00           |  |  |  |
|                    |                          |             |              |                            | TOTAL                                 | 3.85E-07       | 8.24E-02           |  |  |  |
| L                  |                          |             |              | ····                       |                                       |                |                    |  |  |  |

## TABLE D-14 RISK/HAZARD CALCULATIONS FOR SOIL NORTH OF MARLIN RME -- INDUSTRIAL WORKER

| Cancer Risk =             | Intake*CSF               | HQ =         | Intake / RfD |                      |                      |              | <del></del>          |
|---------------------------|--------------------------|--------------|--------------|----------------------|----------------------|--------------|----------------------|
|                           | or                       |              | or           |                      |                      |              |                      |
|                           | EAC * IUR                |              | EAC / RfC    |                      |                      |              |                      |
| Parameter Parameter       | Definition               |              |              |                      | ,                    | Default      |                      |
| Intake                    | Intake of chemical (mg   | r/kg-day)    |              |                      |                      | see intake   |                      |
| EAC                       | Effective Air Concentr   |              | 1^3)         |                      | \$                   | see intake   |                      |
| CSF                       | Cancer slope factor (r   | ng/kg-day)-  | 1 ်          |                      | :                    | see chemprop |                      |
| IUR                       | Inhalation unit risk (ug | /m^3)-1      |              |                      | •                    | see chemprop |                      |
| RfD                       | Reference dose (mg/kg    | (g-day)      |              |                      | \$                   | see chemprop |                      |
| RfC                       | Inhalation reference c   | oncentration | n (mg/m^3)   |                      | :                    | see chemprop |                      |
| INGESTION                 | <del></del>              |              |              |                      | <del></del>          |              |                      |
|                           | Slope                    | RfD          |              | Intake               | Intake               | Cancer       | Hazard               |
| Chemical                  | Factor                   | KID          |              | Carc                 | Noncarc              | Risk         | Quotient             |
|                           |                          |              |              |                      |                      |              |                      |
| 1,2-Dichloroethane        | 9.10E-02                 | 2.00E-02     |              | 2.22E-11             | 6.21E-11             | 2.02E-12     | 3.11E-09             |
| Aluminum                  |                          | 1.00E-01     |              | 2.33E-03             | 6.53E-03             |              | 6.53E-02             |
| Aroclor-1254              |                          | 2.00E-05     |              | 7.51E-10             | 2.10E-09             | 1.50E-09     | 1.05E-04             |
| Benzo(a)anthracen         | e 7.30E-01               |              |              | 1.94E-09             | 5.43E-09             | 1.42E-09     |                      |
| Benzo(a)pyrene            | 7.30E+00                 |              |              | 6.60E-08             | 1.85E-07             | 4.82E-07     |                      |
| Benzo(b)fluoranthe        | ne 7.30E-01              |              |              | 4.40E-08             | 1.23E-07             | 3.21E-08     |                      |
| Dibenz(a,h)anthrac        |                          |              |              | 1.89E-09             | 5,28E-09             | 1.38E-08     |                      |
| Indeno(1,2,3-cd)py        |                          |              |              | 6.92E-08             | 1.94E-07             | 5.05E-08     |                      |
| Iron                      |                          | 7.00E-01     |              | 6,45E-03             | 1.80E-02             |              | 2.58E-02             |
| Tetrachloroethene         | 5.20E-02                 | 1.00E-02     |              | 3.69E-11             | 1.03E-10             | 1.92E-12     | 1.03E-08             |
|                           |                          |              | DATI         | ATOT YAWH            | i                    | 5.81E-07     | 9.12E-02             |
|                           |                          |              | I PAII       | TVALIOIA             | L -                  | 3.61E-01     | 9.121-02             |
| DERMAL CONTAC             | Т                        |              |              |                      |                      |              |                      |
|                           | Slope                    | RfD          |              | Intake               | Intake               | Cancer       | Hazard               |
| Chemical                  | Factor                   | KID          |              | Carc                 | Noncarc              | Risk         | Quotient             |
|                           |                          |              |              |                      |                      |              |                      |
| 1,2-Dichloroethane        | 9.10E-02                 |              |              | 3.81E-11             | 1.07E-10             | 3.47E-12     | 5.33E-09             |
| Aluminum                  | <del></del>              | 1.00E-01     |              | 3.08E-04             | 8.62E-04             |              | 8.62E-03             |
| Aroclor-1254              | 2.00E+00                 | 2,00E-05     |              | 1.29E-09             | 3.61E-09             | 2.58E-09     | 1.80E-04             |
| Benzo(a)anthracen         | e 7.30E-01               |              |              | 3.33E-09             | 9.32E-09             | 2.43E-09     |                      |
| Benzo(a)pyrene            | 7.30E+00                 |              |              | 1.13E-07             | 3.17E-07             | 8.27E-07     |                      |
| Benzo(b)fluoranthe        | ne 7.30E-01              |              |              | 7.56E-08             | 2.12E-07             | 5.52E-08     |                      |
| Dibenz(a,h)anthrac        | ene 7.30E+00             |              |              | 3,24E-09             | 9.07E-09             | 2.36E-08     |                      |
| Indeno(1,2,3-cd)py        | rene 7.30E-01            |              |              | 1.19E-07             | 3.32E-07             | 8.67E-08     |                      |
| Iron                      |                          | 7.00E-01     |              | 8.51E-04             | 2.38E-03             |              | 3.40E-03             |
| Tetrachloroethene         | 5.20E-02                 | 1.00E-02     |              | 6,33E-11             | 1.77E-10             | 3.29E-12     | 1.77E-08             |
|                           |                          |              | PATI         | HWAY TOTA            | L =                  | 9.98E-07     | 1.22E-02             |
|                           |                          |              |              |                      |                      |              |                      |
| INHALATION                |                          |              |              |                      |                      |              |                      |
|                           | IUR                      | RfC          |              | EAC                  | EAC                  | Cancer       | Hazard               |
| Chemical                  |                          |              |              |                      | Noncarc (mg/m3)      | Risk         | Quotient             |
| 1.2 Diablemethers         | 2 605 05                 | 3 405 100    |              | 2.20E-06             | 6,16E-09             | 5 70E 44     | 2.57E-09             |
| 1,2-Dichloroethane        | ∠.00년-05                 | 2.40E+00     |              |                      | 8.35E-06             | 5.72E-11     | 2.57E-09<br>1.67E-03 |
| Aluminum                  | <br>E 70E 04             | 5.00E-03     |              | 2.98E-03             |                      | E 00E 40     | 1.0/ E-03            |
| Aroclor-1254              | 5.70E-04                 |              |              | 1.05E-09             | 2.94E-12             | 5.98E-13     |                      |
| Benzo(a)anthracen         |                          |              |              | 2.69E-09             | 7.53E-12             | 2.37E-13     |                      |
| Benzo(a)pyrene            | 8.80E-04                 |              |              | 2.84E-09             | 7.95E-12             | 2.50E-12     |                      |
| Benzo(b)fluoranthe        |                          |              |              | 9.12E-08             | 2.55E-10             | 8.03E-12     |                      |
| Dibenz(a,h)anthrac        |                          |              |              | 2.69E-09             | 7.53E-12             | 2.37E-12     |                      |
| Indeno(1,2,3-cd)py        | rene 8.80E-05            | -            |              | 1.67E-07             | 4.67E-10             | 1.47E-11     |                      |
| Iron<br>Tetrachloroethene | 5 80F-07                 | <br>2.70E-01 |              | 1.01E-02<br>3.41E-05 | 2.82E-05<br>9.54E-08 | 1.98E-11     | 3.53E-07             |
| , ou action detrielle     | 0.00 <u>L</u> -07        | Z., OL-01    |              |                      |                      |              |                      |
|                           |                          |              | PATI         | ATOT YAWH            | L =                  | 1.05E-10     | 1.67E-03             |
|                           |                          |              |              |                      | TOTAL                | 1.58E-06     | 1.05E-01             |
| <u></u>                   |                          |              |              |                      | · <u>-</u>           | ~            |                      |

APPENDIX D-3
RISK CALCULATIONS
SEDIMENT

TABLE D-15
CHEMICAL SPECIFIC TOXICITY VALUES\*

| Compound              | EPA weight-<br>of-evidence<br>classification | CAS Number | Chronic<br>RfD<br>mg/kg-day |            | nhalaiton<br>RfC<br>mg/m3 | Oral Slope<br>Factor<br>Votes: 1/mg/kg-day, Not | Inhalation<br>Unit Risk<br>es: 1/ug/m3 No | HOW BOOK PARKS IN THE TOTAL PROPERTY OF THE STATE OF THE |
|-----------------------|----------------------------------------------|------------|-----------------------------|------------|---------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Benzo(a)pyrene        | B2                                           | 50-32-8    |                             |            |                           | 7.30E+00                                        | 8.80E-04                                  | 1.30E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dibenz(a,h)anthracene | B2                                           | 53-70-3    |                             |            |                           | 7.30E+00                                        | 8.80E-04                                  | 1.30E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Iron                  | Not available                                | 7439-89-6  | 7.00E-01                    | NCEA, 2006 |                           |                                                 |                                           | 1.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Notes:

<sup>\*</sup> Unless otherwise noted, the values were obtained from the TCEQ's June 26, 2007 Toxicity Factors and other tables.

## TABLE D-16 RISK/HAZARD CALCULATIONS FOR SEDIMENT INTRACOASTAL WATERWAY AVERAGE

| Cancer Risk =                     | Intake*CSF                                                           | Н            | J =         | Intake / RfD |                      | ·                                     |                |                    |  |  |
|-----------------------------------|----------------------------------------------------------------------|--------------|-------------|--------------|----------------------|---------------------------------------|----------------|--------------------|--|--|
| Parameter<br>Intake<br>CSF<br>RfD | Definition<br>Intake of chemic<br>Cancer slope fac<br>Reference dose | tor (mg/l    | kg-day)-1   |              |                      | Default<br>see intake<br>see chemprop |                |                    |  |  |
|                                   | Reference dose                                                       | (mg/kg-u     |             |              |                      |                                       | see chemprop   | <del></del>        |  |  |
| INGESTION                         | -73                                                                  |              |             |              |                      |                                       | 18 E 3 E       |                    |  |  |
| Chemical                          |                                                                      | ope<br>ctor  | RfD         |              | Intake<br>Carc       | Intake Noncarc                        | Cancer<br>Risk | Hazard<br>Quotient |  |  |
| Benzo(a)pyrene                    | 7.30                                                                 | E+00         |             |              | 1.31E-09             | 3.66E-09                              | 9.54E-09       |                    |  |  |
| Dibenz(a,h)anthrac<br>Iron        |                                                                      | E+00<br>7    | <br>.00E-01 |              | 9.83E-10<br>1.84E-04 | 2.75E-09<br>5.16E-04                  | 7.18E-09       | 7.38E-04           |  |  |
|                                   | •                                                                    | - 7.         | .001-01     |              | 1.046-04             | J. 10L-04                             |                | 7.301-04           |  |  |
|                                   | <del> </del>                                                         |              |             | PATH         | WAY TOTAL            | =                                     | 1.67E-08       | 7.38E-04           |  |  |
| DERMAL CONTAC                     | Т                                                                    | e seastalate | witter-wes  | abb to       | CULTURA PROCESSION   | THE CALLS AND THE                     |                |                    |  |  |
| Section 1                         | a State                                                              |              |             | - 1          |                      |                                       |                | 2.0                |  |  |
| Chemical                          | JII                                                                  | ope<br>ctor  | RfD         |              | Intake<br>Carc       | Intake<br>Noncarc                     | Cancer<br>Risk | Hazard             |  |  |
| Chemical                          | ar sees at the contract of                                           | Ston         |             |              | - Caron              | Estimonical Gales                     | A STANCE       | - Quoucht          |  |  |
| Benzo(a)pyrene                    |                                                                      | E+00         |             |              | 2.24E-09             | 6.28E-09                              | 1.64E-08       |                    |  |  |
| Dibenz(a,h)anthrac<br>Iron        | ene 7.30                                                             | E+00<br>7    | <br>.00E-01 |              | 1.69E-09<br>2.43E-05 | 4.72E-09<br>6.82E-05                  | 1.23E-08       | 9.74E-05           |  |  |
|                                   |                                                                      | •            | .002 01     |              | 2.102.00             | 0.022 00                              |                | 0.712 00           |  |  |
| <u></u>                           |                                                                      |              | <u></u>     | PATH         | WAY TOTAL            | =                                     | 2.87E-08       | 9.74E-05           |  |  |
|                                   |                                                                      |              |             |              |                      | TOTAL                                 | 4.54E-08       | 8.35E-04           |  |  |

### TABLE D-17 RISK/HAZARD CALCULATIONS FOR SEDIMENT INTRACOASTAL WATERWAY RME

| Cancer Risk =                                | Intake*CSF                                                 | : <del></del> :          | HQ =             | Intake / RfD |                                  |                                  | <del></del>          |                    | <del></del> |
|----------------------------------------------|------------------------------------------------------------|--------------------------|------------------|--------------|----------------------------------|----------------------------------|----------------------|--------------------|-------------|
| Parameter<br>Intake<br>CSF<br>RfD            | Definition<br>Intake of che<br>Cancer slop<br>Reference of | e factor (m              | g/kg-day)-1      |              |                                  |                                  |                      |                    |             |
| INGESTION Chemical                           | T let                                                      | Slope<br>Factor          | RíD '            |              | Intake<br>Carc                   | Intake<br>Noncarc                | Cancer<br>Risk       | Hazard<br>Quotient |             |
| Benzo(a)pyrene<br>Dibenz(a,h)anthrac<br>Iron |                                                            | 7.30E+00<br>7.30E+00     | <br><br>7.00E-01 |              | 8.61E-10<br>8.56E-10<br>1.20E-03 | 2.41E-09<br>2.40E-09<br>3.36E-03 | 6.29E-09<br>6.25E-09 | 4.80E-03           |             |
|                                              |                                                            |                          |                  | PATH         | WAY TOTAL                        | =                                | 1.25E-08             | 4.80E-03           | <del></del> |
| DERMAL CONTAC                                |                                                            | Slope<br>Factor          | RfD              |              | Intake<br>Carc                   | Intake<br>Noncarc                | v Cancer<br>Risk     | Häzard ( ) (       |             |
| Benzo(a)pyrene<br>Dibenz(a,h)anthrac<br>Iron |                                                            | 7.30E+00<br>7.30E+00<br> | <br><br>7.00E-01 |              | 1.48E-09<br>1.47E-09<br>1.58E-04 | 4.14E-09<br>4.11E-09<br>4.43E-04 | 1.08E-08<br>1.07E-08 | 6.34E-04           |             |
|                                              | <del></del>                                                |                          |                  | PATH         | WAY TOTAL                        | =                                | 2.15E-08             | 6.34E-04           | ·<br>       |
|                                              | <del></del>                                                |                          |                  |              |                                  | TOTAL                            | 3.40E-08             | 5.43E-03           |             |

TABLE D-18
CHEMICAL SPECIFIC TOXICITY VALUES\*

| of-evidence    |                                                 | RfD                                   |                                                             | nhalaiton<br>RfC                                                   | Factor                                                                                                                                                                                         | Unit Risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Absorption                                                                                                                                                                                                                                                                                                                                                                          |
|----------------|-------------------------------------------------|---------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| classification |                                                 | mg/kg-day                             | Notes:                                                      | mg/m3 No                                                           | otes: : 1/mg/kg-day *Not                                                                                                                                                                       | es: 1/ug/m3 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tes: (unitless) Notes                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                 |                                       |                                                             |                                                                    |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                     |
| B2             | 50-32-8                                         |                                       |                                                             |                                                                    | 7.30E+00                                                                                                                                                                                       | 8.80E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.30E-01                                                                                                                                                                                                                                                                                                                                                                            |
| B2             | 53-70-3                                         |                                       |                                                             | •••                                                                | 7.30E+00                                                                                                                                                                                       | 8.80E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.30E-01                                                                                                                                                                                                                                                                                                                                                                            |
|                |                                                 |                                       |                                                             |                                                                    |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                     |
| Not available  | 7439-89-6                                       | 7.00E-01                              | NCEA, 2006                                                  |                                                                    |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00E-02                                                                                                                                                                                                                                                                                                                                                                            |
|                | of-evidence<br>classification<br>B2<br>B2<br>B2 | Elassification  B2 50-32-8 B2 53-70-3 | of-evidence CAS Number RTD mg/kg-day  B2 50-32-8 B2 53-70-3 | of-evidence CAS Number RTD mg/kg-day Notes:  B2 50-32-8 B2 53-70-3 | of-evidence         CAS Number         RfD         RfC           *classification         mg/kg-day         Notes: mg/m3         No           B2         50-32-8             B2         53-70-3 | of-evidence         CAS Number         RfD         RfC         Factor           *classification         mg/kg-day         Notes: mg/m3         Notes: 1/mg/kg-day         Notes: 1/mg/kg-day | of-evidence         CAS Number         RID         RfC         Factor         Unit Risk           *Classification         mg/kg-day         Notes:         mg/m3         Notes:         1/mg/kg-day         Notes:         1/ug/m3         Notes:           B2         50-32-8           7.30E+00         8.80E-04           B2         53-70-3           7.30E+00         8.80E-04 |

#### Notes:

<sup>\*</sup> Unless otherwise noted, the values were obtained from the TCEQ's June 26, 2007 Toxicity Factors and other tables.

## TABLE D-19 RISK/HAZARD CALCULATIONS FOR SEDIMENT NORTH OF MARLIN AVE. AVERAGE

| Cancer Risk =       | Intake*CSF    |                       | HQ =        | Intake / RfD |                                     |                                  |        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
|---------------------|---------------|-----------------------|-------------|--------------|-------------------------------------|----------------------------------|--------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Parameter           | Definition    | <del></del>           |             |              | <del></del>                         |                                  |        | Default      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Intake              | Intake of che |                       |             |              |                                     |                                  |        | see intake   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| CSF                 | Cancer slope  |                       |             | •            |                                     |                                  |        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| RfD                 | Reference d   | ose (mg/k(            | g-day)      |              |                                     |                                  |        | see chemprop |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| INGESTION           | en la re      | e e                   | Speller,    |              |                                     |                                  | N-A-E  | 1 4 5 4 5 6  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| 76                  |               | Slope                 | RfD         | - 13         | Intake                              | Intake                           | e<br>P | Cancer       | Hazard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | And the second |  |
| Chemical            |               | Factor                | 15 414      | ALC:         | Carc                                | Nonca                            | 4.5    | Risk         | SAME PROPERTY AND ASSESSMENT OF A SECOND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PROPERTY.      |  |
| <br> Aluminum       | (             | 0.00E+00              | 0.00E+00    |              | 1.83E-04                            | 5.12E-0                          | 04     | 0.00E+00     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Benzo(a)pyrene      |               | 7.30E+00              |             |              | 1.52E-09                            | 4.25E-0                          |        | 1.11E-08     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Dibenz(a,h)anthrac  | -             | 7.30E+00              |             |              | 3.96E-09                            | 1.11E-(                          |        | 2.89E-08     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Indeno(1,2,3-cd)pyr |               |                       | 0.00E+00    |              | 3.04E-09                            | 8.51E-(                          |        | 0.00E+00     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Iron                |               |                       | 7.00E-01    |              | 2.37E-04                            | 6.63E-0                          |        |              | 9.47E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |
|                     |               |                       |             | PATI         | ATOT YAWH                           | L =                              |        | 4.00E-08     | 9.47E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ]              |  |
|                     |               |                       |             |              |                                     |                                  |        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| DERMAL CONTAC       | T.            | T.                    | T constant  |              |                                     | 1.0                              | 10 and |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * S#4; 7:484.  |  |
|                     |               | Slope                 | RfD.        |              | :Intake                             | Intake                           |        | Cancer       | Hazard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |  |
| Ohemical            | 400           | Control of the second | of the same | #1.7         | THE HE WAS A SECOND OF THE PARTY OF | CONT. 200 CONT. ACC. S. 1900 CO. |        | Risk         | Color (Clark Color State |                |  |
| Aluminum            | (             | 00F+00                | 0.00E+00    |              | 0.00E+00                            | 0.00E+                           | -00    | 0.00E+00     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Benzo(a)pyrene      |               | 7.30E+00              |             |              | 2.61E-09                            | 7.30E-0                          | _      | 1.90E-08     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Dibenz(a,h)anthrac  |               | 7.30E+00              |             |              | 6.80E-09                            | 1.90E-0                          | -      | 4.97E-08     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Indeno(1,2,3-cd)pyr |               |                       | 0.00E+00    |              | 0.00E+00                            | 0.00E+                           | -      | 0.00E+00     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| Iron                |               |                       | 7.00E-01    |              | 3.13E-05                            | 8.75E-0                          |        |              | 1.25E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |
|                     |               |                       |             | PATH         | HWAY TOTA                           | L =                              |        | 6,87E-08     | 1.25E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1              |  |
|                     |               |                       |             |              |                                     |                                  |        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
|                     |               |                       |             |              |                                     | TOTAI                            | L      | 1.09E-07     | 1.07E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |

#### TABLE D-20 RISK/HAZARD CALCULATIONS FOR SEDIMENT NORTH OF MARLIN AVE. RME

|                    | Intake*CSF                                                                                                                                                                                                                       | -            | HQ =         | Intake / RfD |                              |            | -            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|------------------------------|------------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter ·        | Definition_                                                                                                                                                                                                                      |              |              |              |                              |            | Default      |          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Intake             | Intake of ch                                                                                                                                                                                                                     | nemical (mg  | /kg-day)     |              |                              | see intake |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CSF                | Cancer slop                                                                                                                                                                                                                      | pe factor (m | g/kg-day)-1  |              | see chemprop                 |            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| RfD                | Reference                                                                                                                                                                                                                        | dose (mg/kg  | g-day)       |              |                              |            | see chemprop | )        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                                                                                                                                                                                                                                  |              |              |              |                              |            |              | ····     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| INGESTION          |                                                                                                                                                                                                                                  | 12.00        |              |              |                              |            |              | 33.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    | 10 mg 10<br>Ngjaran ngjaran ngjara | Slope        |              |              |                              | 200        |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    | andre al T                                                                                                                                                                                                                       |              | RfD          |              | Intake                       | intake .   | Cancer       | Hazard   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Chemical           | A CONTRACT                                                                                                                                                                                                                       | Factor       | A CONTRACTOR |              | Carc                         | Noncarc    | Risk.⊭       | Quotient |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Aluminum           |                                                                                                                                                                                                                                  | 0.00E+00     | 0.00E+00     |              | 7.63E-04                     | 2.14E-03   | 0.00E+00     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Benzo(a)pyrene     |                                                                                                                                                                                                                                  | 7.30E+00     |              |              | 1.89E-08                     | 5.30E-08   | 1.38E-07     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Dibenz(a,h)anthrac | ene                                                                                                                                                                                                                              | 7.30E+00     |              |              | 2.04E-09                     | 5.72E-09   | 1.49E-08     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Indeno(1,2,3-cd)py |                                                                                                                                                                                                                                  | 0.00E+00     | 0.00E+00     |              | 1.73E-08                     | 4.84E-08   | 0.00E+00     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Iron               |                                                                                                                                                                                                                                  |              | 7.00E-01     |              | 1.03E-03                     | 2.87E-03   | 0.000        | 4.10E-03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ,                  |                                                                                                                                                                                                                                  |              |              |              |                              |            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                                                                                                                                                                                                                                  |              |              | PATH         | WAY TOTAL                    | _=         | 1.53E-07     | 4.10E-03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                                                                                                                                                                                                                                  |              |              |              |                              |            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DERMAL CONTAC      | T: 12 %                                                                                                                                                                                                                          | - 10 - 0 -   | The Marine   |              | 700                          |            |              |          | The Control of the Co |  |
|                    |                                                                                                                                                                                                                                  |              |              | and the      |                              |            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4.4                | Yes the                                                                                                                                                                                                                          | . Slope      | RfD          |              | THE PARTY OF STREET PARTY OF |            | Cancer       | Hazard   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Chemical /         | 100                                                                                                                                                                                                                              | -⊪Factor     | 100          | Car State    | - Carc                       | Noncarc    | Risk         | Quotient | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Aluminum           |                                                                                                                                                                                                                                  | 0.00E+00     | 0.00=+00     |              | 0.00E+00                     | 0.00E+00   | 0.00E+00     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Benzo(a)pyrene     |                                                                                                                                                                                                                                  | 7.30E+00     | 0.00L · 00   |              | 3.25E-08                     | 9.09E-08   | 2.37E-07     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Dibenz(a,h)anthrac | ene                                                                                                                                                                                                                              | 7.30E+00     |              |              | 3.51E-09                     | 9.82E-09   | 2.56E-08     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Indeno(1,2,3-cd)py |                                                                                                                                                                                                                                  | 0.00E+00     | 0.00F+00     |              | 0.00E+00                     | 0.00E+00   | 0.00E+00     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Iron               |                                                                                                                                                                                                                                  |              | 7.00E-01     |              | 1.35E-04                     | 3.79E-04   | 0.002.00     | 5.42E-04 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                                                                                                                                                                                                                                  |              |              |              |                              | 5., 02 5 1 |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                                                                                                                                                                                                                                  |              |              | PATH         | IWAY TOTAL                   | _=         | 2.63E-07     | 5.42E-04 | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                    |                                                                                                                                                                                                                                  |              |              |              |                              |            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                                                                                                                                                                                                                                  |              |              |              |                              | TOTAL      | 4.16E-07     | 4.65E-03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                                                                                                                                                                                                                                  |              |              |              |                              | IOIAL      | 4.102-07     | 7.00⊏-03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

TABLE D-21
CHEMICAL SPECIFIC TOXICITY VALUES\*

| Compound   | EPA weight-<br>of-evidence)<br>classification | CAS Number | Chronic<br>RfD:<br>mg/kg-day |            | Inhalaiton<br>RfC<br>mg/m3 | □ Oral Slope /<br>Factor<br>Notes: √1/mg/kg-day | Inhalation<br>Unit Risk<br>Notes: 1/ug/m3 No | Dermal Absorption tes: / (unitless) Notes: |
|------------|-----------------------------------------------|------------|------------------------------|------------|----------------------------|-------------------------------------------------|----------------------------------------------|--------------------------------------------|
| Aluminum   | Not available                                 | 7429-90-5  | 1.00E-01                     |            | 5.00E-03                   | _                                               |                                              | 1.00E-02                                   |
| Iron       | Not available                                 | 7439-89-6  | 7.00E-01                     | NCEA, 2006 |                            |                                                 |                                              | 1.00E-02                                   |
| m,p-Cresol | С                                             | 1319-77-3  | 5.00E-02                     |            | 1.00E-02                   | · -                                             |                                              | 1.00E-01                                   |

#### Notes:

<sup>\*</sup> Unless otherwise noted, the values were obtained from the TCEQ's June 26, 2007 Toxicity Factors and other tables.

#### TABLE D-22 RISK/HAZARD CALCULATIONS FOR POND SEDIMENT AVERAGE

| Cancer Risk = | Intake*CSF                        |                     | HQ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Intake / RfD                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |
|---------------|-----------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Parameter     | Definition                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |
| Intake        | Intake of chemical (mg/kg-day)    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | see intake   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |
| CSF           | Cancer slope factor (mg/kg-day)-1 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | see chemprop |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |
| RfD           | Reference dose                    | e (mg/k             | g-day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | see chemprop |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |
| INGESTION     |                                   | NA PL               | 100<br>100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 10 | 6-17 E 7-17                       | 100                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |  |
| Fig. 6        |                                   | lope                | RfD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A RELEASE                         | Intake                                  | Intake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cancer       | Hazard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | And Comment                                                                                                    |  |
| Chemical      |                                   | actor ;             | 17.246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1. H 18                           | Garc                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Risk         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |
| Aluminum      |                                   |                     | 1.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | 1.62E-04                                | 4.54E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 4.54E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |  |
| Iron          |                                   |                     | 7.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | 2.11E-04                                | 5.91E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 8.44E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |  |
| m,p-Cresol    |                                   |                     | 5.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | 5.18E-10                                | 1.45E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 2.90E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |  |
|               |                                   |                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                              |  |
|               |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PATE                              | IWAY TOTAI                              | - <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00E+00     | 5.39E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |  |
| DEDMARROONTAG |                                   | Allen Marie Control | Maria Carlos (N. 128-118-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Skyring on the second regarded by | 0.0000000000000000000000000000000000000 | reference of the section of the sect |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anna ann an Aireann an Aireann ann an Aireann ann an Aireann ann an Aireann ann ann ann ann ann ann ann ann an |  |
| DERMAL CONTAC |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.00        | THE STATE OF THE S | . Van                                                                                                          |  |
| 10.544        |                                   | lope                | RfD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | Intake                                  | Intake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cancer       | Hazard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |  |
| Chemical      | THE WASHINGTON TO THE PROPERTY OF | 200                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | King day                          |                                         | Noncarc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | Quotient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                            |  |
|               |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |
| Aluminum      |                                   |                     | 1.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | 2.14E-05                                | 6.00E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 6.00E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |  |
| Iron          |                                   |                     | 7.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | 2.78E-05                                | 7.80E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 1.11E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |  |
| m,p-Cresol    |                                   |                     | 5.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | 6.84E-10                                | 1.91E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 3.83E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |  |
|               |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PATHWAY TOTAL =                   |                                         | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.11E-04     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |
|               |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |  |
|               |                                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | •                                       | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00E+00     | 6.10E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |  |

### TABLE D-23 RISK/HAZARD CALCULATIONS FOR POND SEDIMENT RME

| Cancer Risk =                     | Intake*CSF                                                                                             | ==           | HQ =                             | Intake / RfD |                                  |                                                       |                | <del></del>                      |        |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------|--------------|----------------------------------|--------------|----------------------------------|-------------------------------------------------------|----------------|----------------------------------|--------|--|
| Parameter<br>Intake<br>CSF<br>RfD | Definition Intake of chemical (mg/kg-day) Cancer slope factor (mg/kg-day)-1 Reference dose (mg/kg-day) |              |                                  |              |                                  | Default<br>see intake<br>see chemprop<br>see chemprop |                |                                  |        |  |
| INGESTION Chemical                |                                                                                                        | ope<br>ictor | RfD                              |              | Intake<br>Carc                   | Intake<br>Noncarc                                     | Cancer<br>Risk | Hazard "<br>Quotient             |        |  |
| Aluminum<br>Iron<br>m,p-Cresol    |                                                                                                        | <br>         | 1.00E-01<br>7.00E-01<br>5.00E-02 |              | 7.63E-04<br>9.49E-04<br>1.28E-09 | 2.14E-03<br>2.66E-03<br>3.57E-09                      |                | 2.14E-02<br>3.79E-03<br>7.14E-08 |        |  |
|                                   |                                                                                                        |              |                                  | PATI         | HWAY TOTAL                       |                                                       | 0.00E+00       | 2.52E-02                         |        |  |
| DERMAL CONTAG                     | SÎ                                                                                                     | ope<br>ctor  | RID                              |              | Intake<br>Carc                   | Intake<br>Noncarc                                     | Cancer<br>Risk | Hazard = 1                       | an see |  |
| Aluminum<br>Iron<br>m,p-Cresol    |                                                                                                        | <br>         | 1.00E-01<br>7.00E-01<br>5.00E-02 |              | 1.01E-04<br>1.25E-04<br>1.68E-09 | 2.82E-04<br>3.51E-04<br>4.71E-09                      |                | 2.82E-03<br>5.01E-04<br>9.43E-08 |        |  |
| -                                 |                                                                                                        |              | <del></del>                      | PATI         | IATOT YAWH                       | _=                                                    | 0.00E+00       | 3.32E-03                         |        |  |
|                                   |                                                                                                        |              |                                  |              |                                  | TOTAL                                                 | 0.00E+00       | 2.85E-02                         |        |  |

APPENDIX E

RESTRICTIVE COVENANTS

### RESTRICTIVE COVENANT FOR LIMITATION ON USES, CONSTRUCTION AND GROUNDWATER USE

Doc# 2009036113

STATE OF TEXAS §
COUNTY OF BRAZORIA §

This Restrictive Covenant is filed to provide information concerning certain use limitations upon that parcel of real property (the "Property") described in Exhibits A and B, attached hereto and incorporated herein by reference, and which at the time of this filing is listed on the United States Environmental Protection Agency's ("EPA") National Priority List as a "Superfund Site."

As of the date of this Restrictive Covenant, the record owner of fee title to the Property is LDL COASTAL LIMITED, L.P., a Texas limited partnership ("Owner"), with an address of c/o Allen Daniels, 6363 Woodway Drive, Suite 730, Houston, Texas 77057. The appropriate land use for the Property is commercial/industrial.

Owner has agreed to place the following restrictions on the Property in favor of The Dow Chemical Company ("Dow"), Chromalloy American Corporation ("Chromalloy"), the Texas Commission on Environmental Quality ("TCEQ"), the State of Texas and EPA.

NOW THEREFORE, in consideration of the premises and other good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, the following restrictive covenants in favor of Dow, Chromalloy, TCEQ, the State of Texas and EPA are placed on the Property, to-wit:

#### 1. Commercial/Industrial Use.

The Property shall not be used for any purposes other than commercial/industrial uses, as that term is defined under 30 T.A.C §350.4(a)(13), and thus shall not be used for human habitation or for other purposes with a similar potential for human exposure. Portions of the soils and/or groundwater of the Property contain certain identified chemicals of concern. Future users of the Property are advised to review and take into consideration environmental data from publicly available sources (i.e. TCEQ and EPA) prior to utilizing the Property for any purpose.

#### 2. <u>Groundwater</u>.

The groundwater underlying the Property shall not be used for any beneficial purpose, including: (1) drinking water or other potable uses; (2) the irrigation or watering of landscapes or (3) agricultural uses. For any activities that may result in potential exposure to the groundwater, a plan must be in place to address and ensure the appropriate handling, treatment and disposal of any affected soils or groundwater.

#### 3. Construction.

Construction of any building on the Property is not advisable. If any person desires in the future to construct a building at the Property, the EPA and TCEQ must be notified and must approve of such construction in writing, as additional response actions, such as protection against indoor vapor intrusion, may be necessary before the Property may be built upon. The costs for any additional response actions will be borne by the party(s) desiring to construct upon the Property.

4. These restrictions shall be a covenant running with the land.

For additional information, contact:

The Dow Chemical Company 2030 Dow Center 8th Floor Legal Dept. Midland, MI 48674

ATTN: General Counsel

Chromalloy American Corporation C/O Sequa Corporation 200 Park Avenue New York, NY 10166

ATTN: General Counsel

U.S. Environmental Protection Agency, Region 6 Superfund Division (6RC-S) 1445 Ross Avenue, Suite 1200 Dallas, TX 75202-2733

ATTN: Assistant Regional Counsel

Texas Commission on Environmental Quality P.O. Box 13087 Austin, TX 78711-3087 ATTN: Remediation Division

State of Texas
Office of the Texas Attorney General
Natural Resources Division
300 W. 15th Street
Austin, TX 78701

The restrictions imposed by this Restrictive Covenant may be rendered of no further force or effect only by a release executed by Dow, Chromalloy, TCEQ, the State of Texas and EPA or their successors and filed in the same Real Property Records as those in which this Restrictive Covenant is filed.

| Executed this                                                                                                                                                                                   | uly,                                                      | 2009.                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                 | OWNER:                                                    | LDL COASTAL LIMITED, L.P., a Texas limited partnership                                                                                   |
|                                                                                                                                                                                                 |                                                           | IWAY Management, L.L.C., a Texas ed liability company, its sole general mer.  Name: Alley B. Daniels  Title: Management, L.L.C., a Texas |
| STATE OF TEXAS COUNTY OF HUMS                                                                                                                                                                   | §<br>§                                                    |                                                                                                                                          |
| BEFORE ME, on this the 28 day of Daniels, Manager, of RAMWAY Manager the sole general partner of LDL Coastal to be the person whose name is subscribe that he executed the same for the purpose | ement, L.L.C., a<br>Limited, L.P., a<br>d to the foregoin | Texas limited liability company and<br>Texas limited partnership, known to me<br>ig instrument, and acknowledged to me                   |
| GIVEN UNDER MY HAND AN., 2009.                                                                                                                                                                  | D SEAL OF OF                                              | FICE, this the <u>28</u> day of                                                                                                          |
| Meredith Anne Moran My Commission Expires 12/13/2011                                                                                                                                            | Notary Publi                                              | c in and for the State of Texas sion Expires: 12 13 2011                                                                                 |
| *****                                                                                                                                                                                           |                                                           |                                                                                                                                          |

### Exhibit A

Legal Description of the Property



PARCEL No. 1, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 55 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 1 OF 2

ALL THAT CERTAIN 5.0010 ACRE tract of land lying in and situated in the Frederick J. Calvit League, Abstract 51, Brazoria County, Texas, being all of Lot 55 of the Brazos Coast Investment Company Subdivision, Division 8 (B.C.I.C. Div. 8), according to the map or plat thereof recorded in Volume 2, Page 141 of the Brazoria County Plat Records (B.C.P.R.) and being the same tract of land conveyed by deed on August 6, 1999 from Janet Casciato-Northrup, Trustee of the Chapter 7 Bankruptcy Estate of Hercules Marine Services Corporation to LDL Coastal Limited, L.P., as recorded in Clerk's File No. 99-036339 of the Brazoria County Official Records (B.C.O.R.), the herein described tract of land being more particularly described by metes and bounds, using survey terminology which refers to the Texas State Plane Coordinate System, South Central Zone (NAD83), in which the directions are Lambert grid bearings and the distances are surface level horizontal lengths (S.F.=0.99988752832) as follows

COMMENCING at a 3/4" iron rod found marking the North corner Lot 80, same being the West corner of Lot 81 of the aforementioned B.C.I.C. Div. 8 subdivision, located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, said Point of Commencement being at Texas at State Plane Coordinate System position X=3155152.81 and Y=13556863.07, from which an old 3" x 3/4" hard-wood stake located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, found marking the North corner of Lot 66, same being the and the West corner of Lot 67 bears South 42°51'47" West, a distance of 4620.94 feet (called 4620.00 feet), at Texas State Plane Coordinate System position X=3152009.76 and Y=13553476.39, herein located point of commencement and point of reference, being shown in 1952 Dow Chemical Company survey by Herman D. Smith, RPS #916, drawing number: B8-8-19000-10488;

THENCE South 42°51'47" West, coincident with the southeastern right-of-way boundary line of said 40 foot wide platted road, a distance of 1320.27 feet to a point for the North corner of Lot 76, same being the West corner of Lot 77 of the B.C.I.C. Div. 8 subdivision, at position X=3154254.79 and Y=13555895.45;

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 77, same being the northeastern boundary line of Lot 76 of the B.C.I.C. Div. 8 subdivision, a distance of 660.00 feet to the POINT OF BEGINNING, at a 5/8" iron rod with survey cap marked "WPD 4467" set, from which a 5/8" iron rod bears South 37°54' West, a distance of 11.7 feet, for the common corner of Lot 54, Lot 55, Lot 76 and Lot 77 of the B.C.I.C. Div. 8 subdivision and the North corner of the herein described 5.0010 acre tract, at position X=3154738.50 and Y=13555446.53;

PARCEL No. 1, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 55 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 2 OF 2

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 54, same being the northeastern boundary line of Lot 55 of the B.C.I.C. Div. 8 subdivision, at a distance of 640.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a point in the northwestern boundary line of a 40 foot wide platted roadway, at the South corner of Lot 54, same being the East corner of Lot 55 of the B.C.I.C. Div. 8 subdivision, from which an 1" iron pipe bears South 48°12' West, a distance of 1.6 feet, for the East corner of the herein described 5.0010 acre tract, at position X=3155222.22 and Y=13554997.62;

THENCE South 42°51'47" West, coincident with the northwestern right-of-way boundary line of said 40 foot wide platted road, same being the southeastern boundary line of Lot 55 of the B.C.I.C.. Div. 8 subdivision, a distance of 330.07 feet to a point for the East corner of Lot 56, same being the South corner of Lot 55 of the B.C.I.C. Div. 8 subdivision, for the South corner of the herein described 5.0010 acre tract, at position X=3154997.71 and Y=13554755.72;

THENCE North 47°08'13" West, coincident with the northeastern boundary line of Lot 56, same being the southwestern boundary line of Lot 55, at a distance of 20.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a 5/8" iron rod with survey cap marked "WPD 4467" set at the common corner of Lot 55, Lot 56, Lot 75 and Lot 76 of the B.C.I.C. Div. 8 subdivision, for the West corner of the herein described 5.0010 acre tract, from which an iron rod with survey cap bears South 38°39' West, a distance of 11.8 feet, at position X=3154514.00 and Y=13555204.63;

THENCE North 42°51'47" East, coincident with the northwestern boundary line of Lot 55, same being the southeastern boundary line of Lot 76, a distance of 330.07 feet to the POINT OF BEGINNING, containing 5.0010 acres of land, more or less.

Wm. Patrick Doyle

Registered Professional Land Surveyor

**Texas Registration Number 4467** 

March 24, 2009



PARCEL No. 2, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 57 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 1 OF 2

ALL THAT CERTAIN 5.0010 ACRE tract of land lying in and situated in the Frederick J. Calvit League, Abstract 51, Brazoria County, Texas, being all of Lot 57 of the Brazos Coast Investment Company Subdivision, Division 8 (B.C.I.C. Div. 8), according to the map or plat thereof recorded in Volume 2, Page 141 of the Brazoria County Plat Records (B.C.P.R.) and being the same tract of land conveyed by deed on August 6, 1999 from Janet Casciato-Northrup, Trustee of the Chapter 7 Bankruptcy Estate of Hercules Marine Services Corporation to LDL Coastal Limited, L.P., as recorded in Clerk's File No. 99-036339 of the Brazoria County Official Records (B.C.O.R.), the herein described tract of land being more particularly described by metes and bounds, using survey terminology which refers to the Texas State Plane Coordinate System, South Central Zone (NAD83), in which the directions are Lambert grid bearings and the distances are surface level horizontal lengths (S.F.= 0.99988752832) as follows

COMMENCING at a 3/4" iron rod found marking the North corner Lot 80, same being the West corner of Lot 81 of the aforementioned B.C.I.C. Div. 8 subdivision, located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, said Point of Commencement being at Texas at State Plane Coordinate System position X=3155152.81 and Y=13556863.07, from which an old 3" x 3/4" hard-wood stake located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, found marking the North corner of Lot 66, same being the and the West corner of Lot 67 bears South 42°51'47" West, a distance of 4620.94 feet (called 4620.00 feet), at Texas State Plane Coordinate System position X=3152009.76 and Y=13553476.39, herein located point of commencement and point of reference, being shown in 1952 Dow Chemical Company survey by Herman D. Smith, RPS #916, drawing number: B8-8-19000-10488;

THENCE South 42°51'47" West, coincident with the southeastern right-of-way boundary line of said 40 foot wide platted road, a distance of 1980.40 feet to a point for the North corner of Lot 74, same being the West corner of Lot 75 of the B.C.I.C. Div. 8 subdivision, at position X=3153805.79 and Y=13555411.64;

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 75, same being the northeastern boundary line of Lot 74 of the B.C.I.C. Div. 8 subdivision, a distance of 660.00 feet to the POINT OF BEGINNING, at a 5/8" iron rod with survey cap marked "WPD 4467" set for the common corner of Lot 56, Lot 57, Lot 74 and Lot 75 of the B.C.I.C. Div. 8 subdivision and the North corner of the herein described 5.0010 acre tract, at position X=3154289.50 and Y=13554962.72;

PARCEL No. 2, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 57 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 2 OF 2

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 56, same being the northeastern boundary line of Lot 57 of the B.C.I.C. Div. 8 subdivision, at a distance of 640.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a point in the northwestern boundary line of a 40 foot wide platted roadway, at the South corner of Lot 56, same being the East corner of Lot 57 of the B.C.I.C. Div. 8 subdivision, for the East corner of the herein described 5.0010 acre tract, at position X=3154773.21 and Y=13554513.81;

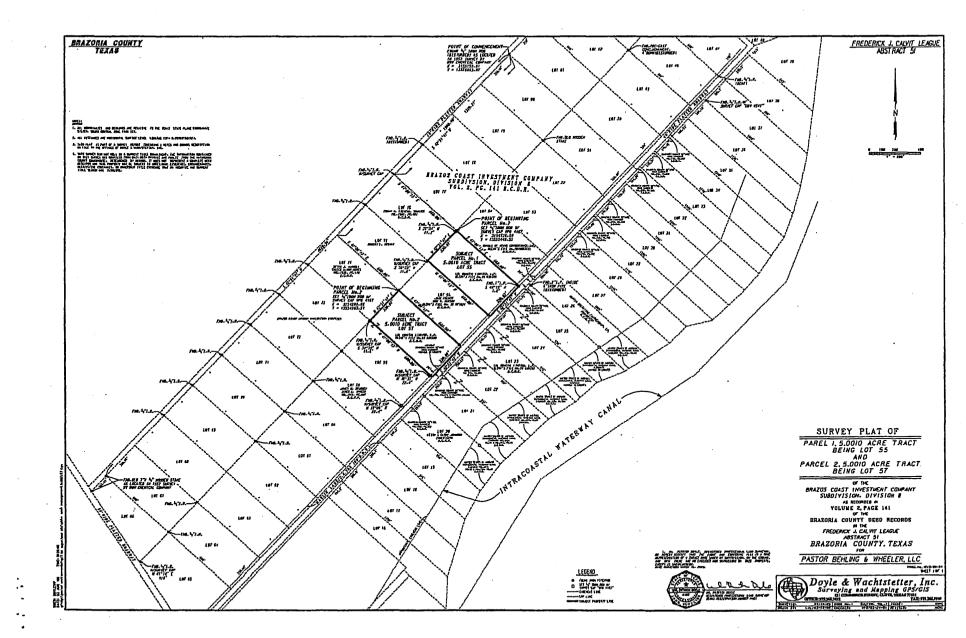
THENCE South 42°51'47" West, coincident with the northwestern right-of-way boundary line of said 40 foot wide platted road, same being the southeastern boundary line of Lot 57 of the B.C.I.C. Div. 8 subdivision, a distance of 330.07 feet to a point for the East corner of Lot 58, same being the South corner of Lot 57 of the B.C.I.C. Div. 8 subdivision, for the South corner of the herein described 5.0010 acre tract, from which an iron rod with survey cap bears North 78°35' West, a distance of 22.4 feet, at position X=3154548.71 and Y=13554271.90;

THENCE North 47°08'13" West, coincident with the northeastern boundary line of Lot 58, same being the southwestern boundary line of Lot 57, at a distance of 20.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a 5/8" iron rod with survey cap marked "WPD 4467" set at the common corner of Lot 57, Lot 58, Lot 73 and Lot 74 of the B.C.I.C. Div. 8 subdivision, for the West corner of the herein described 5.0010 acre tract, from which an iron rod with survey cap bears South 38°39' West, a distance of 11.6 feet, at position X=3154065.00 and Y=13554720.82;

THENCE North 42°51'47" East, coincident with northwestern boundary line of Lot 57, same being the southeastern boundary line of Lot 74 of the B.C.I.C. Div. 8 subdivision, a distance of 330.07 feet to the **POINT OF BEGINNING**, containing 5.0010 acres of land, more or less.

Wm. Patrick Doyle()

Registered Professional Land Surveyor


Texas Registration Number 4467

March 18, 2009

This description is based on a survey, a plat of which, February 17, 2009 is on file in the office of Doyle & Wachtstetter, Inc. Legalput/Culfeo Lots? Environmental Management 5.00 Acre Tract BCICE.doe

#### Exhibit B

Plat Map of the Property – area covered by Restrictive Covenant for Limitation on Uses, Construction and Groundwater Use



Doc# 2009036113
# Pages 10
08/13/2009 1:44PM
Official Public Records of
BRAZDRIA COUNTY
JOYCE HUDMAN
COUNTY CLERK
Fees #52.00

Gorpe Hickman

## RESTRICTIVE COVENANT FOR LIMITATION ON USES AND GROUNDWATER USE

| STATE OF TEXAS     | §<br>§ | Doc# 2009036114 |
|--------------------|--------|-----------------|
| COUNTY OF BRAZORIA | §      |                 |

This Restrictive Covenant is filed to provide information concerning certain environmental conditions and use limitations upon that parcel of real property (the "Property") described in Exhibits A and B, attached hereto and incorporated herein by reference, and which at the time of this filing is listed on the United States Environmental Protection Agency's ("EPA") National Priority List as a "Superfund Site."

As of the date of this Restrictive Covenant, the record owner of fee title to the Property is LDL COASTAL LIMITED, L.P., a Texas limited partnership ("Owner"), with an address of c/o Allen Daniels, 6363 Woodway Drive, Suite 730, Houston, Texas 77057. The appropriate land use for the Property is commercial/industrial.

LDL Coastal Limited, L.P. has agreed to place the following restrictions on the Property in favor of The Dow Chemical Company ("Dow"), Chromalloy American Corporation ("Chromalloy"), the Texas Commission on Environmental Quality ("TCEQ"), the State of Texas and EPA.

NOW THEREFORE, in consideration of the premises and other good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, the following restrictive covenants in favor of Dow, Chromalloy, TCEQ, the State of Texas and EPA are placed on the Property, to-wit:

#### 1. Commercial/Industrial Use.

The Property shall not be used for any purposes other than commercial/industrial uses, as that term is defined under 30 T.A.C §350.4(a)(13), and thus shall not be used for human habitation or for other purposes with a similar potential for human exposure. Portions of the soils and/or groundwater of the Property contain certain identified chemicals of concern. Future users of the Property are advised to review and take into consideration environmental data from publicly available sources (i.e. TCEO and EPA) prior to utilizing the Property for any purpose.

### 2. Groundwater.

The groundwater underlying the Property shall not be used for any beneficial purpose, including: (1) drinking water or other potable uses; (2) the irrigation or watering of landscapes or (3) agricultural uses. For any activities that may result in potential exposure to the groundwater, a plan must be in place to address and ensure the appropriate handling, treatment and disposal of any affected soils or groundwater.

3. These restrictions shall be a covenant running with the land.

For additional information, contact:

The Dow Chemical Company 2030 Dow Center 8th Floor Legal Dept. Midland, MI 48674 ATTN: General Counsel

Chromalloy American Corporation C/O Sequa Corporation 200 Park Avenue New York, NY 10166 ATTN: General Counsel

U.S. Environmental Protection Agency, Region 6
Superfund Division (6RC-S)
1445 Ross Avenue, Suite 1200
Dallas, TX 75202-2733
ATTN: Assistant Regional Counsel

Texas Commission on Environmental Quality P.O. Box 13087 Austin, TX 78711-3087 ATTN: Remediation Division

State of Texas

Office of the Texas Attorney General Natural Resources Division 300 W. 15th Street Austin, TX 78701

The restrictions imposed by this Restrictive Covenant may be rendered of no further force or effect only by a release executed by Dow, Chromalloy, TCEQ, the State of Texas and EPA or their successors and filed in the same Real Property Records as those in which this Restrictive Covenant is filed.

Executed this 1874 day of July , 2009.

|                                                                                                                                                                                                                                                                                                                                                                                                                                               | Texas limited partnership |                                                                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                               | By:                       | RAMWAY Management, L.L.C., a Texas limited liability company, its sole general partner.  By: |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | Name: Allen B. Daniels                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | Title: Makager                                                                               |  |  |
| STATE OF TEXAS                                                                                                                                                                                                                                                                                                                                                                                                                                | §                         |                                                                                              |  |  |
| COUNTY OF WWYS                                                                                                                                                                                                                                                                                                                                                                                                                                | §<br>§                    | •                                                                                            |  |  |
| BEFORE ME, on this the 28 day of 100, 2009, personally appeared Allen B. Daniels, Manager, of RAMWAY Management, L.L.C., a Texas limited liability company and the sole general partner of LDL Coastal Limited, L.P., a Texas limited partnership, known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that he executed the same for the purposes and in the capacity herein expressed. |                           |                                                                                              |  |  |
| GIVEN UNDER MY HAND AND 2009.                                                                                                                                                                                                                                                                                                                                                                                                                 | SEAL (                    | OF OFFICE, this the <u>28</u> day of                                                         |  |  |
| Meredith Anne Moran My Commission Expires 12/13/2011                                                                                                                                                                                                                                                                                                                                                                                          | Notary                    | Public in and for the State of Texas ommission Expires: \2 \13 \2011                         |  |  |

# Exhibit A

Legal Description of the Property



PARCEL No. 1, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 58 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 1 OF 2

ALL THAT CERTAIN 5.0010 ACRE tract of land lying in and situated in the Frederick J. Calvit League, Abstract 51, Brazoria County, Texas, being all of Lot 58 of the Brazos Coast Investment Company Subdivision, Division 8 (B.C.I.C. Div. 8), according to the map or plat thereof recorded in Volume 2, Page 141 of the Brazoria County Plat Records (B.C.P.R.) and being the same tract of land conveyed by deed on August 6, 1999 from Janet Casciato-Northrup, Trustee of the Chapter 7 Bankruptcy Estate of Hercules Marine Services Corporation to LDL Coastal Limited, L.P., as recorded in Clerk's File No. 99-036339 of the Brazoria County Official Records (B.C.O.R.), the herein described tract of land being more particularly described by metes and bounds, using survey terminology which refers to the Texas State Plane Coordinate System, South Central Zone (NAD83), in which the directions are Lambert grid bearings and the distances are surface level horizontal lengths (S.F.=0.99988752832) as follows

COMMENCING at a 3/4" iron rod found marking the North corner Lot 80, same being the West corner of Lot 81 of the aforementioned B.C.I.C. Div. 8 subdivision, located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, said Point of Commencement being at Texas at State Plane Coordinate System position X=3155152.81 and Y=13556863.07, from which an old 3" x 3/4" hard-wood stake located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, found marking the North corner of Lot 66, same being the and the West corner of Lot 67 bears South 42°51'47" West, a distance of 4620.94 feet (called 4620.00 feet), at Texas State Plane Coordinate System position X=3152009.76 and Y=13553476.39, herein located point of commencement and point of reference, being shown in 1952 Dow Chemical Company survey by Herman D. Smith, RPS #916, drawing number: B8-8-19000-10488;

THENCE South 42°51'47" West, coincident with the southeastern right-of-way boundary line of said 40 foot wide platted roadway, a distance of 2310.47 feet to a point for the North corner of Lot 73, same being the West corner of Lot 74 of the said B.C.I.C. Div. 8 subdivision, at position X=3153581.28 and Y=13555169.73;

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 74, same being the northeastern boundary line of Lot 73 of the said B.C.I.C. Div. 8 subdivision, a distance of 660.00 feet to the **POINT OF BEGINNING**, at a 5/8" iron rod with survey cap marked "WPD 4467" set, from which an iron rod with survey cap bears South 38°39' West, a distance of 11.6 feet, for the common corner of Lot 57, Lot 58, Lot 73 and Lot 74 of the B.C.I.C. Div. 8 subdivision and the North corner of the herein described 5.0010 acre tract, at position X=3154065.00 and Y=13554720.82;

PARCEL No. 1, 5.0010 ACRE ENVIRONMENTAL MANAGEMENT TRACT LOT 58 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 2 OF 2

THENCE South 47°08'13" East, coincident with the southwestern boundary line of Lot 57, same being the northeastern boundary line of Lot 58 of the B.C.I.C. Div. 8 subdivision, at a distance of 640.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a point in the northwestern boundary line of a 40 foot wide platted roadway, at the South corner of Lot 57, same being the East corner of Lot 58 of the B.C.I.C. Div. 8 subdivision, from which an iron rod with survey cap bears North 78°35' West, a distance of 22.4 feet, for the East corner of the herein described 5.0010 acre tract, at position X=3154548.71 and Y=13554271.90;

THENCE South 42°51'47" West, coincident with the northwestern right-of-way boundary line of said 40 foot wide platted road, same being the southeastern boundary line of Lot 58 of the B.C.I.C. Div. 8 subdivision, a distance of 330.07 feet to a point for the East corner of Lot 59, same being the South corner of Lot 58 of the B.C.I.C. Div. 8 subdivision, from which an iron rod with cap bears North 78°08' West, a distance of 22.4 feet, for the South corner of the herein described 5.0010 acre tract, at position X=3154324.20 and Y=13554030.00;

THENCE North 47°08'13" West, coincident with the northeastern boundary line of Lot 59, same being the southwestern boundary line of Lot 58, at a distance of 20.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the apparent northwest right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756, continuing a total distance of 660.00 feet to a 5/8" iron rod with survey cap marked "WPD 4467" set at the common corner of Lot 58, Lot 59, Lot 72 and Lot 73 of the B.C.I.C. Div. 8 subdivision, for the West corner of the herein described 5.0010 acre tract, at position X=3153840.49 and Y=13554478.91;

THENCE North 42°51'47" East, coincident with the northwest boundary line of Lot 58, same being the southeastern boundary line of Lot 73 of the B.C.I.C. Div. 8 subdivision, a distance of 330.07 feet to the **POINT OF BEGINNING**, containing 5.0010 acres of land, more or less.

Wm. Patrick Doyle

Registered Professional Land Surveyor

**Texas Registration Number 4467** 

March 23, 2009

This description is based on a survey, a plat of which, March 18, 2009 is on file in the office of Doyle & Wachtstetter, Inc.
Legalpat Guifeo Lot 58 Environmental Management 5,00 Acro Tract BCICE.doc



PARCEL No. 2, 24.7552 ACRE ENVIRONMENTAL MANAGEMENT TRACT ALL OF LOT 21 THROUGH LOT 25 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 1 OF 3

ALL THAT CERTAIN 24.7552 ACRE tract of land lying in and situated in the Frederick J. Calvit League, Abstract 51, Brazoria County, Texas, being all of Lots 21, 22, 23, 24 and 25 of the Brazos Coast Investment Company Subdivision, Division 8 (B.C.I.C. Div. 8), according to the map or plat thereof recorded in Volume 2, Page 141 of the Brazoria County Plat Records (B.C.P.R.) and being the same tract of land conveyed by deed on August 6, 1999 from Janet Casciato-Northrup, Trustee of the Chapter 7 Bankruptcy Estate of Hercules Marine Services Corporation to LDL Coastal Limited, L.P., as recorded in Clerk's File No. 99-036339 of the Brazoria County Official Records (B.C.O.R.), the herein described tract of land being more particularly described by metes and bounds, using survey terminology which refers to the Texas State Plane Coordinate System, South Central Zone (NAD83), in which the directions are Lambert grid bearings and the distances are surface level horizontal lengths (S.F.= 0.99988752832) as follows:

COMMENCING at a 3/4" iron rod found marking the North corner Lot 80, same being the West corner of Lot 81 of the aforementioned B.C.I.C. Div. 8 subdivision, located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, said Point of Commencement being at Texas at State Plane Coordinate System position X=3155152.81 and Y=13556863.07, from which an old 3" x 3/4" hard-wood stake located in the southeastern right-of-way boundary line of a 40 foot wide platted roadway of the said B.C.I.C. Div. 8 subdivision, found marking the North corner of Lot 66, same being the and the West corner of Lot 67 bears South 42°51'47" West, a distance of 4620.94 feet (called 4620.00 feet), at Texas State Plane Coordinate System position X=3152009.76 and Y=13553476.39, herein located point of commencement and point of reference, being shown in 1952 Dow Chemical Company survey by Herman D. Smith, RPS #916, drawing number: B8-8-19000-10488;

THENCE South 47°08'13" East, a distance of 1360.00 feet to a point for corner, located in the northwestern boundary line of Lot 32 of the B.C.I.C. Div. 8 subdivision, same being the southeastern right-of-way boundary line of a 40 foot wide platted roadway, at position X=3156149.54 and Y=13555938.04;

THENCE South 42°51'47" West, coincident with the northwestern boundary line of Lot 26 through Lot 32 of the B.C.I.C. Div. 8 subdivision, same being the southeastern right-of-way boundary line of said 40 foot wide platted road, a distance of 1250.83 feet to the POINT OF BEGINNING of the description, from which a 2" iron pipe inside a 6" iron pipe found disturbed bears South 44°30' East, a distance of 20.7 feet, said point being the West corner of Lot 26, same being the North corner of Lot 25 of the B.C.I.C. Div. 8 subdivision and the herein described 24.7552 acre tract, at position X=3155298.76 and Y=13555021.31;

PARCEL No. 2, 24.7552 ACRE ENVIRONMENTAL MANAGEMENT TRACT ALL OF LOT 21 THROUGH LOT 25 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 2 OF 3

THENCE South 47°08'13" East, coincident with the northeastern boundary line of Lot 25, same being the southwestern boundary line of Lot 26 of the B.C.I.C. Div. 8 subdivision, at a distance of 20.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the southeastern right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756 and being the East corner of all that certain 20 foot wide road easement conveyed by deed on August 15, 1961 from Joe M. Baggett, et al to Brazoria County, as recorded in Volume 798, Page 674 of the Brazoria County Deed Records (B.C.D.R.), at a distance of 730.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set for reference corner, continuing for a total distance of 1030.00 feet to a point, at the South corner of said Lot 26, East corner of said Lot 25 and the East corner of the United States of America Intracoastal Waterway easement, for the East corner of the herein described 24.7552 acre tract, at position X=3156053.65 and Y=13554320.73;

THENCE South 67°31'58" West, with the southeastern boundary line of said Lot 25 and said United States of America Intracoastal Waterway easement, a distance of 239.59 feet to the South corner of said Lot 25, same being the East corner of said Lot 24, for an angle corner of the herein described 24.7552 acre tract, at position X=3155832.27 and Y=13554229.18;

THENCE South 47°18'32" West, with the southeastern boundary line of said Lot 24 and said United States of America Intracoastal Waterway easement, a distance of 232.21 feet to the South corner of said Lot 24, same being the East corner of said Lot 23, for an angle corner of the herein described 24.7552 acre tract, at position X=3155661.61 and Y=13554071.75;

THENCE South 56°59'51" West, with the southeastern boundary line of said Lot 23 and said United States of America Intracoastal Waterway easement, a distance of 253.89 feet to the South corner of said Lot 23, same being the East corner of said Lot 22, for an angle corner of the herein described 24.7552 acre tract, at position X=3155448.71 and Y=13553933.48;

THENCE South 45°45'48" West, with the southeastern boundary line of said Lot 22 and the said United States of America Intracoastal Waterway easement, a distance of 256.93 feet to the south corner of said Lot 22, same being the East corner of said Lot 21, for an angle corner of the herein described 24.7552 acre tract, at position X=3155264.64 and Y=13553754.25;

THENCE South 46°33'11" West, with the southeastern boundary line of said Lot 21 and the said United States of America Intracoastal Waterway easement, a distance of 264.15 feet to the East corner of Lot 20, same being the South corner of said Lot 21 of the B.C.I.C. Div. 8 subdivision and the South corner of the herein described 24.7552 acre tract, at position X=3155072.89 and Y=13553572.62;

PARCEL No. 2, 24.7552 ACRE ENVIRONMENTAL MANAGEMENT TRACT ALL OF LOT 21 THROUGH LOT 25 OF THE BRAZOS COAST INVESTMENT COMPANY SUBDIVISION, DIVISION 8 FREDERICK. J. CALVIT LEAGUE, ABSTRACT 51 BRAZORIA COUNTY, TEXAS PAGE 3 OF 3

THENCE North 47°08'13" West, coincident with the southwestern boundary line of Lot 21, same being the northeastern boundary line of Lot 20, at a distance of 220.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set for reference corner, at a distance of 800.00 feet pass a 5/8" iron rod with survey cap marked "WPD 4467" set in the southeastern right-of-way boundary line of the 80 foot wide Marlin Lane, known as Brazoria County Road #756 and the South corner of the of a 20 foot wide roadway easement conveyed on August 15, 1961 from R. F. Dwyer, III to Brazoria County, as recorded in Volume 798, Page 679 of the B.C.D.R., continuing for a total distance of 820.00 feet to a point for corner in the southeast right-of-way boundary line of said 40 foot wide platted roadway, at the North corner of Lot 20, West corner of Lot 21 and the West corner of the herein described 24.7552 acre tract, at position X=3154471.91 and Y=13554130.36;

THENCE North 42°51'47" East, coincident with the northwestern boundary line of Lot 21 through Lot 25 of the B.C.I.C. Div. 8 subdivision, same being the southeastern right-of-way boundary line of said 40 foot wide platted road, a distance of 1215.65 feet to the POINT OF BEGINNING, containing 24.7552 acres of land, more or less.

WM. PATRICK DOYLE

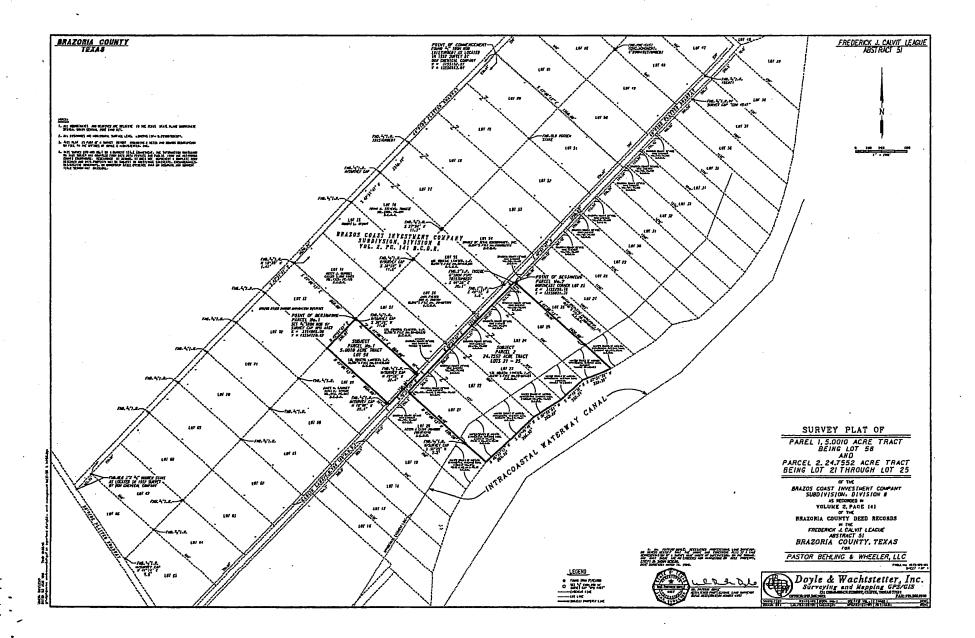
4467

SURVEY

SURVE

Wm. Patrick Doyle

Registered Professional Land Surveyor


**Texas Registration Number 4467** 

March 23, 2009

This description is based on a survey, a plat of which, March 18, 2009 is on file in the office of Doyle & Wachtstetter, Inc. Legalpat/Pastor Behling & Wheeleri Guliço Superfund Lot21 through Lot25 Environmental Management 24.7552 Acro Tract BCIC#8, doc

## Exhibit B

Plat Map of the Property – area covered by Restrictive Covenant for Limitation on Uses and Groundwater Use



Doc# 2009036114 # Pages 11 08/13/2009 1:4APM Official Public Records of BRAZORIA COUNTY JOYCE HUDMAN COUNTY CLERK Fees \$56.00

Gorgee Hedman